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Abstract14

We present a rigorous and precise analysis of the degree distribution in a dynamic graph model15

introduced by Pastor-Satorras et al. in which nodes are added according to a duplication-divergence16

mechanism, i.e. by iteratively copying a node and then randomly inserting and deleting some edges17

for a copied node. This graph model finds many applications in the real world from biology to social18

networks. It is discussed in numerous publications with only very few rigorous results, especially for19

the degree distribution.20

In this paper we focus on two related problems: the expected value and large deviation for the21

degree of a given node over the evolution of the graph and the expected value and large deviation22

of the average degree in the graph. We present exact and asymptotic results showing that both23

quantities may decrease or increase over time depending on the model parameters. Our findings are24

a step towards a better understanding of aspects of the graph behavior such as degree distribution,25

symmetry—that eventually will lead to structural compression, an important open problem in this26

area.27
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1 Introduction37

On the one hand, it is widely accepted that we live in the age of data deluge. On a daily38

basis we observe the increasing availability of data collected and stored in various forms,39

as sequences, expressions, interactions or structures. A large part of this data is given in a40

complex form which conveys also a “shape” of the structure, such as network data. Examples41

are various biological networks, social networks or Web graphs.42

On the other hand, compression is a well-known area of information theory which mostly43

deals with the compression of sequences. Yet, we note that already in 1953 Shannon argued44

as to the importance of extending the theory to data without a linear structure, such as45

lattices [17]. Recently, we saw some work directed towards more complex data structures46

such as trees [10, 16] and graphs [5, 3, 13]. Compression for such non-conventional types of47

data has become an important issue, since e.g. graph data are nowadays widely used in Big48

Data computing [11]. It is therefore an imperative to provide efficient storage and processing49

to speed up computations and lower memory and hardware costs.50

The recent survey by Besta and Hoefler [4] collected over 450 papers concerned with the51

topic of lossless graph compression. There were several well-known heuristics proposed for52

the compression of real-world graphs, such as the algorithm by Adler and Mitzenmacher53

[2] devised for the Web graph. But the first rigorous analysis of an asymptotically optimal54

algorithm for Erdős-Renyi graphs was presented in [5], while recently it was extended to the55

preferential attachment model (also known as Barábasi-Albert) graphs [14]. However, many56

real-world networks such as protein-protein and social networks follow a different model57

of generation known as the duplication-divergence model in which new nodes are added to58

the network as copies of existing nodes together with some random divergence, resulting in59

differences among the original nodes and their copies. In this paper we focus on analyzing60

the degree distribution – a first step towards graph compression – in such a network, which61

we first define more precisely.62

Consider the most popular duplication-divergence model as introduced by Pastor-Satorras63

et al. [18], referred to below as DD(t, p, r). It is defined as follows: starting from a given64

graph on t0 vertices (labeled from 1 to t0) we add subsequent vertices labeled t0, t0 + 1, . . . ,65

t as copies of some existing vertices in the graph and then we introduce divergence by adding66

and removing some edges connected to the new vertex independently at random. Finally, we67

remove the labels and return the structure, i.e. the unlabeled graph.68

In order to pursue compression and other algorithms (e.g., finding the node arrivals) for69

duplication-divergence model we need to observe [5, 13] the close affinity between (structural)70

compression and symmetries of the graph. In turn, graph symmetries (motivated further71

below), are closely related to the degree distribution, which is the main topic of this paper.72

Indeed, as discussed in [13] a graph is asymmetric if two properties hold: (i) new nodes73

do not make the same choices among old nodes, and (ii) old nodes have distinct degrees.74

Thus the degree distribution plays a crucial role in many graph algorithms including graph75

compression and others (e.g., inferring node arrival in such dynamic networks [15]).76

Before we summarize our main results on the degree distribution in DD(t, p, r) networks,77

let us explore further the connection between compression and graph symmetries. The78

linking concepts here are the graph entropy H(G) (also known as the labeled graph entropy)79

and structural graph entropy H(S(G)) (also known as the unlabeled graph entropy). Both80

quantities depend deeply on the degree distribution. Let Gn be the set of all labeled graphs81

on n vertices (with vertices having labels 1, 2, . . . , n) and Sn be the set of all unlabeled82

graphs on n vertices. Then, the graph entropy and the structural graph entropy are defined83
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as84

H(G) =
∑
G∈Gn

Pr[G] log Pr[G],85

H(S(G)) =
∑

S(G)∈Sn

Pr[S(G)] log Pr[S(G)],86

87

where S(G) is the structure of graph G, that is, the graph G with labels removed.88

It turns out that for many well-known random graph models, the structural graph entropy89

can be expressed by a following formula:90

H(G)−H(S(G)) = E log |Aut(G)| − E log |Γ(G)|91
92

where H(G) and H(S(G)) are, respectively, the entropy of the labelled and unlabelled graph93

generated by a given model, Aut(G) is the automorphism group of the graph G (representing94

graph symmetries) and Γ(G) is the set of all re-labelings of G that give a graph which can95

be generated by the given graph model with positive probability [13].96

In fact, many real-world networks, such as protein-protein and social networks, have been97

shown to contain lots of symmetries, as presented in Table 1. This is in stark contrast to the98

Erdős-Renyi and preferential attachment models, as both generate completely asymmetric99

graphs with high probability , that is log |Aut(G)| = 0 [5, 13], and therefore we do not100

consider these models as likely matches for these kinds of networks.101

Network Nodes Edges log |Aut(G)|

Baker’s yeast protein-protein interactions 6,152 531,400 546
Fission yeast protein-protein interactions 4,177 58,084 675
Mouse protein-protein interactions 6,849 18,380 305
Human protein-protein interactions 17,295 296,637 3026
ArXiv high energy physics citations 7,464 116,268 13
Simple English Wikipedia hyperlinks 10,000 169,894 1019
CollegeMsg online messages 1,899 59,835 232

Table 1 Symmetries of the real-world networks [19, 22].

Consequently, in order to study and understand the behavior of real-world networks we102

need dynamic graph models that naturally generate internal graph symmetries. It turns out103

that the discussed duplication-divergence model is such a candidate. However, at the moment104

there do not exist any rigorous general results on symmetries for such graphs. Experimentally,105

when generating multiple graphs from this model with different parameters, we observe the106

pattern presented in Figure 1: there is a large set of parameters for which the generated107

graphs are highly symmetric, as exhibited by the size of their automorphisms group (expressed108

in a logarithmic scale), log |Aut(G)|. Moreover, as it was shown by Sreedharan et al. [19],109

the possible values of the parameters for real-world networks under the assumption that they110

were generated by this model lie in the blue-violet area, indicating a lot of symmetry.111

In view of these, it is imperative that we understand symmetry and degree distribution112

in duplication-divergence networks. Overall, both questions are tightly related, as already113

discussed above. We note that in the previous work on various graph models, such as114

preferential attachment [13], the analysis of the degree distribution was a vital step in proving115

results on structural compression. For this, as discussed in [13], we need to study the average116

and large deviation of their degree sequence, which is the main topic of this conference paper.117

CVIT 2016
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Figure 1 Symmetry of graphs (log |Aut(G)|) generated by Pastor-Satorras model.

