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Abstract

There has recently been a resurgence of interest in the shortest common superstring
problem due to its important applications in molecular biology (e.g., recombination of DNA)
and data compression. The problem is NP-hard, but it has been known for some time that
greedy algorithms work well for this problem. More precisely, it was proved in a recent
sequence of papers that in the worst case a greedy algorithm produces a superstring that is
at most 3 times (2 < 8 < 4) worse than optimal. We analyze the problem in a probabilistic
framework, and consider the optimal total overlap OSP* and the overlap Of" produced by
various greedy algorithms. These turn out to be asymptotically equivalent. We show that
with high probability lim,, . % = lim,, % = % where n is the number of original
strings, and H is the entropy of the underlying alphabet. Our results hold under a condition
that the lengths of all strings are not too short.
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1 Introduction

Various versions of the shortest common superstring (in short: SCS) problem play important
roles in data compression and DNA sequencing. In fact, in laboratories DNA sequencing (cf.
[4, 9, 18, 22]) is routinely done by sequencing large numbers of relatively short fragments,
and then heuristically finding a short common superstring. The problem can be formulated

2....,x" over an alphabet X, find the

as follows: given a collection of strings, say x',x
shortest string z such that each of x* appears as a substring (a consecutive block) of z. In
DNA sequencing, another formulation of the problem may be of even greater interest. We
call it an approzimate SCS and one asks for a superstring that contains approzimately (e.g.,

2 ...,x" as substrings.

in the Hamming distance sense) the original strings x!, x

It is known that computing the shortest common superstring is NP-hard, [11]. Thus
constructing a good approximation to SCS is of prime interest. It has been shown recently,
that a greedy algorithm can compute in O(nlogn) time a superstring that in the worst
case is only 3 times (where 2 < (8 < 4) longer than the shortest common superstring
[3, 6, 8, 14, 17, 19, 28, 29]; see also [13].

Our results are also about greedy approximations of the shortest common superstring
but in a probabilistic framework. We shall prove that several greedy algorithms for the SCS
problem are asymptotically optimal in the sense that they produce a total overlap (see (1) for
a formal definition) of SCS that differs from the optimal (maximum) overlap by a quantity
that is order of magnitude smaller than the leading term of the overlap. More precisely, let
n be the number of (long) strings. We assume that the lengths of all strings are Q(logn)
(see below for a more precise formulation and relaxation of this assumption; cf. also [1]).
Let also O%*" denote the optimal total overlap and let O% be that produced by various
greedy algorithms. We prove that with high probability (in short whp) O ~ %nlogn and
OBPt ~ %n log n for large n where H is the entropy of the alphabet. Thus, the relative error
of greedy and optimal overlaps tends to zero in probability as n — oo.

We assume that the strings are generated independently. We first consider the so called
Bernoulli model in which symbols of the alphabet 3 are generated independently within a
string. We deal at the beginning with the Bernoulli model to explain our results and proofs
in the simpliest possible manner. Later, we extend the main results to the so called mizing
model in which the dependency among symbols decays rapidly as the symbols are further
away of each others. The mixing model includes the Bernoulli model, as well the Markovian
model and the hidden Markov model (cf. [23, 27]).

The literature on worst-case analysis of SCS is impressive (cf. [3, 6, 8, 14, 17, 19, 28, 29])



but probabilistic analysis of SCS is very scarce. Only recently, did Alexander [1] prove that
the average optimal overlap in the Bernoulli model EOZP! ~ %n logn. After a preliminary
version of this paper was published as a technical report, Yang and Zhang [31] extended
some of our results, and subsequently in this paper we provide a shorter proof for some of
[31] results as well as extend some other results of [31] (cf. Remark (i) in Section 2).

This paper is organized as follows: In the next section we present our main results:
First, we discuss only the Bernoulli model which is later extended to the mixing model.
The proof is delayed till Section 3. In Subsection 3.1 we present an upper bound for the
mixing model as well as some additional results that are of their own interest. A lower
bound for the Bernoulli model is given in Subsection 3.2, and finally in the last subsection

we show what modifications are needed to extend the lower bound to the mixing model.

2 Main Results

Before presenting our main results, we introduce some notation and a framework for de-
scribing our greedy algorithms.

