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Abstract

We determine the asymptotic limiting probability as m — oo that
a random string of length m over some alphabet ¥ can be determined
uniquely by its substrings of length £. This is an abstraction of a
problem faced when trying to sequence DNA clones by SBH.
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1 Introduction

The following is an abstraction of a problem occuring in the sequencing of

(fragments of) DNA molecules.

Let X be a fixed alphabet with s letters, and & be a string chosen uniformly
at random from X, where m is an integer and let £ < m. For each ¢ € ¥<™
let N(o,&) denote the number of occurrences of ¢ as a substring of £. Let
N(€) = (N(01,&), N(09,6),...,N(0;,&)) where 7 = s and 01,09, ...,0;, is

some enumeration of ¥.¢.
We say that £ is £ — recoverable if & € X™ & # & implies Ny(&) # No(E').

Qur main result is

Theorem 1 Let £ = |log,(m?/2c)|, where ¢ > 0 is a constant. Then

lim Pr(¢ is £-recoverable) = i M (1)
m=00 =R+ 1)

where A = (s — 1)c.

|

(Using monotonicity we can deduce that the RHS in (1) is 0 if ¢ = ¢, — o0

and 1 if c= ¢, — 0.)

As explained later it is easy to tell whether ¢ is /-recoverable and recover &
from Ny(&) if it is.

It is of some interest to compare the result of Theorem 1 with the following

information theoretic lower bound. Since |N(o,&)| < m for all o, we see



that there are at most m” different values of Ny. Thus to have a significant
number of f-recoverable strings we need m” > s™ or 7 > m/ log, m, and the
theorem tells us that this lower bound is approximately the square root of

the real answer.

We now explain the relevance of this result to sequencing DNA fragments.
First of all, a DNA fragment can be thought of as a string over the alphabet of
nucleotides {A,G,C,T}, the string £ which is to be sequenced. The method of
Sequencing by Hybridization (Bains and Smith [2], Lysov et al [6], Drmanac
et al [3], Pevzner et al [9], Pevzner [7]) involves a two-dimensional matrix of
immobilised oligonucleotides (short strings, length ¢). Once a DNA fragment
& is hybridized with the matrix one can determine which /-tuples occur. With
great difficulty one can perhaps tell if an /-tuple occurs more than once. One
hopes that this is enough information to determine ¢ exactly. Our theorem
shows that the number of oligonucleotides needs to grow like m? in order for
there to be any reasonable chance of this to be true. It is interesting to note
that if /, m are such that there is a reasonable chance of reconstruction by
this method, then it is unlikely that any string appears three or more times.

Thus one could reasonably replace more than once by two.

See Alizadeh, Karp, Newberg and Weisser [1] or Karp [5] for surveys of

computational problems related to DNA sequencing.

2 Proof of Theorem 1

Given N; we can define a (multi-)digraph G = G(N;) as follows: the vertex
set of G is [s]*! and if x = 2125 ...7¢_1,y = Y1Y2...Ye_1 then there is no

edge (z,y) unless xo = y1,23 = Yo,...,Ts1 = Yp_o in which case there are
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precisely N(z12o... 20 1y 1,&) edges from x to y. Pevzner [7] observed that
& is f-recoverable if and only if G has a unique Euler path, up to the order
in which parallel edges are traversed. This was an important contribution as
previous researchers had used the NP-Complete Hamilton path problem as
mathematical model. We will find the limiting probability that this is the
case. We first show that whp (i.e. with probability 1-0(1) as m — o0) no

vertex of G has out-degree 3 or more and so G is rather simple.

Lemma 1 Let & be chosen randomly from ™. Let & be the event

{3C € s N(¢,€) = 3}

Then
Pr(go) = 0(1)

Proof If € =868 .. .&nlet E4, 5] = §&igpr .. & for 1 < i < j < m. Let
&ijx denote the event {£[i,i + ¢ — 2] = &[j,j + € — 2] = &k, k + £ — 2]} for
(1,7,k) € I ={(,5,k) : 1 <i<j<k<m-—{+2} Now divide I into
Li={(,j,k) €I :max{j—ik—j}>¢—2Vand I = I\ I,. If (3,4, k) € I
then Pr(&; ;x) = s 2"V, To see this assume say that j —i > £ — 2. Now
Pr(&[j,j + ¢ — 2] = &k, k 4+ £ — 2]) = s~ Y for arbitrary j < k and now
[i,7 + £ — 2] is disjoint from the other two intervals. If (i,7,k) € I then
Pr(&;jx) < s suffices. Clearly |I| = O(m¢?) and so
Pr(&) < > Pr&ir)+ D, Pr(&ix
(irj,k)ETL (irj,k)E

= O(m®s )+ O(me?s )
= O(m™) + O((logm)?/m)
= o(1).



|

For each pair of positions 1 <7 < j <m—/{+42on ¢, let I; ; be the indicator
for the event {&[i,i+£¢—2] =€[j,j+¢—2] and (1 =1V (&_1 # &-1)}. Write

X as the sum of these indicator functions. Then

E[X] = (m—f+1)s ¢+ <m _; " 1) sEVI-5) (2
R~ %sz(s —1)
~ (s—1)c

The first term in the RHS of (2) corresponds to ¢« = 1 and the second to
1> 2.