Turowski et al. showed in [21] that for the special case of p = 1, r = 0 the expected118

logarithm of the number of automorphisms for graphs on t vertices is asymptotically Θ(t log t),119

which indicates a lot of symmetry. Therefore, they were able to obtain asymptotically optimal120

compression algorithms for graphs generated by such models. However, their approach used121

certain properties of the model which cannot be applied for different parameter values.122

For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber in [7] that123

depending on value of p either there exists a limiting distribution of degree frequencies with124

almost all vertices isolated or there is no limiting distribution as t → ∞. Moreover, it is125

shown in [12] that the number of vertices of degree one is Ω(ln t) but again the precise rate126

of growth of the number of vertices with degree k > 0 is as yet unknown. Recently, also for127

r = 0, Jordan [9] showed that the non-trivial connected component has a degree distribution128

which conforms to a power-law behavior, but only for p < e−1. In this case the exponent is129

equal to γ which is the solution of 3 = γ + pγ−2.130

In this paper we approach the problem of the degree distribution from a different131

perspective. We focus on presenting exact and precise asymptotic results for the expected132

degree and large deviations of a given vertex s at time t (denoted by degt(s)) and the average133

degree in the graph (denoted by D(Gt)).134

We discuss in Theorems 2–7 exact and precise asymptotics of these quantities when135

t→∞. We show that E[degt(s)] and E[D(Gt)] exhibit phase transitions over the parameter136

space: as a function of p and r. In particular, we find that E[degt(s)] grows respectively137

like
(
t
s

)p, √ t
s log s or

(
t
s

)p
s2p−1, depending whether p < 1

2 , p = 1
2 or p > 1

2 . Furthermore,138

E[D(Gt)] is either Θ(1), Θ(log t) or Θ(t2p−1) for the same ranges of p. We also determine139

the exact constants for the leading terms that strictly depend on p, r, t0 and the structure140

of the seed graph Gt0 . This confirms the empirical findings of [8] regarding the seed graph141

influence on the structure of Gt.142

We also present some results concerning the the tail of the asymptotic distribution of143

the variables D(Gt) and degt(s) for s = O(1). It turns out that it is sufficient to only go a144

polylogarithmic factor under or over the mean to obtain a polynomial tail, that is to get an145

O(t−A) tail probability.146

These findings allow us to better understand why the DD(t, p, r) model differs quite147

substantially from other graph models such as the preferential attachment model [13, 23]. In148



A. Frieze, K. Turowski, W. Szpankowski 23:5

particular, we observe that the expected degree behaves differently as t→∞ for different149

values of s and p. For example, if p > 1
2 , then for s = O(1) (that is, for very old nodes)150

we observe that E[degs(t)] = Ω(tp) while for s = Θ(t) (i.e., very young nodes) we have151

E[degs(t)] = O(t2p−1). This behavior is very different than the degree distribution for, say,152

the preferential attachment model, for which the expected degree of a vertex s in a graph on153

t vertices is of order
√
t/s for s up to an order of tε for some constant ε > 0 [13].154

We now present our main results on degree distributions. All proofs are delegated to155

appendices.156

2 Main results157

In this section we present our main results with proofs and auxiliary lemmas presented in158

the respective appendices.159

We use standard graph notation, e.g. from [6]: V (G) denotes the set of vertices of graph
G, NG(u) – the set of neighbors of vertex u in G, degG(u) = |NG(u)| – the degree of u in G.
For brevity we use the abbreviations for Gt, e.g. degt(u) instead of degGt

(u). All graphs are
simple. Let us also introduce the average degree D(Gt) of G as

D(G) = 1
|V (G)|

∑
v∈V (G)

degG(u).

It is also known in the literature as the first moment of the degree distribution, and it is160

related to the number of edges.161

Formally, we define the model DD(t, p, r) as follows: let 0 ≤ p ≤ 1 and 0 ≤ r ≤ t0 be the162

parameters of the model. Let also Gt0 be a graph on t0 vertices, with V (Gt0) = {1, . . . , t0}.163

Now, for every t = t0, t0 + 1, . . . we create Gt+1 from Gt according to the following rules:164

1. add a new vertex t+ 1 to the graph,165

2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and denote u as parent(t+ 1),166

3. for every vertex i ∈ V (Gt):167

a. if i ∈ Nt(parent(t+ 1)), then add an edge between i and t+ 1 with probability p,168

b. if i /∈ Nt(parent(t+ 1)), then add an edge between i and t+ 1 with probability r
t .169

We focus now on the expected value of degt(s), that is, the degree of node s at time t.170

We start with a recurrence relation for E[degt(s)]. Observe that for any t ≥ s we know that171

vertex s may be connected to vertex t+ 1 in one of the following two cases:172

either s ∈ Nt(parent(t+ 1)) (which holds with probability degt(s)
t ) and we add an edge173

between s and t+ 1 (with probability p),174

or s /∈ Nt(parent(t+ 1)) (with probability t−degt(s)
t ) and we an add edge between s and175

t+ 1 (with probability r
t ).176

From the definition presented above we directly obtain the following recurrence for177

E[degt(s)]:178

E[degt+1(s)
∣∣ Gt] =

(
degt(s)

t
p+ t− degt(s)

t

r

t

)
(degt(s) + 1)179

+
(

degt(s)
t

(1− p) + t− degt(s)
t

(
1− r

t

))
degt(s)180

= degt(s)
(

1 + p

t
− r

t2

)
+ r

t
.181

182

CVIT 2016
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After removing the conditioning on Gt, we find:183

E[degt+1(s)] = E[degt(s)]
(

1 + p

t
− r

t2

)
+ r

t
. (1)184

185

This recurrence falls under a general recurrence of the form186

E[f(Gt+1)
∣∣ Gt] = f(Gtg1(t) + g2(t) (2)187

where g1 and g2 are given functions. As we shall see these type of recurrences occur a few188

times in this paper, therefore we need appropriate tools to solve it. We derive a series of189

lemmas (Lemma 10–15), providing exact and asymptotic behavior of E[f(Gt)]. They are190

based on well-known martingale theory and they use various asymptotic properties of Euler191

gamma function. For convenience, the associated lemmas with their proofs were moved to192

