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Abstract

The strong chromatic index of a graph G, denoted by χs(G), is the minimum number of colors

needed to color its edges so that each colour class is an induced matching. In this paper we analyze

the asymptotic behavior of this parameter in a random graph G(n, p), for two regions of the edge

probability p = p(n). For the dense case, where p is a constant, 0 < p < 1, we prove that with

high probability χs(G) ≤ (1 + o(1)) 3
4

n
2
p

log
b

n
, where b = 1/(1 − p). This improves upon a result of

Czygrinow and Nagle [2]. For the sparse case, where np < 1
100

√

log n/ log log n, we show that with

high probability χs(G) = ∆1(G), where ∆1(G) = max{d(u) + d(v) − 1 : (u, v) ∈ E(G)}. This

improves a result of Palka [6].

1 Introduction

Given a graph G = (V, E), the strong chromatic index χs(G) is the minimum number of colors needed

to color the edges of G so that every colour class is an induced matching i.e. any two edges of the

same colour are at distance at least 2 in G. This notion was introduced by Erdős and Nešetřil (see

[3]). Equivalently, it is the chromatic number of the square L(G)2 of the line graph L(G). Thus if

∆ denotes the maximum degree of G, the maximum degree of L(G)2 is at most 2∆2 − 2∆ and so

χs(G) ≤ 2∆2 − 2∆ + 1. It was conjectured in [3] that χs(G) ≤ 5∆2/4 and this would be tight if true.

Using a probabilistic argument Molloy and Reed [5] showed that χs(G) ≤ (2 − ε)∆2 for some small

positive constant ε.

In this paper we study the strong chromatic index of the random graph G(n, p). As usually, G(n, p)

stands for the probability space of labeled graphs on n vertices, where every edge appears independently

and with probability p = p(n). Palka [6] showed that if p = Θ(n−1) then whp1 χs(G) = O(∆(G)) =
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1A sequence of events En occurs with high probability (whp) if limn→∞ Pr(En) = 1
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O(log n/ log log n). Vu [7] showed that if n−1(log n)1+δ ≤ p ≤ n−ε for constants 0 < ε, δ < 1 then

whp χs(G) = O(∆2/ log ∆). Czygrinow and Nagle [2] showed that if p > n−ε then χs(G) ≤ (1 +

o(1))n2p/ logb n where b = 1/(1 − p). In this note we will obtain new bounds on χs(G(n, p)) that

improve the above results of Palka and of Czygrinow-Nagle.

To formulate our first theorem we need the following definition. For graph G = (V, E) let d(v) denote

the degree of vertex v ∈ V and let

∆1 = ∆1(G) = max{d(u) + d(v) − 1 : (u, v) ∈ E}.

Set

λ =

(

log n

log log n

)1/2

,

then for the sparse random graphs we prove the following tight result.

Theorem 1 Let p be such that np ≤ λ/100. Then whp, with G = G(n, p),

χs(G) = ∆1(G).

Remark 1 A straightforward calculation shows that in this range of edge probabilities, ∆1(G) =

(1 + o(1))∆(G).

Remark 2 The observant reader will notice that our proof shows that the related choice number is

also ∆1 whp i.e. as long as each edge is given a list of ∆1 colors, we can strongly edge color it.

We have learnt via private communication with Tomasz  Luczak that in unpublished work, he has

obtained a result similar to Theorem 1.

For the dense case we improve the aforementioned result of Czygrinow and Nagle by a constant factor:

Theorem 2 Let p > 0 be a constant. Denote b = 1/(1 − p). Then whp, with G = G(n, p),

χs(G) ≤ (1 + o(1))
3

4

n2p

logb n
.

By the above result, the edges of G(n, p) can be a.s. strongly colored so that the average size of a

color class is at least (1 − o(1))2
3 logb n.

Remark 3 The size of the largest induced matching in G(n, p) is whp asymptotically equal to logb n

and so whp χs(G) is asymptotically at least n2p
2 logb n .
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1.1 Notation

A sequence of events En is said to occur quite surely (qs), if Pr(En) = O(n−K) for any constant K > 0.

Unless the base is specifically mentioned, log will refer to natural logarithms.