Suppose x = z1Z2...x, and y = y1yo...ys are strings over the same finite alphabet
Y ={wi,wq,...,wp} where M = |%]| is the size of the alphabet. We also write |x| for the
length of x. We define their overlap o(x,y) by

o(x,y) = max{j : yi = Tr—j4i, 1 <i < j}. (1)
If x #y and k = o(x,y), then

XD Y=T122... ZrYk+1Yk+2---Ys-

Let S be a set of all superstrings built over the strings x!,...,x". Then,
n .
O = Y| wilal. (2)

Throughout the paper, all logarithms are to the base e unless explicitly stated otherwise.

2

We study the following algorithm: its input is the n strings x',x?,...,x" over ¥. It

outputs a string z which is a superstring of the input.
Generic greedy algorithm
1. I+ {x!,x%x% ..., x"}; OF « 0;

2. repeat



3. choose X,y € I; z=x®Yy;

4. I+ (I\{x,y}) U{z};
5. 08" + O% + o(x,y);
6. until |7| =1

We consider three variants:
GREEDY: In Step 3, choose x # y in order to maximise o(x,y) (cf. [6]).

RGREEDY: In Step 3, x is the string z produced in the previous iteration, while y is
chosen in order to maximise o(x,y) = o(z,y). Our initial choice for x is x!. Thus,
in RGREEDY we have one “long” string z which grows by addition of strings at the
right hand end.

MGREEDY: In Step 3 choose x,y in order to maximise o(x,y). If x # y proceed as in
GREEDY. If x =y, then I « I\ {x}, O is not incremented, and C + C U {x}
where the set C is initially empty. Here, C is a set of strings, and we see later that C
corresponds to a set of cycles in an associated digraph. On termination we add the
final string left in I to C (cf. [31]).

In GREEDY and RGREEDY the output is the final string left in the set I. In MGREEDY
the output is an arbitrary catenation of the strings in C.

We will assume that the input strings are independently generated. First, we analyze
the Bernoulli model, that is, each x = x/ = z1xy...z is of the same length ¢ and z;
is generated independently of z1,zs,...,2;—1. Furthermore, P(z; = w;) = p; > 0 for
1<j<M. Let

m
H=-) pilogp
=1

be the associated entropy for the Bernoulli model (i.e., memoryless source).
Now, we ready to formulate our main result. Below, we say that a sequence &, occurs

whp(with high probability) if P(£,) — 1 as n — oc.

Theorem 1 Consider the Shortest Common Superstring problem under the Bernoulli model.
Let P = E]]Vi1 p?. Then, whp
O%pt 1 og’ 1

1. = — 1. = — 3
n—00 nlogn H e nlogn H (3)




provided

for all1 <i<mn.

In many applications, notably for data compression and DNA recombination problem,
the Bernoulli model assumption is too unrealistic. Therefore, we extend our basic Theorem
1 to the case when there is some dependency among symbols within a string. However, we
still assume that the strings x!,...,x" are statistically independent. Thus, let us consider
a generic string x (from the set x!,...,x" of strings), and let us assume that is generated
by a stationary ergodic source. Then, it is well known that the entropy H can be defined
as (cf. [5])

k
H — lim _ElosP(xi)
k—o0 k
log P(x*
_ gy _08P(x) (a.s.) (5)
k— o0 k

Furthermore, we restrict somewhat the dependency among symbols of x, that is, we

define the mizing model. Let X‘Z denote the substring z;z;;1---z; of x. Then:

(M) MIXING MODEL

Let .7-"ij be a o-field generated by xf;:i for ¢ < j. There exists a function a(-) of g such
that: (i) limy_,00 a(g) = 0, (ii) (1) < 1, and (iii) for any m, and two events A € F’
and B € F}/ the following holds

(1 —a(g))P(A)P(B) <P(AB) < (1 + a(g))P(A)P(B). (6)

In such a model, we introduce a new parameter ho defined as

log (Zx’;eljk PQ(xlf)) ™

which can be proved to exists (cf. [23, 27]). We observe that hs is related to the so called

hy — lim log(E{P(x))})™" _ .

k—o00 k k—o00

Renyi second order entropy (cf. [7, 20]).

Now, we are ready to formulate our generalization of Theorem 1.

Theorem 2 C(Consider the Shortest Common Superstring problem under the mizing model
(M). Then, with high probability (whp)
opt 1 og* 1

li = — Ii =
00 nlogn H no0 nlogn H (8)




provided

. 4
|x'| > —h—210gn (9)

for all1 <i<n.