Appendix A.193

First, we use Lemma 10 to obtain the equation for the exact behavior of the degree of a194

given node s at time t:195

E[degt(s)] = E[degs(s)]
t−1∏
k=s

(
1 + p

k
− r

k2

)
+

t−1∑
j=s

r

j

t−1∏
k=j+1

(
1 + p

k
− r

k2

)
. (3)196

197

However, we see that to solve this recurrence we need to know the expected value of degs(s)198

for all s > t0, which we tackle next.199

Turning our attention to this variable we find the following lemma connecting E[degt(t)]200

and the average degree E[D(Gt)] (see proof in Appendix B):201

I Lemma 1. For any t ≥ t0 it holds that202

E[degt+1(t+ 1)] =
(
p− r

t

)
E[D(Gt)] + r.203

204

It is quite intuitive that the expected degree of a new vertex behaves as if we would choose a205

vertex with the average degree E[D(Gt)] as its parent, and then copy p fraction of its edges,206

adding also almost r more edges to all other vertices in the graph.207

Thus to complete our analysis we need to find E[D(Gt)], that is, the average degree of208

Gt. Using a similar argument to the above, we find the following recurrence for the average209

degree of Gt+1:210

E[D(Gt+1)
∣∣ Gt] = 1

t+ 1E
[
t+1∑
i=1

degt+1(i)
∣∣ Gt]211

= 1
t+ 1E

[
t∑
i=1

degt(i) + 2 degt+1(t+ 1)
∣∣ Gt]212

= 1
t+ 1

(
t∑
i=1

degt(i) + 2E
[
degt+1(t+ 1)

∣∣ Gt])213

= 1
t+ 1

(
tD(Gt) + 2E[degt+1(t+ 1)

∣∣ Gt]) = D(Gt)
(

1 + 2p− 1
t+ 1 −

2r
t(t+ 1)

)
+ 2r
t+ 1 .214

215

Therefore, after removing the conditioning on Gt:216

E[D(Gt+1)] = E[D(Gt)]
(

1 + 2p− 1
t+ 1 −

2r
t(t+ 1)

)
+ 2r
t+ 1 . (4)217

218
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This is again recurrence of the form (2) that we can handle in a uniform manner as discussed219

above.220

Finally, we obtain a recurrence which does not refer to any other variable defined over Gt221

or Gt+1. We can solve this recurrence by using Lemma 10 from the next section and derive222

Theorem 2. The proof is given in Appendix C.223

I Theorem 2. For Gt ∼ DD(t, p, r) and for all t ≥ t0 we have224

E[D(Gt)] =Γ(t+ c3)Γ(t+ c4)
Γ(t)Γ(t+ 1)225

(
D(Gt0) Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4) + 2r
t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
,226

227

where c3 = p+
√
p2 + 2r, c4 = p−

√
p2 + 2r, and Γ(z) is the Euler gamma function.228

Furthermore, asymptotically as t→∞ we find229

E[D(Gt)] =



2r
1−2p (1 + o(1)) if p < 1

2 and r > 0,
2r ln t (1 + o(1)) if p = 1

2 and r > 0,
t2p−1 Γ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4) (1 + o(1))×(
D(Gt0) +

2rt0 3F2
[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ;1

]
t20+2pt0−2r

)
if p > 1

2 or r = 0,

230

231

where D(Gt0) is the average degree of the initial graph Gt0 and232

3F2
[ a1,a2,a3

b1,b2 ; z
]

=
∞∑
l=0

(a1)l(a2)l(a3)l
(b1)l(b2)l

zl

l!233

is the generalized hypergeometric function with (a)l = a(a+ 1) . . . (a+ l − 1), (a)0 = 1 the234

rising factorial (see [1] for details).235

As we see, the asymptotic behavior of E[D(Gt)] has a threefold characteristic: when p < 1
2236

and r > 0, the majority of the edges are not created by copying them from parents, but237

actually by attaching them according to the value of r. For p = 1
2 and r > 0 we note the238

curious situation of a phase transition (still with non-copied edges dominating), and only if239

either p > 1
2 or r = 0 do the edges copied from the parents contribute asymptotically the240

major share of the edges.241

Finally, we turn to estimations of the tails of the distribution of D(Gt). It turns out that242

this variable is concentrated in the sense that with probability 1−O(t−A) it is contained243

only within polylogarithmic ratio from the mean.244

More specifically, the right tail of the distributions may be bounded as following:245

I Theorem 3. Asymptotically for Gt ∼ DD(t, p, r) it holds that246

Pr[D(Gt) ≥ AC log2(t)] = O(t−A) for p < 1
2 ,247

Pr[D(Gt) ≥ AC log3(t)] = O(t−A) for p = 1
2 ,248

Pr[D(Gt) ≥ AC t2p−1 log2(t)] = O(t−A) for p > 1
2 .249

250

for some fixed constant C > 0 and any A > 0.251

CVIT 2016
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Similarly, we have the behavior of the left tail:252

I Theorem 4. For Gt ∼ DD(t, p, r) with p > 1
2 asymptotically it holds that253

Pr
[
D(Gt) ≤

C

A
t2p−1 log−3−ε(t)

]
= O(t−A).254

255

for some fixed constant C > 0 and any ε,A > 0.256

Note that since D(Gt) = O(log t) for p ≤ 1
2 , the bounds of the above form are trivial and257

not interesting.258

Now we return to the computation of the expected values of E[degt(t)] and E[degt(s)].259

By applying Theorem 2 to Lemma 1 we obtain the following corollary.260

I Corollary 5. For all t > t0 it is true that261

E[degt(t)] = (pt− p− r) Γ(t+ c3 − 1)Γ(t+ c4 − 1)
Γ(t)2262 (

D(Gt0) Γ(t0)Γ(t0 + 1)
Γ(t0 + c3)Γ(t0 + c4) + 2r

t−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
+ r,263

264

where c3, c4 are as above.265

Moreover, asymptotically as t→∞ it holds that266

E[degt(t)] =



pt2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)D(Gt0)(1 + o(1)) if p ≤ 1

2 , r = 0,
r

1−2p (1 + o(1)) if p < 1
2 , r > 0,

2rp ln t (1 + o(1)) if p = 1
2 , r > 0,

Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)pt

2p−1(1 + o(1)) if p > 1
2 ,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
267

268

with the same notation as in Theorem 2.269

As was mentioned above, the asymptotic expected behavior is similar to the behavior of270

E[D(Gt)].271

We are finally in a position to state the exact and asymptotic expressions for E[degt(s)].272

This we need to split in two parts: first, for the initial vertices of Gt0 (1 ≤ s ≤ t0) and all273

other vertices (t0 < s < t). Note that the first of the theorems may be derived directly from274

Eqn. (3), (using only lemmas from Appendix A) and the second one requires Corollary 5.275

For the proofs of both theorems see Appendix C.276

I Theorem 6. For all 1 ≤ s ≤ t0 it is true that277

E[degt(s)] = Γ(t+ c1)Γ(t+ c2)
Γ(t)2278 [

degt0(s) Γ(t0)2

Γ(t0 + c1)Γ(t0 + c2) + r

t−1∑
j=t0

Γ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,279

280

where c1 = p+
√
p2+4r
2 , c2 = p−

√
p2+4r
2 , c3 and c4 as above.281
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Asymptotically as t→∞:282

283

E[degt(s)] =



r ln t (1 + o(1)) if p = 0 and r > 0,

tp

[
degt0(s) Γ(t0)2

Γ(t0+c1)Γ(t0+c2)

+ rΓ(t0)Γ(t0+1)
Γ(t0+c1+1)Γ(t0+c2+1) 3F2

[ t0,t0+1,1
t0+c1+1,t0+c2+1 ; 1

]]
(1 + o(1)) if p > 0 or r = 0.