The proof can be now be thought of as being in two parts. In Part 1 we
show that X is asymptotically Poisson and Part 2 deals with the probability

of /-recoverability given a particular value of X.
Part 1.

The following lemma provides the basis for subsequent calculations. The first
part shows that certain events have low probability. These being:
= {along (> 2¢) substring appears twice},
52 = {HUEAqul}

= {a pair of repeated strings are close (< 5¢ apart)}

and
& = {liymrr2=1}
= {¢ starts and ends with the same ¢ — 1 letters}.
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When &; and &, do not occur, the occurrences of repeated strings are spaced
out. This simplifies the analysis. If £ occurs then £ is not f-recoverable -

see Pevzner [7] and Ukkonen [12].

Lemma 2 A pair of indices will be denoted by u = (iy, j,) where i, < j,. Let

A= {u:jy,— 1y, > 5L} (5 is taken for convenience rather than minimality.)
(a) Pl‘(gl U 52 U 53) = 0(1)

(b) For u,v € A with u # v, B(II,) < s72¢1,

Proof (a)
Pr(&) < m?s%
= o(1).
Since there are fewer than 5m/ pairs such that j, — 7, < 5¢ we have
Pr(&) < 5mes~*
= o(1).
Clearly Pr(&3) = s7¢ = o(1).

{—1

(b) We show that Pr(l, =1 | [, = 1) < s ' and deduce the result from

E(IL,) =Pr(l, =11, =1)Pr(l, = 1).

IA

Assume first that ¢, > ¢,. Note first that if 7, — 7, = j, — j, > 0 then either
I, and I, are independent or I,I, = 0. For in the latter case, if I,, = 1 then

f,jv—l = giu—l which 1mphes Iv =0.

Condition on I, = 1 and let By, = {&, 1k = &jy+x}, 0 < k < £—2. Suppose first
that j, +& & [ju, ju+£—2]. Then By is independent of I, and By, k' # k and
Pr(B;) = s7!. (Note that j, +k & [iy, 1y +£— 2] since j, > i, + 5L > i, + 5¢).
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On the other hand let K = {k : j, + k = j, + k* € [ju, ju + ¢ — 2]}. Suppose
k € K and I, = 1. Then, since %, # i,

Pr(By | 1,) = Pr(&,x= Ejuthr

-1

Eiuth = Ejuthr)

= S

Also, as k runs through K, k* runs through distinct values. Hence the events

By, k € K are also conditionally independent.

Finally the case i, = 4, is handled by the event &; ;; dealt with in Lemma 1,
where 1 = iy, ] = Ju, k = Jo- a
Let X' =3 ,c4Iy,. Then Lemma 2(a) and its proof show that
X' = X whp
and
E(X") = E(X)+o(1).

For u € A, write p, = E[[,]. In his doctoral dissertation Suen [10] proved

the following result which is similar to a theorem in Suen [11]:

Theorem 2 Let {Wy, W, ..., Wy} be a collection of Bernouilli random
variables with p; = Pr(W; = 1). Let the graph G = (V,E), V = [M] =
{1,2,..., M} be such that if A, B CV are disjoint and non-empty then
o J1,w) == (Im)e(1m).
i€AUB icA i€B

whenever G contains no edge joining A to B.

Then for 0 € [0, 1]

E[ﬁ(l —owy) - ﬁ(l op) | < ﬁ(l 09 (e (zE 0.0)) 1),
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where if e = (i, 7),

y(0,e) =202 (E(W;W,) +pip; [[ (1 —6pp) "
kGN(i,j)

and N(i,7) ={k: (i,k) € E or (j,k) € E}.

We use this theorem with {W; : i € [M]} = {I, : v € A} and E = H
where H is the set of pairs u,v € A, with u # v, such that I, and I, are not
independent. We obtain

BT (- 0L) - T10 - 6p) | < TIG - 6p) <exp (zy(e, e>) —1).

ueA u€A u€A eEH

Note first that

pu < 57,

and
IN(u,v)| < 4dmd.
Thus,
II (-6p,) " =1+40(1),

wWEN (u,v)

uniformly for all (u,v). Also, it is clear that |H| < 2m3¢, and so

Z PuPv = 0(1)-

{uw}eH

Also Lemma 2(b) shows

> E[LL] < 2mPrsTH
{uw}eH



in which case
E[JI(1—05)] - I[(1 = 0p.) | =0(1),  0€[0,1].
icA i€cA
Since

E[g(l —01,)] = E[(1-0)"],

it follows that X', and hence X, converges in distribution to a Poisson vari-

able with parameter lim,, .., E[X'] = A= (s — 1)c.
Part 2

We now assume that £gUE UEUES does not occur and that there are k pairs
of maximal common substrings in £ of lengths at least / — 1. We may also
assume that I, I, = 0 for {u,v} € H (see (3)). Thus the common substrings
of length at least ¢ — 1 will not overlap each other. Let £ be the union of
events we have so far excluded. We may regard these £ pairs of substrings as
pairs of labelled markers m, mo, ..., m; on . Let F be the event that there
are two pairs of markers which occur as ..., mg,...Mp, ..., Mg, ..., Mp, ...
in the order from left to right of £. Note that if F occurs, then it is not
possible to determine the order of the two (necessarily different) substrings

in ¢ between the two occurrences of m, and m,.