Remarks and Extensions

(i) In the original version of this paper we proved Theorem 1 for the algorithm RGREEDY.
Subsequently, Yang and Zhang [31] extended it to include MGREEDY. In this paper we
give a shorter proof of this along with a proof for GREEDY as well.

(ii) Not Equal Length Strings. The assumption regarding equal length strings is not relevant
as long as there are enough long strings satisfying (4). A precise formulation of the propor-
tion of short and long strings such that Theorem 1 still holds can be found in Alexander
[1].

(iii) Markovian Model. In this model, the sequence x = x’ (1 < j < n) forms a stationary
Markov chain, that is, the (k4 1)st symbol in x depends on the previously selected symbol,
and the transition probability becomes p;; = P{zy41 = j € Z|zy = i € E}. Clearly,
P(x¥) = P(z1)P{zs|z1}---P{zg|zr_1}. Tt is also well known that the entropy H can
be computed as H = — 2%21 mipi,j log p; ; where m; is the stationary distribution of the
Markov chain. The quantity ho is a little harder to compute, as already pointed out in
[23, 27]. It turns out that hy = — log @ where 6 is the largest eigenvalue of the Schur product
of the transition matrix of the underlying Markov chain with itself (that is, element-wise

product).

(iv) SCS Does Not Compress Optimally. The SCS can be used to compress strings. Indeed,
instead of storing all strings of total length nf we can store the Shortest Common Superstring
and n pointers indicating the beginning of an original string (plus lengths of all strings).
But, this does not provide optimal compression (which is known to be the entropy H [7]).
To see this, let us compute the compression ratio C,, which is defined as the ratio of the
number of bits needed to transmit the compression code to the length of the original set of

strings (i.e., nf). It is easy to see that

. = nl — %nlogn-l—nl(;gQ(né— Znlogn) 1
n

where the first term of the numerator represents the length of the shortest superstring and
the second term corresponds to the number of bits needed to encode the pointers. Observe
now that C,, < H for large n. Indeed, since £ > —(4/log P)logn (cf. (9)) and (2/hg) > 1/H
(cf. [27]), we conclude that C,, < H, thus the Shortest Common String does not compress



optimally. It is well known from Shannon’s result that the best achievable compression ratio
can asymptotically be equal to the entropy H (e.g., Lempel-Ziv compression schemes). The
fact that the compression ratio for the SCS problem is bigger than the entropy, is hardly
surprising: In the construction of SCS we do not use all available redundancy of all strings

but only that contained in suffixes/prefixes of the original strings.

(v) Approzimate SCS. Let us define a distance between two strings, say x and y as the

relative Hamming distance, that is, dn(x,y) = £7' 325_, di (x4, ;) where dy(z,y) = 0 for

z = y and 1 otherwise where z,y € ¥ and |x| = |y| = £. For a given D < 1, we
introduce an approzimate SCS as follows: Construct the shortest common superstring of
strings x!, x2,...,x™ such that every string x* is within Hamming distance D of a substring

of the superstring. More precisely, the Approzimate (Lossy) Shortest Common Superstring
is a string of shortest length such that there exists a substring, say z;:“, of z such that
d(xi,zg-M) < D for all 1 < ¢ < n. Of course, a restriction on D is necessary since for too
large D any two randomly chosen strings are within distance D. Thus, for not too large
D, we conjecture that also for the Approximate SCS the optimal and greedy overlaps are
asymptotically equivalent. However, the constant in front of nlogn is not any longer the
entropy H. Recently, Yang and Zhang [31] proved that this constant is the reverse of the
so called lower mutual information, provided the lengths of the strings are not too short
(ie., £> ﬁ logn, where (D) the so called second generalized Rényi’s entropy defined
in [20]).

(vi) Limiting Distribution ?. Theorem 2 presents only a convergence in probability, and
might insufficient for some applications. We, therefore, conjecture that a stronger result
is also true, namely, the central limit theorem. We claim that Var O%' ~ Var Of ~

”Q—I}Hrznlogn + O(n) where hy = >"M, p;log? p;, and more importantly

O%P* —EOSP*  (Of' — EOg"
/Var ngt v Var O%r

where N(0,1) is the standard normal distribution. O

— N(0,1)

3 Analysis

In this section we prove Theorems 1 and 2. We observe that O& < O%*'. Thus, in a
subsection below we first derive an upper bound on O%" for the general mixing model.
Then, we deal with lower bounds for Of"' for the Bernoulli model in the various cases.