284

285

Here we observe only two regimes. In the first, for the case when p = 0, when edges286

are added mostly due to the parameter r, we have logarithmic growth of E[degt(s)]. In the287

second one, edges attached to s accumulate mostly by choosing vertices adjacent to s as288

parents of the new vertices, and therefore the expected degree of s grows proportionally to289

tp.290

I Theorem 7. For all t0 < s < t it is true that291

E[degt(s)] = Γ(t+ c1)Γ(t+ c2)
Γ(t)2292 [

(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)
Γ(s+ c1)Γ(s+ c2)293

(
D(Gt0) Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4) + 2r
s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
294

+ rΓ(s)2

Γ(s+ c1)Γ(s+ c2) + r

t−1∑
j=s

Γ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,295

296

where c1–c4 are as above.297

Asymptotically as t→∞:298

(i) for s = O(1)299

E[degt(s)] = tp(1 + o(1))300 [
(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)

Γ(s+ c1)Γ(s+ c2)301 D(Gt0) Γ(t0)Γ(t0 + 1)
Γ(t0 + c3)Γ(t0 + c4) + 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

302

+ rΓ(s)2

Γ(s+ c1)Γ(s+ c2)

(
1 + 3F2

[ s,s+1,1
s+c1+1,s+c2+1 ; 1

] s

s2 + ps− r

)]
.303

304

(ii) for s = ω(1) and s = o(t)305

E[degt(s)] =



D(Gt0) pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p ≤ 1

2 , r = 0,
r log

(
t
s

)
(1 + o(1)) if p = 0, r > 0,

r(1−p)
p(1−2p)

(
t
s

)p (1 + o(1)) if 0 < p < 1
2 , r > 0,

r
√

t
s log s (1 + o(1)) if p = 1

2 , r > 0,(
D(Gt0) + 2rt0

t20+2pt0−2r 3F2
[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)
(
t
s

)p
s2p−1(1 + o(1)) if p > 1

2 .

306
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307

(iii) for s = ct− o(t), 0 < c ≤ 1,308

E[degt(s)] =



D(Gt0) pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4) t

2p−1cp−1(1 + o(1)) if p ≤ 1
2 , r = 0,

r (1− log c) (1 + o(1)) if p = 0, r > 0,(
r(1−p)

p(1−2p)cp − r
p

)
(1 + o(1)) if 0 < p < 1

2 , r > 0,
r√
c

log t (1 + o(1)) if p = 1
2 , r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4) t
2p−1cp−1(1 + o(1)) if p > 1

2 .

309

310

The theorem above shows that there is a threefold behavior with respect to the range311

of s: s small (constant), s medium (growing, but slower than t), and s large (when s is312

directly proportional to t). In the first case we observe a behavior very similar to the one313

for 1 ≤ s ≤ t0. In the second case we have a dependency on both s and t depending on the314

values of p and r. When the majority of the edges are created due to the copying (for r = 0315

or p > 1
2 ), then E[degt(s)] = Θ

((
t
s

)p
s2p−1). When the majority of the edges are created316

due to the random addition (for r > 0 and p < 1
2 ), then E[degt(s)] = Θ

((
t
s

)p). Finally, we317

observe a phase transition for p = 1
2 , r = 0 with E[degt(s)] = Θ

((
t
s

)p log s
)
. In the last case,318

the rates of growth of E[degt(s)] are exactly like for E[degt(t)]: Θ(1), Θ(log t) or Θ(t2p−1)319

respectively for different ranges of p and r.320

Note that given the results presented in [19] and [22] we expect the real-world networks321

to fit the range p > 1
2 and r > 0.322

Finally, we derive the theorems showing the concentration of the quantity degt(s), given323

Gs. It is possible to show the following result:324

I Theorem 8. Asymptotically for Gt ∼ DD(t, p, r) and s = O(1) it holds that325

Pr[degt(s) ≥ AC tp log2(t)] = O(t−A)326
327

for some fixed constant C > 0 and any A > 0.328

We also prove a respective lower bound:329

I Theorem 9. For Gt ∼ DD(t, p, r) with p > 0 and s = O(1) it holds asymptotically that330

Pr
[
degt(s) ≤

C

A
tp log−3−ε(t)

]
= O(t−A)331

332

for some fixed constant C > 0 and any A > 0.333

Note that in the p = 0 case, missing from Theorem 9 it is clear that we have with334

high probability at least a positive constant fraction of vertices with degree 0, as degs(t) ∼335

Bin
(
t, rt
)
.336

Finally, we strongly believe that since degt(t) is closely dependent on the degree dis-337

tribution in Gt−1, it is very unlikely that for s close to t the analogous bounds with only338

logarithmic factor from the mean for degt(s) exist.339

3 Discussion340

In this paper we have focused on a rigorous and precise analysis of the average degree of a341

given node over the evolution of the network as well as the average degree. We present exact342
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and asymptotic results showing the behavior of important graph variables such as D(Gt),343

degt(t) and degt(s).344

It is worth noting that it is the parameter p that drives the rate of growth of expected345

value for these parameters. The value of the parameter r and the structure of the starting346

graph Gt0 impact only the leading constants and lower order terms.347

We note that there are several phase transitions of these quantities as a function of p348

and r. However, as demonstrated in [19], it is seems that all real-world networks fall within349

a range 1
2 < p < 1, r > 0 – and this case should probably be the main topic of further350

investigation.351

The proposed methodology can be easily extended to obtain variance and higher moments352

of the above quantities. Future work may include investigations into both the large deviation353

of the degree distribution as well as proving properties of the degree distribution (i.e., the354

number of nodes of degree k) as a function of both degree and time t. This, in turn, would355

allow us to differentiate between the ranges of parameters for which we obtain an asymmetric356

graph with high probability and the range where non-negligible symmetry occurs. Estimation357

of the graph entropy and the structural entropy would give us a way towards our ultimate358

aim: good quality (and efficient) algorithms which would match the entropy for this graph359

model.360
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A Useful lemmas414

Here we derive a series of lemmas useful for the analysis of the following type of recurrence415