We often refer to the Chernoff bound for the tails of the binomial distribution. By this we mean one

of the following (see, e.g., [4]):

Pr(B(n, p) ≤ (1 − ε)np) ≤ e−ε2np/2,

Pr(B(n, p) ≥ (1 + ε)np) ≤ e−ε2np/3, ε ≤ 1,

Pr(B(n, p) ≥ µnp) ≤ (e/µ)µnp.

2 Sparse random graphs

Given a graph G with maximum degree ∆, let β =
√

∆/2. Denote by Lβ the set of vertices of G which

are within distance at most two from the set of vertices of degree at least β. Let Gβ be the subgraph

of G induced by Lβ. First we need the following simple statement.

Lemma 3 Let G be a graph for whose subgraph Gβ is acyclic. Then χs(G) = ∆1(G).

Proof. Clearly, for every edge (u, v) of G, the edge itself and all edges incident with u, v must have

distinct colors. Therefore χs(G) ≥ ∆1(G) and it remains to show the reverse inequality.

We start by coloring the edges of Gβ. Since all connected components of this graph are trees it is

enough to show that edges of every such tree T can be colored using only ∆1(T ) ≤ ∆1(G) colors. We

do this by induction on the number of edges of T . It is trivial if T has one edge or more generally is a

star. Now root T at an arbitrary vertex r and let x be a vertex of degree 1 of T at maximum distance

from r. Let y 6= r be its unique neighbor in T and let z be the neighbor of y on the path from x to r

(z = r is possible here). Let T ′ = T − x and let d, d′ refer to vertex degrees in T, T ′ respectively. By

induction we can color the edges of T ′ using only ∆1(T ′) ≤ ∆1(T ) colors. Then the number of colors

forbidden for edge e = (x, y) is at most

D′ = d′(y) + d′(z) − 1 =
(

d(y) − 1
)

+ d(z) − 1 =
(

d(y) + d(z) − 1
)

− 1 ≤ ∆1(T ) − 1.

Therefore there is a color which is not used at y or z and we can use it to color the edge (x, y).

Having finished coloring the edges of Gβ , we can color the remaining edges e1, e2, . . . , eM of G in this

(arbitrary) order. Note that, by definition, for every edge (u, v) outside Gβ, all the neighbors of both

u and v should have degree less than β. Therefore when we come to color ei we find that at most

2β2 ≤ ∆/2 < ∆1 colors have been forbidden by the coloring of previous edges and so there will always

be an allowable color. 2
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Lemma 4 Let p be such that np ≤ λ/100. Let T be a fixed set of vertices of size |T | = t and let A

be a fixed set of at most 2t edges. Then conditioning on the event that all edges in A are present in

G(n, p), the probability that all the vertices in T have degree at least λ/3 is at most 2e−λt/10.

Proof. By definition, it is easy to see that for such a set T , either there are at least λt/9 edges in

the cut (T, V (G) − T ), or the set T spans at least λt/9 edges of G(n, p). Since we are conditioning

on the presence of at most 2t edges we have that either there are at least λt/9 − 2t ≥ λt/10 random

edges in the cut (T, V (G)−T ), or similarly the set T contains at least λt/10 random edges of G(n, p).

Using the fact that np ≤ λ/100, the probability of the first event can be bounded by:

(

t(n − t)

λt/10

)

pλt/10 ≤ (10e(n − t)pλ−1)λt/10

≤ e−λt/10.

Similarly, the probability of the second event is at most
(

t(t − 1)/2

λt/10

)

pλt/10 ≤ (5e(t − 1)pλ−1)λt/10

≤ e−λt/10.

Altogether we obtain that the probability that all the vertices in T have degree at least λ/3 is at most

2e−λt/10. 2

Lemma 5 Let p be such that np ≤ λ/100. Then whp, with G = G(n, p), the subgraph Gβ is acyclic.

Proof. If np ≤ 1/ log log n then the probability that G(n, p) contains a cycle is at most
∑

t≥0 ntpt =

o(1), i.e., it is acyclic whp. Therefore we can assume that np ≥ 1/ log log n. In this case it is well

known (see, e.g., [1]) that the maximum degree of the random graph is whp at least (1 + o(1)) log n
log log n .