Finally, in the last subsection we extend the proof of the lower bound to the mixing model.



3.1 Upper Bound on O%"

Define Cj; as the length of the longest suffix of x’ that is equal to the prefix of x7. Let

My(i) = 15]-“%%’,2#{0’7}’
H, = 1121{a<)$l{Mn(z)}

We write M,, for a generic random variable distributed as M, (i) (observe that M, M, (7)

for all ¢, where % means “equal in distribution”). Certainly, the following is true:
n
Ot <D My (d) (11)
i=1

Thus, we need a probabilistic analysis of M, to obtain an upper bound on O%*. The
quantity H, is used to restrict the length of the strings.

The following lemma summarizes our knowledge of M,, as well as the height H,, and
suffices to prove an upper bound on OSP*. We point out that M,, has been studied before in
several papers devoted to tries (e.g., [12, 15, 23]), while H,, is distributed as the height of
a trie built from x!,...,x" (cf. [23, 26, 27]). For the proof of the upper bound of Theorem
2, we need only part (i) of the lemma below, while part (ii) is used in subsection 3.3 to
establish a restriction on the string lengths. But, probabilistic behaviors of M,, and H,, are
of their own interest, and find many other application in algorithms on strings. Therefore,
we present below an extended lemma (i.e., part (iii) leads us to a conjecture discussed in
Remark (vi)).

Lemma 1 (i) In the mizing model, for any ¢ >0

n—oo

lim P ((1 - 6)%logn <M, <1+ 6)%logn> =1-0(1/n%) (12)

provided a(g) — 0 as g — oo. Furthermore, for almost all strings that are sufficiently long
all but en of the numbers My, /logn are within € of 1/H.

(ii) In the mizing model, for any e >0

2

2
lim P ((l—e)h—lognan < (1+6)h
2 2

n—oo

logn) —1-0(1/nf) (13)

provided a(g) — 0 as g — 00. If, in addition, the mizing coefficients are summable, that is,

> g(g) < oo, then
H 2
li = — 8.) . 14
nl)Igo ]ogn ho (G, s ) ( )




(iii) In the Bernoulli model (also in the Markovian model), for large n we have

1 ¥ ho
EMn = Elogn—l-ﬁ-l-m—Pl(logn)—I—O(l/n) (15)
_ hy— H?
Var M,, = I logn + C + Py(logn) + O(1/n) (16)

where C is a constant, ho = Zfil p;log? p;, v = 0.577... is the Euler constant, Pi(x) and
Py(z) are fluctuating function with small amplitude. Furthermore, the following is true for
an asymmetric Bernoulli model (i.e., probabilities of symbol generations are not the same)
M, —EM, 4

—C— V(] 17

~ar 1L, (0,1) (17)

where N(0,1) is the standard normal distribution. The rate of convergence is O(1/+/logn),

and the convergence also holds in moments.

Proof. We first present a simple proof of (12). We observe that by Shannon-McMillan-
Breiman [7] for any stationary and ergodic sequence the state space ©* of all sequences
of length k can be partition into a set of “good states” Gr and “bad states” By such that
for any ¢ and large enough k we have P(B) < ¢ and for any wy € Gi the following holds
e kH+e) < P(wy,) < e FH(1-2) (see also (25)). To prove an upper bound of (12) we take

any fized typical sequence wy € Gi and observe that
P(M, > k) < nP(wg) + P(Bx).

The result follows immediately after substituting & = (1 +¢)H ! logn. For a lower bound,
let wy, € Gy be any fixed typical sequence with k& = %(1 —¢)logn. Define Zj as the number
of strings j # i such that a prefix of length & is equal to wy and a suffix of length & of the
ith string is equal to wy € Gj. Since wy, is fixed, the random variables C;; are independent,

and hence by the second moment method or Chebyshev’s inequality we have

Vaer 1 2
= frnd < < = €
P(M, < k) =P(Z, =0) < BZ < wP(wp) omn==),

since VarZy, < nP(wy), and this completes the proof of (12).
The proof of part (ii) is not much harder, and can be found in [23, 26]: For an upper
bound, one derives:

P(H, > k) <n? Z P2 (wy)
’wkEEk

where wy, € ©F denotes a fixed string of length k. An upper bound follows immediately from

the definition of hy after substituting k& = (1+¢) h—22 log n. For an lower bound, we again apply

9



the second moment method (however, expressed slightly differently). Let A;; = {C;; > k}

for some k = (1 — 5),3—2 logn. Then,

2
n (i, P(4y))

n = Aij | 2

P(Hn, > k) =P ( U ”) = 20, P(Aig) + i jz1m P (Aig N Aun)

i,j=1

where the last inequality follows from the second moment inequality (see for example [26]).
The above probabilities are easy to evaluate, and the reader is referred to [26, 27] for details
(in fact, for the results of this paper, we only need an upper bound on H,).