E[f(Gn+1)
∣∣ Gn] = f(Gn)g1(n) + g2(n) (5)416

for some nonnegative functions g1(n), g2(n) and a Markov process Gn. It should be again417

noted that our recurrences for E[degt(s)] and E[D(Gt)] (e.g., see (1) and (4)) fall under this418

pattern.419

First lemma is a generalization of a result obtained in [7], where only the case g1(n) = 1+ a
n ,420

a > 0, was analyzed.421

I Lemma 10. Let (Gn)∞n=n0
be a Markov process for which Ef(Gn0) > 0 and (5) holds with422

g1(n) > 0, g2(n) ≥ 0 for all n = n0, n0 + 1, . . .. Then423

(ii) The process (Mn)∞n=n0
defined by Mn0 = f(Gn0) and424

Mn = f(Gn)
n−1∏
k=n0

1
g1(k) −

n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)425

is a martingale.426

(ii) For all n ≥ n0427

Ef(Gn) = f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)428

=
n−1∏
k=n0

g1(k)

f(Gn0) +
n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)

 .429

430

Proof. Observe that431

E[Mn+1
∣∣ Gn] = E[f(Gn+1)

∣∣ Gn]
n∏

k=n0

1
g1(k) −

n∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)432

= f(Gn)
n−1∏
k=n0

1
g1(k) −

n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k) = Mn433

434

which proves (i). Furthermore, after some algebra and taking expectation with respect to435

Gn we arrive at436

Ef(Gn) = E[Mn]
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)

n−1∏
k=n0

g1(k)437

= f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)438

439

which completes the proof. J440

We now observe that any solution of recurrences of type (5) contains sophisticated products441

and sum of products (e.g., see Eqn. (3)) with which we must deal to find asymptotics. The442

next lemma shows how to handle such products.443
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I Lemma 11. Let W1(k), W2(k) be polynomials of degree d with respective roots ai, bi444

(i = 1, . . . , d), that is, W1(k) =
∏d
i=1(k − ai) and W2(k) =

∏d
j=1(k − bj). Then445

n−1∏
k=n0

W1(k)
W2(k) =

d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

.446

447

Proof. We have448

n−1∏
k=n0

W1(k)
W2(k) =

n−1∏
k=n0

d∏
i=1

k − ai
k − bi

=
d∏
i=1

n−1∏
k=n0

k − ai
k − bi

=
d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

449

450

which completes the proof. J451

The next lemma presents well-known asymptotic expansion of the gamma function but452

we include it here for the sake of completeness.453

I Lemma 12 (Abramowitz, Stegun [1]). For any a, b ∈ R if n→∞, then454

Γ(n+ a)
Γ(n+ b) = na−b

∞∑
k=0

(
a− b
k

)
B

(a−b+1)
k (a) · n−k455

= na−b
(

1 + (a− b)(a+ b− 1)
2n +O

(
1
n2

))
,456

457

where B(l)
k (x) are the generalized Bernoulli polynomials.458

Now we deal with sum of products as seen in (5). In particular, we are interested in the
following sum of products

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

with a =
∑k
i=1 ai, b =

∑k
i=1 bi. In the next three lemmas we consider three cases: a+ 1 > b,459

a+ 1 = b and a+ 1 < b.460

I Lemma 13. Let ai, bi ∈ R (k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that a + 1 > b.461

Then it holds asymptotically for n→∞ that462

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1

a− b+ 1 +O
(
nmax{a−b,0}

)
463

464

Proof. We estimate the sum using Lemma 12 and the Euler-Maclaurin formula [20, p. 294]465

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

ja−b
(

1 +O

(
1
j

))
=
∫ n

n0

ja−b
(

1 +O

(
1
j

))
dj466

=
[
ja−b+1

(
1

a− b+ 1 +O

(
1
j

))]n
n0

= na−b+1
(

1
a− b+ 1 +O

(
1
n

))
+O(1)467

468

which completes the proof. J469

I Lemma 14. Let ai, bi ∈ R (k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that a + 1 = b.470

Then asymptotically471

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= lnn+O (1)472

473
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Proof. We proceed as before474

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

1
j

(
1 +O

(
1
j

))
=
∫ n

n0

1
j

(
1 +O

(
1
j

))
dj = lnn+O(1)475

476

which completes the proof. J477

I Lemma 15. Let ai, bi ∈ R (i = 1, . . . , k, k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that478

a+ 1 < b. Then it holds for every n ∈ N+ that479

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∏k
i=1 Γ(n+ ai)∏k
i=1 Γ(n+ bi)

k+1Fk

[
n+a1,...,n+ak,1
n+b1,...,n+bk

; 1
]

480

481

where pFq[ a
b ; z] is the generalized hypergeometric function. Moreover it is true that asymp-482

totically483

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1
(

1
b− a− 1 +O

(
1
n

))
.484

485

Proof. The proof of the first formula follows directly from the definition of the generalized486

hypergeometric function. Second formula follows from Lemma 12, as we know that for487

n→∞:488

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∞∑
j=n

ja−b
(

1 +O

(
1
j

))
=
∫ ∞
n

ja−b
(

1 +O

(
1
j

))
dj489

=
[
ja−b+1

(
1

b− a− 1 +O

(
1
j

))]∞
n

= na−b+1
(

1
b− a− 1 +O

(
1
n

))
490

491

as desired. J492

B Proof of Lemma 1493

Now we turn our attention to the proof of Lemma 1. We first observe that it follows from494

the definition of the model that the degree of the new vertex t+ 1 is the total number of495

edges from t+ 1 to Nt(parent(t+ 1)) (chosen independently with probability p) and to all496

other vertices (chosen independently with probability r
t ). Note that it can be expressed as a497

sum of two independent binomial variables498

degt+1(t+ 1) ∼ Bin (degt(parent(t+ 1)), p) + Bin
(
t− degt(parent(t+ 1)), r

t

)
.499

500

Hence501

E[degt+1(t+ 1)
∣∣ Gt] =

t∑
k=0

Pr(degt(parent(t+ 1)) = k)
k∑
a=0

(
k

a

)
pa(1− p)k−a502

t−k∑
b=0

(
t− k
b

)(r
t

)b (
1− r

t

)t−k−b
(a+ b)503

=
t∑

k=0
Pr(degt(parent(t+ 1)) = k)

(
pk + r

t
(t− k)

)
504
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=
(
p− r

t

) t∑
k=0

kPr(degt(parent(t+ 1)) = k) + r.505

506

Since parent sampling is uniform, we know that Pr(parent(t+ 1) = i) = 1
t and therefore507

D(Gt) =
t∑
i=1

Pr(parent(t+ 1) = i) degt(i) =
t∑

k=0
kPr(degt(parent(t+ 1)) = k).508

509

Combining the last two equations above with the law of total expectation we finally establish510

Lemma 1.511

C Proofs of Theorem 2 and Theorems 6–7512

We start with the proof of Theorem 2. First, we observe that by combining Eqn. (4) with513