Let X be the set of vertices of G = G(n, p) which are within distance at most two from a vertex of

degree at least d0 = λ/3. Then it is enough to show that the subgraph of G(n, p) induced by X is

acyclic whp.

Let C be a shortest cycle in the subgraph G[X] induced by X, and let t be the length of C. We claim

that there are at least t/10 vertex disjoint paths of length at most 2 connecting vertices of the cycle

to vertices of degree at least d0. Since every vertex of the cycle is within distance at most two from

some vertex of degree at least d0, there is always at least one such path. Therefore we can assume

that t ≥ 10.

Let v1, . . . , vs be a largest set of vertices of C such that the distance along the cycle between any two

of them is at least 5. Clearly s = ⌊t/5⌋ ≥ t/10. Note that since C was the shortest cycle in G[X]

the distance between every pair vi 6= vj in this graph is also at least 5. By the definition of X, for

every vi, 1 ≤ i ≤ s, there is a path Pi of length at most two from vi to a vertex of degree at least d.
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All vertices of this path belong to X and the paths Pi and Pj are vertex disjoint since otherwise the

distance between vi and vj in G[X] would be at most 4. The path Pi may share edges with C. On

the other hand, once the path Pi leaves the C it cannot come back, since otherwise it will create a

shorter cycle. Let ui be the last vertex of Pi which still belongs to C, P ′
i be the part of Pi which is

edge disjoint from C and let wi be the endpoint of P ′
i which have degree at least d0. Denote by H the

union of all paths P ′
i and C. We now estimate the probability that G(n, p) contains such a subgraph.

The number of ways to choose a cycle C is at most nt and the probability that it appears in G(n, p)

is pt. We can choose the set of vertices ui in at most
(t
s

)

≤ 2t ways. The path between ui and wi can

have length 0, 1 or 2 and there are at most 3t/5 different ways to choose a length for every path P ′
i .

The number of paths of length 0, 1, 2 is at most 1, n, n2 respectively and their existence probabilities

are 1, p, p2. Note that after we choose the paths P ′
i the vertices wi are fixed and we expose a set A of

at most t + 2(t/5) ≤ 2t edges of G(n, p). Therefore, by Lemma 4, the probability that all the vertices

wi have degree at least d0 is bounded by 2e−λs/10 ≤ 2e−λt/100. As np < λ <
√

log n, we can combine

the above facts to conclude that the probability that a graph H appears in G(n, p) is bounded by

∑

t≥3

nt pt 2t 3t/5
(

1 + np + n2p2
)t/5

e−λt/100

<
∑

t≥3

(6np)t(2λ)t/5e−λt/100

<
∑

t≥3

λ2te−λt/100

= o(1).

This completes the proof of the lemma and the proof of Theorem 1. 2

3 Dense random graphs

Assume now that 0 < p < 1 is a constant. We remind the reader that b = 1/(1 − p).

Let

k =

⌈(

2

3
− ǫ

)

logb n

⌉

where 0 < ǫ < 2/3 is a constant. We will prove that whp χs(G(n, p)) ≤ (1 + o(1))|E(G)|/k.

Let s = log2 n, n0 = n/s. Fix a partition of the vertex set V (G) into s parts V1, . . . , Vs of nearly equal

size: |Vi| ≈ n/s. It will be enough to prove the following statement.

Lemma 6 With high probability G = G(n, p) satisfies:

1. For all pairs 1 ≤ i 6= j ≤ s, all but at most O(n2/ log6 n) edges of the bipartite graph G[Vi, Vj]

can be packed into induced matchings of size k;
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2. For all pairs 1 ≤ i 6= j ≤ s, |E(Vi, Vj)| ≤ n2
0p + n

3/4
0 .

Indeed, assume that the conditions stated in the above lemma hold for G. Then we strongly color

E(G) as follows:

1. First, for each pair 1 ≤ i 6= j ≤ s color all but at most n2/ log6 n edges between Vi and Vj in at

most
|E(Vi,Vj)|

k ≤ n2
0p
k +

n
3/4
0
k colors.