Now, we proceed to prove part (iii) for the Bernoulli model, however, one can extend
these results to the Markovian model (cf. [12]). For simplicity of presentation, we now work
on a binary alphabet with p; = p and p» = ¢ = 1 — p. From the inclusion-exclusion rule we

have

r

P(M,>k) = P (O[Cj zm) e (”)P(cl > k,...,Cp > k)

= i(—l)r+1 <n> (P! + g Tk

r=1 r

where the last equality is a consequence of
P(Ci>k,...,Cr > k)= (p" " + ¢ k. (18)

Let now G, (z) be the probability generating function of M,,, and G (2) = Xk>o0 ZFP{M, >
k} (clearly, Gp(2) = (1 — Gn(2))/1 — z). Thus, the above implies

~ n n 1
Gn(2) = — Z(_l)r< ) 1— z(pr+1 + ¢+1) ) (19)

r=1 r

Observe that EM, = G,(1) and EM, (M, — 1) = 2G",(1). In both cases we have to deal

with alternating sums shown below

n n 1
EM, = - -1
n 7;1( ) (,,. 1— (pr+1 + qr+1)
n n pr+1 +qr+1
EM, (M, —-1) = -2 1) .
n( n ) 1;( ) (T) (1 _ (pr+1 + qr—|—1))2

Observe that (19) also has the form of an alternating sum.
To deal efficiently with such sums we use a Mellin-like approach (cf. [10, 15, 25]). In
particular, for all sequences fj that do not grow too fast at infinity we have

Zn:(—l)’" (:L) fr= (1 +0 (1» ! /ll/m>o n”°I'(s) f(—s)ds , (20)

= n/) 2w J1/2—ico

10



where I'(s) is the Euler gamma function, and f(s) is an analytical continuation of f;,
that is, f(s) |s=r —fr. Then, (15) and (16) are direct consequences of the above and the
Cauchy residue theorem. The limiting distribution part (i.e., (17)) follows from the above
and Goncharov’s theorem (cf. [15]) which states that M,, are normally distributed if for a

complex 6

. — 1p92
Jim o=0/7n Gy (01 = 37

where u, = EM,, and o, = y/VarM,. Details can be found in [12]. m

3.2 Lower Bounds on Of in the Bernoulli Model

In this subsection we prove lower bounds on O$" only for the Bernoulli model (i.e., we
complete the proof of Theorem 1). By choosing such a way of presentation, we can better
explain the proof and make it self sufficient without referring to more general results on
stationary and ergodic process. We extend it to the mixing model in the next subsection.
We first show that if (4) holds, then it is unlikely for there to be a pair 7, j such that
o(x*,x7) > £/2. Let £ denote the event that there is no such pair. If £ = K logn then

P(~¢) < (”) S P = O(uzHEIEP2)  o(1), (21)
2 k=£/2

provided K > —4/log P.

3.2.1 RGREEDY

Given (4) we let 7(x) (resp. o(x)) refer to the ¢/2-prefix (resp. suffix) of x. If £ occurs
then the final string z produced by RGREEDY is unchanged if we make our choice of y
through

o(o(2),7(y)) = max{o(o(z), 7(y')); y' € I};

The first observation is that the strings o(x), x € I have no influence on the choice of y in
Step 3. Indeed we could delay generating b® = o(x') until after x* has been chosen as y
in Step 3. This idea has been labelled the method of deferred decisions by Knuth, Motwani
and Pittel [16]. Thus at the end of an execution of an iteration of RGREEDY:

Lemma 2 o(z) is random and independent of the previous history of the algorithm.

We continue by examining the likely shape of the strings 7(x!),...,m(x"). Hereafter, we
write a’ = 7(x’) and b’ = o(x’). For 1 < k < ¢/2 and a € %2, let p; = p;(a, k) be defined

11



by
pr=H{1<i<k:a=w €%, 1<t M}.