Lemmas 10 and 11 we prove the first part of Theorem 1. In similar fashion, the second part514

of Theorem 2 follows directly from the first part, combined with Lemmas 13, 14 and 15 for515

the respective ranges of p.516

Finally, we proceed to the proof of Theorems 6 and 7. First, we apply Lemma 10 with517

g1(t) = 1 + p
t −

r
t2 and g2(t) = r

t to Eqn. (1) and we obtain aforementioned Eqn. (3). Now518

we combine this result with Lemma 11. First, we if we apply it for 1 ≤ s ≤ t0 we obtain519

directly the exact formula in Theorem 6.520

Similarly, for Theorem 7, we get the almost identical formula. The only difference is that521

we do not stop the recurrence at Gt0 , but at Gs:522

E[degt(s)] =Γ(t+ c1)Γ(t+ c2)
Γ(t)2523

(
E[degs(s)]

Γ(s)2

Γ(s+ c1)Γ(s+ c2) +
t−1∑
j=s

rΓ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

)
524

525

where c1 = p+
√
p2+4r
2 , c2 = p−

√
p2+4r
2 .526

Now it is sufficient to apply Corollary 5 to this equation to get the exact formula for527

E[degt(s)].528

The asymptotic formulas in Theorems 6 and 7 – as it was in the case of E[D(Gt)] above –529

are derived as straightforward consequences of Lemmas 13, 14 and 15.530

D Proof of Theorem 3531

In order to prove the theorem we proceed as following: first we provide an asymptotic bound532

on E
[
exp(λ degt+1(t+ 1))|Gt

]
, then we apply it for a suitable choices of λ, which allow us533

to use Chernoff bound.534

I Lemma 16. For any λ = O( 1
t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
535

= 1
t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i), r

t

))
|Gt
]

536
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≤ 1
t

t∑
i=1

(
1− p+ peλ

)degt(i) (1− r

t
+ r

t
eλ
)t−degt(i)

.537

538

Since ex ≤ 1 + x + x2 for all x ∈ [0, 1], (1 + x)y ≤ 1 + xy + (xy)2 for 0 ≤ xy ≤ 1 and539

1 + x ≤ ex for any x:540

E
[
exp(λ degt+1(t+ 1))|Gt

]
541

≤ 1
t

t∑
i=1

(1 + pλ(1 +O(λ))degt(i)
(

1 + rλ

t
(1 +O(λ))

)t−degt(i)
542

≤ 1
t

t∑
i=1

(1 + pλ degt(i)(1 +O(λt)) (1 + rλ(1 +O(λ)))543

≤ 1
t

t∑
i=1

(1 + pλ degt (i)(1 +O(λt))) exp (rλ(1 +O(λ)))544

= (1 + pλD(Gt)(1 +O(λt))) exp (rλ(1 +O(λ)))545

≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .546
547

J548

Now we are ready to finally prove the theorem.549

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] = E
[
exp

(
λt+1

(
t

t+ 1D(Gt) + 2
t+ 1 degt+1(t+ 1)

)) ∣∣ Gt]550

= exp
(
λt+1t

t+ 1 D(Gt)
)
E
[
exp

(
2λt+1

t+ 1 degt+1(t+ 1)
) ∣∣ Gt]551

552

Now we may use Lemma 17 with λ = 2λt+1
t+1 to get553

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] =554

≤ exp
(
λt+1D(Gt)

(
1− 2p− 1

t+ 1

)
(1 +O(λt+1)) + 2rλt+1

t+ 1 (1 + o(t−1))
)
.555

556

Let us define for k = t0, . . . , t− 1557

λk = λk+1

(
1 +

(
2p− 1
t+ 1

)
(1 +O(λk+1))

)
558

559

and let εt ≥ λk for all k.560

Then clearly561

λt0 ∈

[
λt

t−1∏
k=t0

(
1 + 2p− 1

k + 1

)
, λt

t−1∏
k=t0

(
1 +

(
2p− 1
k + 1

)
(1 +O(εt))

)]
562

⊆

[
λt

(
t

t0

)2p−1
(1 + o(1)), λt

(
t

t0

)(2p−1)(1+O(εt))
(1 + o(1))

]
563

564

It follows that565

E [exp (λtD(Gt))] ≤ exp (λt0D(Gt0))
t−1∏
k=t0

exp
(

2rλk+1

k + 1
(
1 + o(k−1)

))
566
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≤ exp (λt0D(Gt0)) exp
(

2rεt+1 ln t

t0
+ C1

)
= exp (λt0D(Gt0))

(
t

t0

)2rεt+1+C1

567

568

for a certain constant C1.569

Finally, let λt = εt

(
t
t0

)−(2p−1)(1+O(εt)))
so that λt0 ≤ εt. Then from Chernoff bound it570

follows that571

Pr[D(Gt) ≥ αED(Gt)] = Pr[exp(D(Gt)− αED(Gt)) ≥ 1]572

≤ exp (−αλtED(Gt))E[exp (λtD(Gt))]573

≤ exp (−αλtED(Gt)) exp (λt0D(Gt0))
(
t

t0

)2rεt+1+C1

574

575

Assume εt = 1
ln (t/t0) . For p >

1
2 we have ED(Gt) = C2

(
t
t0

)2p−1
(1 + o(1)), and therefore576

Pr
[
D(Gt) ≥ αC2

(
t

t0

)2p−1
(1 + o(1))

]
577

≤ exp
(
−αC2εt

(
t

t0

)−(2p−1)εt
)

exp (εt(t0 − 1)))
(
t

t0

)2rεt+1+C1

578

≤ exp
(
−αC2

exp (−2p+ 1)
ln (t/t0)

)
exp

(
t0 − 1

ln (t/t0)

)
exp (2r + C1)579

580

The last two elements are bounded by a constant, so it is sufficient to pick α = A
C2

exp(2p−581

1) ln2(t) to complete the proof for the case p > 1
2 .582

Now, for p < 1
2 and p = 1

2 it is sufficient to use ED(Gt) = C2(1 + o(1)) and ED(Gt) =583

C2 ln t(1 + o(1)), respectively.584

E Proof of Theorem 4585

We start the proof by obtaining a simple lemma, analogous to Lemma 16:586

I Lemma 17. For any λ = O( 1
t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
587

= 1
t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i), r

t

))
|Gt
]

588

≤ 1
t

t∑
i=1

(
1− p+ peλ

)degt(i) (1− r

t
+ r

t
eλ
)t−degt(i)

.589

590

Since ex ≤ 1 + x+ x2 for all x ∈ [0, 1], (1 + x)y ≤ 1 + 2xy for 0 ≤ xy ≤ 1, and 1 + x ≤ ex591

for all x592

E
[
exp(λ degt+1(t+ 1))|Gt

]
593

≤ 1
t

t∑
i=1

(1 + pλ(1 +O(λ))degt(i)
(

1 + rλ

t
(1 +O(λ))