2. For each 1 ≤ i 6= j ≤ s, color the uncolored edges between Vi and Vj in a new color each. The

total number of additional colors used for all pairs (Vi, Vj) does not exceed
(s
2

)

n2

log6 n
≤ n2/ log2 n.

3. Color all of the edges inside each Vi in a new color. This stage consumes at most s
(

n/s
2

)

≤
n2/ log2 n colors.

Altogether, we will have used (1 + o(1))n2p/(2k) colors as required.

Proof of Lemma 6. Part (2) follows immediately from applying the Chernoff bounds for the

binomial distribution to the number of edges joining Vi, Vj . We can thus concentrate on the bipartite

graphs G[Vi, Vj ]. Obviously, coloring such a bipartite graph is affected only by the edges between Vi

and Vj and also the edges inside Vi and Vj (we are after the strong chromatic index here).

We first expose the edges of the random graph G(n, p) inside the sets Vi, 1 ≤ i ≤ s. Let t = n2/3. We

will be able to assume that the following two properties hold inside each Vi:

Lemma 7 With high probability in G = G(n, p), for each set Vi:

1. For every collection of k disjoint sets W1, W2, . . . , Wk ⊂ Vi of size |Wi| = ν0 ≥ n1/3/ log6 n there

is an independent transversal in G, i.e., an independent set of vertices {w1, w2, . . . , wk} such

that wi ∈ Wi, i = 1, 2, . . . , k.

2. Vi contains a collection Ii of O(n5/3/ log n) independent sets of size k in G such that |Il1∩Il2 | ≤ 1

for each Il1 6= Il2 ∈ Ii, and each vertex v ∈ Vi participates in t(v) sets from Ii, where t(v) ∈
[t ± n5/9].

Proof. For 1), fix W1, W2, . . . , Wk ⊂ Vi and let X be the number of independent transversals.

Then

E(X) = νk
0 (1 − p)(

k
2).

We can now apply Janson’s inequality, see for example Janson,  Luczak and Ruciński [4]. Thus let

∆ =
k
∑

l=2

(

k

l

)

ν2k−l
0 (1 − p)2(

k
2)−(l

2)

≤ k2ν2k−2
0 (1 − p)2(

k
2)−1.
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The last inequality follows form the fact that the sum is dominated by the term l = 2. Indeed, the

ratio of the lth to the second term is

(

k
l

)

ν2k−l
0 (1 − p)2(

k
2)−(l

2)

(k
2

)

ν2k−2
0 (1 − p)2(

k
2)−1

≤ kl−2

νl−2
0 (1 − p)(

l
2)−1

=

(

k

ν0(1 − p)(l+1)/2

)l−2

≤ n−ǫ(l−2)/3 .

Janson’s inequality implies that

Pr(X = 0) ≤ exp

{

−E(X)2

2∆

}

≤ exp

{

−ν2
0(1 − p)

k2

}

The number of choices for i, W1, W2, . . . , Wk is certainly less than nkν0 and so the probability there

exists a collection without an independent transversal is at most

nkν0 exp

{

−ν2
0(1 − p)

k2

}

= o(1).

To get 2), we can argue as follows. Observe that whp every set of 1 ≤ j ≤ k vertices of Vi has

(1 + O(n−1/6))n0(1− p)j common non-neighbors in Vi. Indeed, by the Chernoff bound the probability

that there is a set S, |S| = j ≤ k for which the number of common non-neighbors lies outside

[(1 ± θ)n0(1 − p)j ] (θ = n−1/6) is at most

2
k
∑

j=1

(

n

j

)

exp{−θ2n0(1 − p)j/3} ≤ 2
k
∑

j=1

(

n

j

)

e−nε/(3 log2 n) = o(1).

This enables us to conclude that whp the number of independent sets τ(v) of size k contained in

Vi and containing vertex v ∈ Vi is asymptotically equal to µ =
(n0−1

k−1

)

(1 − p)(
k
2). Indeed, given

the above property, it follows by induction on j ≤ k, that for all v ∈ Vi, there are between (1 −
jn−1/6)

(n0−1
j−1

)

(1−p)(
j
2) and (1+jn−1/6)

(n0−1
j−1

)

(1−p)(
j
2) independent sets of size j in Vi which contain v,

i.e. |τ(v)−µ| ≤ n−1/6+o(1)µ. Furthermore, we can also deduce that for a fixed pair u, v ∈ Vi the number

τ(u, v) of independent sets of size k containing both u and v will be at most (1+θ)k
(n0−2

k−2

)

(1−p)(
k
2)−1 =

O(kµ/n0).