Now for each t, k, p; is distributed as the binomial B(k,p;). For € > 0 and integer k let
Qk,e) ={acF: pya,k) < (1+ekp, 1 <t < M}
Let a** denote the k-prefix of a’. We need the following standard Chernoff bounds for the
tails of the binomial B = B(n,p): assume 0 < e < 1.
P(B<(l—¢enp) < e’ /2
P(B > (1+ €)np) < e /3,
Hence,

P(a™* ¢ Q(k,e)) <Y e < kni/3 = g, (22)

Mz

~+~

[

Our choice of ¢, k for the remainder of this section is
1
e = (logn)~'/3 and k = {(1 - 2€)ﬁ lognJ .
So €2k — oo with n and whp almost every a** € Q(k,¢). Next let M(k,e) = |{i : a®F ¢

Q(k,€)}|. If & = 6(k,e) denotes the RHS of (22), then M(k,€) is stochastically dominated
by B(n,0). So whp

M(k,e) = o(en). (23)
Now consider a fixed a € Q(k, €). Then, for each 1 < i <n we have

. M
P’ =a) = [[#'™=¢@) (24)

t=1

R
Z ptpt( +€)
t=1
t=1

e—k(l—f—e)H . (25)

Let N(a) = |{i : a** = a}|. Clearly, N(a) is distributed as B(n,&(a)) where £(a) is the
RHS of (24). With our definition of &, € we see from (25) that né(a) > n¢. Hence,
P(Fac Qk,e): N(@) < (1—ené(a) < [Qk,e)|e @3
[k, e/
Mkefe2n€/3

INIA

o(1). (26)

12



/

Figure 1: First few levels of T' with v(v) marked in bold for al! = 01111, a? = 11110,
a® = 10101, a* = 00000, a® = 01011, and a® = 011000 (e.g. if z ends with ... 101, then the

particle Z reaches the vertex v).

Our useful knowledge of the shape of al,a?,...,a" is summarised in (23) and (26).

We now consider a tree process that mimics RGREEDY. Let T' denote an infinite rooted
M-ary tree. The M edges leading down from each vertex are labelled with wi,ws,...,was.
The child w of vertex v for which edge (v, w) is called the w; child of v. A vertex v of T at
depth d is identified with a string s4s4—1 ... s1 and is labelled with an integer v(v). Here the
edges of the path from the root of T' to v have labels s1, s2,. .., sq and v(v) is the number
of i such that the d-prefix of a’ is sy4sq_1...s1i (cf. Figure 1). Thus T is defined by the
strings a’ and is independent of the strings bF.

We model the progress of RGREEDY in the following way: A particle Z starts at the
root. When at a vertex v it moves to v’s w; descendent with probability p;. The particle
stops at depth £/2. Let w = sgS4—1 - .. s1 be the lowest vertex on the path traversed that has
a non-zero v value. This process models the computation of the largest suffix s,s5—1...51
of z which can be merged with a prefix of an a’ i.e. a"*. (Alternatively, one can think of T

1 ...,a", and of z as a randomly inserted string.)

as a trie built from a
We then model the deletion of a‘ = ajas... ag/o which had the prefix ajas...a,. Let
w; = a1as . ..a;. Put v(w;) = max{0,v(w;) — 1} for 1 <4 < £/2.
We repeat the above process n — 1 times achieving values k1, K2,...,k, of k. We will
show that whp

1
m—i—k&g—l—---—i-kan2(1—5e)ﬁnlogn. (27)

The final argument goes as follows. We want to show that whp we will have x; > k for
1 <t <ng=[(1-3€e)n]. Now, most of the time the k-suffix z* of z lies in Q(k, €). Indeed

the probability it doesn’t is at most 6. This follows by calculation (22) and because s1s;. ..

13



is a random string. If z* € Q(k, ¢) and
v(a) # 0 for all a € Q(k,¢) , (28)

then k > k, where v(a) is defined for a = s...s;. We argue next that whp (28) holds up
to ng = [(1 — 3¢)n]. If we consider a fixed a € Q(k,¢), then at this point the number of

decrements r(a) in v(a) is distributed as B(ng,£(a)). Hence, using noé(a) > (1 — 3¢)n°,

P(Ja € Q(k,e): r(a) > (1 + e)no§(a)| < 2|Q(k’6)‘ef(1—3e)e2ne/3
= o(1).

So whp at this point v(a) > n(l —€)é(a) — no(l + €)é(a) > 0 for every a € Q(k,€). Thus,
(27) follows immediately.