)t−degt(i)
594
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≤ 1
t

t∑
i=1

(1 + 2pλ degt(i)(1 +O(λ))) (1 + 2rλ(1 +O(λ))))595

≤ 1
t

t∑
i=1

(1 + 2pλ degt (i)(1 +O(λ))) exp (2r(1 +O(λ)))596

= (1 + 2pλD(Gt)(1 +O(λ))) exp (2r(1 +O(λ))))597

≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .598
599

J600

Next, using the lemma above and Theorem 3 we limit the growth of D(Gt) over certain601

intervals:602

I Lemma 18. Let p > 1
2 . For sufficiently large t and all k < t it is true that603

Pr[D(G(k+1)t)−D(Gkt) ≥ AC((k + 1)2p−1 − k2p−1)t2p−1 log2(t)] = O(t−A)604
605

for some fixed constant C > 0 and any A > 1.606

Proof. First, let us define events Bi = [D(Gi+1) ≥ (A+ 1)C1 i
2p−1 log2(i)] with a constant607

C1 such that by Theorem 3 it is true that Pr[Bi] = O(i−A−1). Let us also denote Ak =608 ⋃(k+1)t−1
i=kt Bi and observe that Pr [Ak] = O(t−A).609

Now, we note that from Lemma 16 for any λ = o(1)610

E
[
exp (λ(D(Gt+1)−D(Gt)))

∣∣∣∣Gt,¬Bt]611

≤ E
[
exp

(
2λ
t+ 1 degt+1(t+ 1)

) ∣∣∣∣Gt,¬Bt]612

≤
[
exp

(
2λp
t+ 1D(Gt)(1 +O(λ)) + 2λr

t+ 1(1 +O(λ))
) ∣∣∣∣¬Bt]613

≤ exp
(
λ (A+ 1)C2 t

2p−2 log2(t)(1 + o(1))
)

614
615

for a certain constant C2.616

Now we proceed as following:617

Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt]618

≤ Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt,¬Ak] Pr[¬A] + Pr[Ak]619

≤ exp(−λd)E
[
exp

(
λ(D(G(k+1)t)−D(Gkt))

)
|Gkt,¬Ak

]
+O(t−A)620

≤ exp(−λd)
(k+1)t−1∏
i=kt

E
[
exp (λ(D(Gi+1)−D(Gi)))

∣∣∣∣Gi,¬Bi]+O(t−A)621

≤ exp(−λd)
(k+1)t−1∏
i=kt

exp
(
λ (A+ 1)C2 i

2p−2 log2(i)(1 + o(1))
)

+O(t−A)622

≤ exp(−λd) exp

(k+1)t−1∑
i=kt

λ (A+ 1)C3 i
2p−2 log2(t)(1 + o(1))

+O(t−A)623

≤ exp(−λd) exp
(
λ (A+ 1)C3((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

)
+O(t−A)624

625

for a certain constant C3.626

Finally, it is sufficient to take λ =
(
((k + 1)2p−1 − k2p−1) log2(t)

)−1 and d = AC4((k +627

1)2p−1 − k2p−1)t2p−1 log2(t) for sufficiently large C4 to obtain the final result. J628
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Now we may return to the main theorem. Let Yk = D(G(k+1)t)−D(Gkt). We know that629

for p > 1
2630

EYk = ED(G(k+1)t)− ED(Gkt) = C1
(
(k + 1)2p−1 − k2p−1) t2p−1(1 + o(1))631

632

for some constant C1.633

Let now define the following events:634

A1 =
[
Yk ≤

t2p−1

f(t)

]
635

A2 =
[
t2p−1

f(t) < Yk ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)
]

636

A3 =
[
Yk > C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

]
637
638

for a constant C2 such that (from the lemma above) Pr[A3] = O(t−2). Here f(t) is any639

(monotonic) function such that f(t)→∞ as t→∞.640

We know that641

EYk = E [Yk|A1] Pr [A1] + E [Yk|A2] Pr [A2] + E [Yk|A3] Pr [A3]642

EYk ≥ C1
(
(k + 1)2p−1 − k2p−1) t2p−1

643

E [Yk|A1] ≤ t2p−1

f(t)644

E [Yk|A2] ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)645

E [Yk|A3] ≤ (k + 1)t646
647

and therefore for sufficiently large t it holds that648

Pr[A1] ≤
C2
(
(k + 1)2p−1 − k2p−1) log2(t)− C1

(
(k + 1)2p−1 − k2p−1)

C2 ((k + 1)2p−1 − k2p−1) log2(t)− 1
f(t)

649

≤ 1− C1

2C2 log2(t)
.650

651

Let now τ = kt.652

Pr
[
D(Gτ ) ≤ t2p−1f−1(t)

]
= Pr

[
k⋂
i=1

Yi ≤
t2p−1

f(t)

]
653

≤
k∏
i=1

Pr
[
Yi ≤

t2p−1

f(t)

]
≤

k∏
i=1

(
1− C1

2C2 log2(t)

)
654

655

Therefore, if we assume k = 2AC2
C1

log3(t), we get656

Pr
[
D(Gτ ) ≤ t2p−1

f(t)

]
= exp (−A log(t)) = O(t−A)657

658

and finally659

Pr
[
D(Gt) ≤

C3

A2p−1 t
2p−1 log−3(2p−1)−ε(t)

]
= O(t−A).660

661

for some constant C3 and any ε > 0.662
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F Proof of Theorem 8663

E
[
exp

(
λt+1 degt+1(s)

) ∣∣ Gt] =664

=
(

degt(s)
t

p+ t− degt(s)
t

r

t

)
exp (λt+1 (degt(s) + 1))665

+
(

degt(s)
t

(1− p) + t− degt(s)
t

(
1− r

t

))
exp (λt+1 degt(s))666

= exp (λt+1 degt(s))667 (
degt(s)

t
(1− p+ p exp (λt+1)) + t− degt(s)

t

(
1− r

t
+ r

t
exp (λt+1)

))
668

≤ exp (λt+1 degt(s))
(

1 +
(
p degt(s)

t
+ r (t− degt(s))

t2

)(
λt+1 + λ2

t+1
))

669

≤ exp
(
λt+1 degt(s) +

(
p degt(s)

t
+ r (t− degt(s))

t2

)(
λt+1 + λ2

t+1
))

670

= exp
(
λt+1 degt(s)

(
1 +

(p
t
− r

t2

)
(1 + λt+1)

))
exp

(
λt+1 (1 + λt+1) r

t

)
.671

672

Let us assume that λk ≤ εt = o(1) for all s ≤ k ≤ t. Then for all k = s, s+ 1, . . . , t we673

have674

λk = λk+1

(
1 +

(p
k
− r

k2

)
(1 + λk+1)