Form a random subfamily I0
i of independent sets of size k in Vi by choosing each of them independently

with probability t/µ. Then, by the Chernoff bound, for every v ∈ Vi qs the number of elements of I0
i

containing v is between τ(v)t
µ − t2/3 and τ(v)t

µ + t2/3. Also,

|I0
i | =

µn0

k
· t

µ
(1 + o(1)) =

tn0

k
(1 + o(1)) .

For u, v ∈ Vi the probability that I0
i contains at least log n sets containing both u and v is at most

(

τ(u, v)

log n

)(

t

µ

)log n

≤
(

τ(u, v)et

µ log n

)log n

=

(

O

(

kt

n0 log n

))log n

= n(−1/3+o(1)) log n ,
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and thus qs for each pair u, v ∈ Vi

I0
i contains at most log n sets containing u and v . (1)

Also, observe that the number of pairs of independent sets of size k in Vi, having v and another vertex

in common is at most
∑

u∈Vi

(

τ(u,v)
2

)

= O(µ2k2/n0). Therefore, the probability that I0
i contains at

least n1/2 disjoint pairs of independent sets containing v and having another vertex in common is at

most:
(

O(µ2k2/n0)

n1/2

)(

t

µ

)2n1/2

=

(

O

(

µ2k2

n
3/2
0

· t2

µ2

))n1/2

= n−(1/6−o(1))n1/2
.

(Pairs (I1, I2), (I3, I4) are disjoint if {I1, I2} ∩ {I3, I4} = ∅.) We conclude that qs for all v ∈ Vi

I0
i contains at most n1/2 disjoint pairs of sets sharing v and another vertex. (2)

Assume now that properties (1) and (2) hold. Then we claim that for every v ∈ Vi, I0
i contains at most

n1/2 log2 n pairs of independent sets sharing v and another vertex. Suppose this is not so. Observe

that by Property (1) each independent set I ∈ I0
i , containing v, has another vertex in common with

at most |I| log n < log2 n− 1 sets from I0
i containing v. Therefore, if we form a maximal by inclusion

family of disjoint pairs in I0
i , containing v and sharing another vertex, its size will be more than

n1/2 log2 n/ log2 n = n1/2 – a contradiction to Property (2).

Deleting from I0
i one independent set from each pair of sets sharing more than one vertex, we obtain

a family Ii with O(tn0/k) = O(n5/3/ log n) sets, in which each pair of sets has at most one vertex in

common, and every v ∈ Vi belongs to t(v) sets from Ii, where t(v) ∈ [t − t/n1/7, t + t/n1/7]. 2

From now on we assume that the conditions stated in Lemma 7 hold. Let us concentrate on the pair

(Vi, Vj), i < j.

Let v ∈ Vi. Assume that (u, v) ∈ E(G) where u ∈ Vj . We define

R(v, u) = {Il ∈ Ii : v ∈ Il, N(u) ∩ Il = {v}} ,

i.e., Il is in R(v, u) iff v ∈ Il and v is the only neighbor of u in Il. Before diving into technical details,

let us explain the main idea of the proof. Let Il = {v1, . . . , vk}. Assume that u1, . . . , uk form an

independent set of size k in Vj such that (vi, ui) ∈ E(G) and Il ∈ R(vi, ui) for all 1 ≤ i ≤ k. Then the

set of edges {(vi, ui) : 1 ≤ i ≤ k} forms an induced matching of size k in G. Our aim will be to pack

most of the edges between Vi and Vj in such matchings. To this end, we assign each edge (v, u) of G

between Vi and Vj to one of the independent sets Il ∈ R(v, u). Then, for each set Il ∈ Ii we distribute

almost all the edges assigned to Il between induced matchings of size k as indicated above.