3.2.2 GREEDY and MGREEDY

Let G be the bipartite graph ([n], [n], E) with edge weights w; ; = o(b?,a’) for (i, j) € [n] x
[n]. ([n] ={1,2,...,n}). Let D be the digraph ([n], A) with edge weights w; ; = o(b‘,a’)
for i,j € [n].

There is a natural map v : A — E where v identifies directed edge (i, ) of D with edge
(i,7) of G. We can interpret GREEDY and MGREEDY as:

GREEDY: sort the edges 4 into eq, e, ...,en, N = n? so that w(e;) > w(e;j11); Sg + 0;

For i =1 to N do: if Sg¢U{e;} contains in D neither (i) a vertex of outdegree or in-degree
at least 2 in Sg, (ii) a directed cycle, then Sg + Sg U {e;}.
On termination Sg contains the n — 1 edges of a Hamilton path of D and corresponds

2 n

to a superstring of x',x2,...,x". The selection of an edge weight (b?,a/) corresponds to

overlapping x! to the left of x7.

MGREEDY: sort the edges A into ej,es,...,en, N = n? so that w(e;) > w(ej1);
Sya, C @;

For i =1 to N do: if Sy¢ U{e;} contains no vertex of outdegree or indegree at least 2 in
Sua, then Syg < Sue U{e;}. If e; closes a cycle, then C « C U {e;}.

On termination the edges of Sysg form a collection of vertex disjoint cycles Cy, Cy, .. ., C,
t = |C| which cover [n]. Each C; contains one edge f; which is a member of C' and f; is a
lowest weight edge of C;. Let P; = C; — f;. The catenation of paths P;, P,..., P; define a
superstring of the input.

As previously mentioned, Yang and Zhang [31] gave an analysis of MGREEDY. Our

proof is much shorter, relying on Lemmas 3 and 4 and the following proposition:
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Proposition 1 (Blum et. al. [6]) The cycles C1,Cy,...,Cy are a mazimum weight cycle
cover and so

w(C1) +w(C2) + -+ + w(Cy) > OLP*. (29)

One can also view GREEDY and MGREEDY as algorithms for finding large weight
matchings in the bipartite graph G. Here we consider the greedy matching algorithm:

GM: Input a graph I' = (W, F) and an ordering of its edges f1, fo,---, fm.- M < 0;

For i =1 to m do: if M U{f;} is a matching, then M « M U {f;}.

The following is easy to prove:

Proposition 2 The cycle cover produced by MGREEDY and the matching M produced by
GM on G (edges ordered by decreasing weight) are related by 1¥(Sma) = M.

GREEDY can be thought of as GM run on G (with the same ordering) where sometimes
an edge e cannot be added to M, not because M U {e} is not a matching, but instead
because 1)(e) closes some cycle of 1(M). Call such an edge forbidden, and let X be the set
of forbidden edges. By deleting X from G and keeping the same edge ordering, we obtain
a graph I" such that if GM is run on I it will produce the same matching as GREEDY.

Define 7 = max{t : w(et) > (1 —€¢)(logn)/H}. Let G, = ([n],[n], E;) where E; =
{e1,e2,...,e;}. Let ['; =G, \ X.

Let nyg = |Sma N Er| and ng = |Sg N E7|. Thus ng (resp. naq) is the number of
edges in the matching constructed by GM when it is run on I'; (resp. G;).

Lemma 3 ng > nyg — | X NE;|.

Proof This follows from the following general property of GM. Let M be the matching
obtained from running GM on a graph I'. Let IV = T' — e for some edge e of T and let M’
be the matching obtained from running GM on a graph I'. Then

IM'| > M| —1. (30)

Consider (M \ M')U (M'\ M). Generally, this is the union of a collection of vertex disjoint
alternating paths and cycles. In the current case, there can be only one such path or cycle
— this immediately implies (30). Suppose there is an alternating path/cycle C which does
not contain e and let f be the first edge of C in the ordering. Assume w.l.o.g. that f € M.
Then, when GM applied to I reaches f in the ordering, it will choose it, contradicting
feM. |

To complete the proof, let M, (i) be as in Section 3.1. Then whp
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(a) My(i) < maxi{Mp(i)} = hn ~ Zlogn, 1<i<n, (cf. Lemma, 1(ii))
(b) i : Mai) > (1+ )% logn}| < n' /2 (ct. TLemma 1(i))
(c) O%Pt > (1—€e?)Enlogn. (cf. [1])

It follows from (29) that whp

1—¢ 1+ € 1-—
¢ nlogn§n1_€2/2Klogn+nMG —;Ie logn + (n — nue) HE

logn.