)
≤ λk+1

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
675
676

which lead us to677

λs ≤ λt
t−1∏
k=s

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
≤ λt exp

(
(1 + εt)

t−1∑
k=s

(p
k
− r

k2

))
678

≤ λt exp
(

(1 + εt)
∫ t

s

(p
k
− r

k2 dk
))

= λt exp
(

(1 + εt)
(
p ln t

s
+ r

(
1
t
− 1
s

)))
679

≤ λt
(
t

s

)p(1+εt)
exp

(r
t

(1 + εt)
)
.680

681

It follows that682

E [exp (λt degt(s)) |Gs] ≤ exp (λs degs(s)))
t−1∏
k=s

exp
(
λk+1 (1 + λk+1) r

k

)
683

≤ exp (λs degs(s))) exp
(
εt (1 + εt) r ln t

s

)
≤ exp (λs degs(s)))

(
t

s

)rεt(1+εt)
684

685

Now, let λt = εt
(
t
s

)−p(1+εt) exp
(
− rt (1 + εt)

)
so that λs ≤ εt. Then, from Chernoff686

bound it follows that687

Pr[degt(s) ≥ αEdegt(s)|Gs] = Pr[exp(degt(s)− αEdegt(s)) ≥ 1|Gs]688

≤ exp (−αλtE[degt(s)|Gs])E[exp (λt degt(s)) |Gs]689

≤ exp (−αλtE[degt(s)|Gs]) exp (λs degs(s))
(
t

s

)rεt(1+εt)
.690

691

Let’s assume εt = 1
ln t . Recall now from Theorems 6 and 7 that if s = O(1), then it holds692

that E[degt(s)|Gs] = C1t
p and therefore693

Pr[degt(s) ≥ αC1t
p|Gs] ≤ exp

(
−αC2εtt

−pεt
)

exp (εt degs(s)))
(
t

s

)rεt(1+εt)
694
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≤ exp
(
−αC3

ln t

)
exp

(
degs(s)

ln t

)
exp (2r)695

696

for certain constants C2, C3.697

Therefore, it is sufficient to set α = A
C3

ln2 t to get the final result.698

G Proof of Theorem 9699

We proceed similarly as in the proof of Theorem 4:700

I Lemma 19. Let p > 0 and s = O(1). For sufficiently large t and all k < t it is true that701

Pr[deg(k+1)t(s)− degkt(s) ≥ AC((k + 1)p − kp)tp log2(t)] = O(t−A)702
703

for some fixed constant C > 0 and any A > 1.704

Proof. Let us define events Bi = [degi+1(s) ≥ (A+ 1)C1 i
p log2(i)] with a constant C1 such705

that by Theorem 8 it is true that Pr[Bi] = O(i−A−1).706

Now, for any λ = o(1) it holds that707

E
[
exp

(
λ(degt+1(s)− degt(s))

) ∣∣∣∣Gt,¬Bt]708

=
[

degt(s)
t

(1− p+ p exp(λ)) + t− degt(s)
t

(
1− r

t
+ r

t
exp(λ)

) ∣∣∣∣¬Bt]709

≤ exp
((

p degt(s)
t

+ r(t− degt(s))
t2

)(
λ+ λ2))

710

≤ exp
(
λ(A+ 1)C1 pt

p−1 log2(t) (1 + o(1))
)
.711

712

Let us now denote Ak =
⋃(k+1)t−1
i=kt Bi and observe that Pr [Ak] = O(t−A). We proceed713

similarly to the proof of Theorem 4:714

Pr[deg(k+1)t(s)− degkt(s) ≥ d|Gkt]715

≤ Pr[deg(k+1)t(s)− degkt(s) ≥ d|Gkt,¬Ak] Pr[¬A] + Pr[Ak]716

≤ exp(−λd)E
[
exp

(
λ(deg(k+1)t(s)− degkt(s))

)
|Gkt,¬Ak

]
+O(t−A)717

≤ exp(−λd)
(k+1)t−1∏
i=kt

E
[
exp

(
λ(degi+1(s)− degi(s))

) ∣∣∣∣Gi,¬Bi]+O(t−A)718

≤ exp(−λd)
(k+1)t−1∏
i=kt

exp
(
λ (A+ 1)C1 i

p−1 log2(i)(1 + o(1))
)

+O(t−A)719

≤ exp(−λd) exp

(k+1)t−1∑
i=kt

λ (A+ 1)C1 i
p−1 log2(t)(1 + o(1))

+O(t−A)720

≤ exp(−λd) exp
(
λ (A+ 1)C2((k + 1)p − kp)tp log2(t)

)
+O(t−A)721

722

for a certain constant C2.723

Therefore, it is sufficient to take λ =
(
((k + 1)p − kp) log2(t)

)−1 and d = AC3((k + 1)p −724

kp)tp log2(t) for sufficiently large C3 to obtain the final result. J725
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Now we return to the proof of the main theorem. Let Zk = deg(k+1)t(s)− degkt(s). We726

know that for p > 0727

EZk = ED(G(k+1)t)− ED(Gkt) = C1 ((k + 1)p − kp) tp(1 + o(1))728
729

for some constant C1.730

Let now define the following events:731

A1 =
[
Zk ≤

tp

f(t)

]
732

A2 =
[
tp

f(t) < Zk ≤ C2((k + 1)p − kp)tp log2(t)
]

733

A3 =
[
Zk > C2((k + 1)p − kp)tp log2(t)

]
734
735

for a constant C2 such that (from the lemma above) Pr[A3] = O(t−2). Here f(t) is any736

(monotonic) function such that f(t)→∞ as t→∞.737

We know that738

EZk = E [Zk|A1] Pr [A1] + E [Zk|A2] Pr [A2] + E [Zk|A3] Pr [A3]739

EZk ≥ C1 ((k + 1)p − kp) t2p−1
740

E [Zk|A1] ≤ t2p−1

f(t)741

E [Zk|A2] ≤ C2((k + 1)p − kp)tp log2(t)742

E [Zk|A3] ≤ (k + 1)t743
744

and therefore for sufficiently large t it holds that745

Pr[A1] ≤ C2 ((k + 1)p − kp) log2(t)− C1 ((k + 1)p − kp)
C2 ((k + 1)p − kp) log2(t)− 1

f(t)
746

≤ 1− C1

2C2 log2(t)
.747

748

Let now τ = kt. Then,749

Pr
[
D(Gτ ) ≤ tpf−1(t)

]
= Pr

[
k⋂
i=1

Yi ≤
tp

f(t)

]
≤

k∏
i=1

(
1− C1

2C2 log2(t)

)
.750

751

Therefore, if we assume k = 2AC2
C1

log3(t), we get752

Pr
[
D(Gτ ) ≤ tp

f(t)

]
= exp (−A log(t)) = O(t−A)753

754

and finally755

Pr
[
D(Gt) ≤

C3

Ap
tp log−3p−ε(t)

]
= O(t−A).756

757

for some constant C3 and any ε > 0.758
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