Assume e = (v, u) ∈ E(G) for v ∈ Vi, u ∈ Vj . We assign edge e to one of the independent sets

containing v as follows: If R(v, u) = ∅ then e stays unassigned, otherwise e is assigned to a random

member of R(v, u). Denote

ρ = (1 − p)k−1 = n−2/3+ǫ+o(1) .
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Recall that we denoted by t(v) the number of independent sets in Ii containing v. The probability

that e stays unassigned, conditioned on e ∈ E(G), is (1 − ρ)t(v) ≤ e−nǫ+o(1)
. Therefore applying the

union bound we can conclude that qs every edge e = (u, v) of every pair (Vi, Vj) gets assigned. Also,

Pr
[

e gets assigned to Il

]

=

t(v)
∑

r=1

1

r

(

t(v) − 1

r − 1

)

ρr(1 − ρ)t(v)−r

=
1

t(v)

(

1 − (1 − ρ)t(v)
)

(The parameter r above counts the number of independent sets in R(v, u).)

Let now Il ∈ Ii, v ∈ Il. Denote by T (v, l) the set of neighbors u of v in Vj such that (v, u) is assigned

to Il. Note that for any two edges e = (v, u) and e′ = (v, u′) the events e, e′ gets assigned to Il depend

on disjoint sets of pairs of vertices in G(n, p) and are mutually independent. Hence, conditioned on

the degree d(v, Vj), the random variable |T (v, l)| is distributed binomially with parameters d(v, Vj)

and 1
t(v)(1 − (1 − ρ)t(v)). The degree d(v, Vj) in turn is also distributed binomially with parameters

n0 = |Vj | and p. So, applying the Chernoff bound twice, we can argue that whp

∣

∣|T (v, l)| − n0p/t
∣

∣ ≤ n3/10 (3)

for all (Vi, Vj), Il ∈ Ii, v ∈ Il.

Now consider Il ∈ Ii. Assume Il = {v1, . . . , vk}. The sets T (vi, l) are pairwise disjoint by construction.

As long as |T (vi, l)| ≥ n1/3/ log6 n, we repeat the following procedure:

1. Find an independent transversal for the family {T (vi, l)}k
i=1. Let it be (u1, . . . , uk), where ui ∈

T (vi, l). This is possible due to the first condition of Lemma 7;

2. The set of edges M = {(v1, u1), . . . , (vk, uk)} forms an induced matching. We color M by a fresh

color;

3. Update T (vi, l) := T (vi, l) − ui for 1 ≤ i ≤ k.

When this process stops, |T (vi, l)| ≤ n1/3/ log6 n + 2n3/10, due to (3), and hence

∣

∣

∣

∣

∣

k
⋃

i=1

T (vi, l)

∣

∣

∣

∣

∣

≤
(

n1/3

log6 n
+ 2n3/10

)

k = O

(

n1/3

log5 n

)

.

Since whp every edge is assigned to some T (v, l), altogether, the number of edges between Vi and Vj

that are left uncolored is at most

|Ii| · O

(

n1/3

log5 n

)

= O

(

n2

log6 n

)

.

This completes the proof of Lemma 6 and thus of Theorem 2. 2
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4 Concluding remarks

• We strongly believe that the bound we obtain here for the dense case can be further improved,

and in fact the following holds true: It was first conjectured in [2].

Conjecture 8 Let p = p(n) satisfy n−1+ǫ ≤ p(n) ≤ 0.99, where 0 < ǫ < 1 is a constant. Then

whp in the random graph G = G(n, p),

χs(G) = (1 + o(1))
n2p

2 logb n
,

where b = 1/(1 − p).

Proving this conjecture, even for a single value of p(n), seems to be quite a challenging task. It

appears that the proof method employed in the current paper has exhausted its potential, and

new ideas are needed to establish the above conjecture.

• We prove that for random graph G = G(n, p) where np ≪
√

log n/ log log n with high probability

χs(G) = ∆1(G). A simple first moment calculation shows that this is no longer true when

np ≫ √
log n. Hence the range of p in the assertion of Theorem 1 is not very far from being

best possible. Nevertheless, it would be interesting to determine or at least to estimate the edge

probability threshold at which the equality χs(G) = ∆1(G) ceases to be valid.
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