Indeed, the RHS of the above bounds the total overlap if (a), (b) and (c) hold. Hence, whp
nya > n(l — 3e). (31)

We show next:

Lemma 4 (a) E(|X|) = O(logn)

(b) E(|C]) = O(logn)

Before proving this we see how we can complete our analysis of GREEDY and MGREEDY.
Part (a) of Lemma 4 plus (31) implies that whp the overlap value ovg of the solution
produced by GREEDY satisfies

1—e¢

H

ovg > (nme —o(n)) logn

1—4e
>

n log n.

On the other hand, from Part (b) of Lemma 4, the overlap value ovpg of the solution
produced by MGREEDY satisfies

1—c¢

H

oG = NMG
1 —4e

logn — K|C|logn

>

nlogn. whp

Proof of Lemma 4 (a) When GREEDY has chosen k < n — 1 edges of D they form
n — k vertex disjoint directed paths Py, P, ..., P, , where P; goes from z; to y;. Some
paths may simply be isolated vertices. Condition on these paths and suppose for example
that the next edge chosen by GM is (y1,z). We claim that z will be a random choice
from z1,z9,...,2, k. Indeed, interchanging a® and a® (i) leads to the same position for
the choice of the k + 1st edge, (ii) is measure preserving on the set of input strings that

lead to the current state and (iii) interchanges (y1,z;) and (y1, ) in the ordering. (It will
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also change the ordering of other edges, but the next edge will still start with y;). Thus
conditional on the previous history, the edges (y1,7;), 1 < i < n — k are still in random
order. This assumes wyz; # wi4,. In the case of a tie we use the assumption that the

ordering is random for edges of the same weight. Hence,

P((y1,2) € X) =P(z =m1) =

n—k

If (y1,2) € X then GREEDY will move onto the next edge. If the next edge is (y1,z') then
GREEDY will succeed in adding a k + 1st edge. Otherwise the next edge will again have
probability 1/(n — k) of being in X.

Thus the number of edges added to X in the process of GREEDY choosing its k + 1st
edge is stochastically dominated by Z — 1 where Z; is a geometric random variable with
probability of failure 1/(n — k). The expected increase is at most 1/(n — k — 1) and (a)
follows. The proof of (b) is almost identical. O

3.3 Lower Bounds on O% in the Mixing Model

We now show how to change the proof of the lower bound of the previous subsection to
extend our results to the mixing model.

First of all, we extend the inequality (4) to the mixing model. That is, we must show (9).
Let, as before, £ denote the event that there is no such a pair, say 4, 5, that o(x*,x7) > £/2.
But, £ is equivalent to postulate that H,, < £/2. Then, (9) follows immediately from Lemma
1 (ii).

To complete the proof of Theorem 2 we only need to verify (23), (25) and (26) since in
the other parts of the proof we either used independence of the strings or Lemma 1 (i) and
(ii) that are true for the mixing model.

Let us start with (22) and (23). From the Shannon-McMillan-Breiman theorem for the

relative frequency (cf. [5]), we know that almost surely

Q(k

for any 1 < ¢ < M. This would immediately imply that M (k,e) = O(nf) where § — 0 as
k — o0, which is enough for our results to hold. For general, stationary ergodic sequences
the probability # can decay to zero quite slowly. However, Marton and Shields [21] have
proved recently that Q(k)/k converges exponentially to p; for processes satisfying the so
called blowing-up property which can be stated as follows (cf. [21]: a stationary and ergodic

process has the blowing-up property if for any € > 0 there exists a § > 0 and integer N such
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that for any n > N and any B C X"
P{B}>e™ = P{B.}>1-¢

where [Bl; is a set of strings of length n that are within (Hamming) distance € from a string
belonging to B. Such processes include Bernoulli, Markov, hidden Markov, etc.
Furthermore, (25) is nothing else than the Shannon-McMillan-Breiman result for gen-
eral stationary ergodic processes. Thus, (26) follows from it and the independence of the
underlying strings x!,...,x". All the other steps of the lower bound proof can be repeated

verbatim from the previous section. In summary, the proof of Theorem 2 is completed.
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