Pevzner (8] has shown that if neither £ nor F occur then & is ¢-recoverable

(proving a conjecture of Ukkonen [12]).

We next need to find the probability of F given k pairs of markers. There are
(2k)!/2* distinct orderings of the markers my, m, ..., my. Let Cy denote the
Catalan number giving the number of well formed strings of £ parentheses
(,) (see for example Graham, Knuth, Patashnik [4]). There are k!Cy, ways of

placing the markers so that F does not occur. To see this map a sequence
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of markers in which F does not occur into a sequence of parentheses by
replacing the first occurrence of an m; by a ( and the second occurrence by
a ). If F does not occur then the sequence of (,)’s is well formed. This is
easily proved by induction on k£ where the inductive step involves removing an
innermost repeatred pair. Conversely, given a well formed sequence of (,)’s,
one can produce k! sequences of the markers in which F does not occur.
Here we assign markers to parentheses so that if ( is assigned m, then the )
receiving m, must appear later in the sequence. This is again easily proved
by induction on k. The inductive step involves looking at an innermost pair
(,)- If this is assigned a pair m,, m, then we use induction. If this is assigned
Mg, My, & 7# b then the other m, must follow and the other m; must precede

these two, causing F to occur.

We show next that all possible orderings of the k£ pairs of markers are
equally likely conditional on an event of probability 1-0(1). Assume that
events &, &2, 3 do not occur and let the repeated (¢ — 1)-strings be denoted
By, Bs, ..., By, where By; 1 = Bo;. Let A;,C; be the maximal strings of
length at most (¢ — 1) which immediately precede and succeed the whole of
B;. Note that these are all disjoint. Let £; be the event that there exist
i,7, [i/2] # [7/2] and 1 <t < ¢ — 2 such that either

(i) the string formed from the ¢-suffix of A; and the (£ — 1 — ¢)-prefix of B;

occurs elsewhere in &, or

(ii) the string formed from the t-prefix of C; and the (¢ — 1 — t)-suffix of B;

occurs elsewhere in &.

If £ occurs then swapping B; and B; could create another pair of repeats,

otherwise it will not.
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Let € denote the set of all strings & which yield the non-occurrence of

Eo, €2, E3,&4 and have k repeated pairs. We then claim that

(a) Conditional on ¢ € € each permutation of the 2k markers is equally
likely.

(b) Pr(&:) = o(1).

Claim (a) follows because interchanging B; and B; within &,
(1) does not cause the occurrence of any of &y, &y, &3, &y,

(2) does not produce any new repeats, and

)

(3) does not destroy any old repeats.

We partition €2, into (Qkk) parts, {2(c) where o denotes a particular pattern
of brackets (,). Then (1),(2),(3) imply that interchanging a pair B; and B;
can be used as a measure preserving map from Q(o) to (o’) for pairs o, o’

which differ by a single switch of brackets.

Claim (b) follows from the estimate

Pr(&) = O(mies™3E1)
= o(1).

We justify this calculation as follows. Let us ignore all factors which depend
only on k as we consider this to be constant. There is a factor of O(m?)
which counts the starts of B;, B; and their repeats. There is an associated
probability of s72(¢=1). We then have a factor of O(¢) for the various possible
values of t. Then there is the probability that (i) or (ii) of the definition hold,

which accounts for a final factor of s~ ¢ 1),
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Thus the probability of F conditional on having k pairs of markers (and the

occurrence of €2 is

WEANE ok
\e)E+1@) ~ G+

Hence,

Pr(F|X =k, &)Pr(X =k, &) + O(Pr(€)) + o(1)

M8

Pr(¢ is l-recoverable) =

= g (k—2{—1)!Pr(X =k)+o(1)
S C i IPr(X’ = K) +o(1)).

Since the moment generating function of X’ converges to that of a Poisson

variable with parameter A = (s — 1)¢, it follows that

) 00 ef)\(2)\)k
Pr(¢ is f-recoverable) — 1;) RICESH

This completes the proof of Theorem 1.

Remark: the above result can be generalised to non-uniform sampling. Sup-
pose ¥ = {01,09,...,05} and let £ be generated one symbol at a time, with
each symbol chosen independently of previous symbols. Let Pr(§; = o;) =
pi,1 <1< s,and 1 < j. We ignore the trivial case in which there is an 7 such
that p; = 1. Suppose a = p?+p3+---+p? and § = p3 +p5+---+p>. Then
the previous analysis can be pushed through with A (in the statement of The-
orem 1) replaced by (o' —1)c. (s in the RHS of (2) is replaced by o' and
the RHS of (3) becomes O(m?¢ ¥5_; o4 937} = O(m?(? (o + B°)) = o(1)

since 3 < o€ for some fixed € > 0.)
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