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—— Abstract

We present a rigorous and precise analysis of the degree distribution in a dynamic graph model

introduced by Pastor-Satorras et al. in which nodes are added according to a duplication-divergence
mechanism, i.e. by iteratively copying a node and then randomly inserting and deleting some edges
for a copied node. This graph model finds many applications in the real world from biology to social
networks. It is discussed in numerous publications with only very few rigorous results, especially for
the degree distribution.

In this paper we focus on two related problems: the expected value and large deviation for the
degree of a given node over the evolution of the graph and the expected value and large deviation
of the average degree in the graph. We present exact and asymptotic results showing that both
quantities may decrease or increase over time depending on the model parameters. Our findings are
a step towards a better understanding of aspects of the graph behavior such as degree distribution,
symmetry—that eventually will lead to structural compression, an important open problem in this
area.
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| Introduction

s On the one hand, it is widely accepted that we live in the age of data deluge. On a daily
3 basis we observe the increasing availability of data collected and stored in various forms,
w  as sequences, expressions, interactions or structures. A large part of this data is given in a
a1 complex form which conveys also a “shape” of the structure, such as network data. Examples
« are various biological networks, social networks or Web graphs.

a3 On the other hand, compression is a well-known area of information theory which mostly
w deals with the compression of sequences. Yet, we note that already in 1953 Shannon argued
s as to the importance of extending the theory to data without a linear structure, such as
s lattices [17]. Recently, we saw some work directed towards more complex data structures
« such as trees [10, 16] and graphs [5, 3, 13]. Compression for such non-conventional types of
s data has become an important issue, since e.g. graph data are nowadays widely used in Big
w0 Data computing [11]. Tt is therefore an imperative to provide efficient storage and processing
s to speed up computations and lower memory and hardware costs.

51 The recent survey by Besta and Hoefler [4] collected over 450 papers concerned with the
52 topic of lossless graph compression. There were several well-known heuristics proposed for
53 the compression of real-world graphs, such as the algorithm by Adler and Mitzenmacher
s« [2] devised for the Web graph. But the first rigorous analysis of an asymptotically optimal
s algorithm for Erdés-Renyi graphs was presented in [5], while recently it was extended to the
ss  preferential attachment model (also known as Bardbasi-Albert) graphs [14]. However, many
s real-world networks such as protein-protein and social networks follow a different model
ss  of generation known as the duplication-divergence model in which new nodes are added to
so the network as copies of existing nodes together with some random divergence, resulting in
o0 differences among the original nodes and their copies. In this paper we focus on analyzing
a1 the degree distribution — a first step towards graph compression — in such a network, which
e we first define more precisely.

63 Consider the most popular duplication-divergence model as introduced by Pastor-Satorras
s et al. [18], referred to below as DD(¢,p,r). It is defined as follows: starting from a given
s graph on tg vertices (labeled from 1 to tg) we add subsequent vertices labeled tg, to + 1, ...,
e © as copies of some existing vertices in the graph and then we introduce divergence by adding
e and removing some edges connected to the new vertex independently at random. Finally, we
6 remove the labels and return the structure, i.e. the unlabeled graph.

69 In order to pursue compression and other algorithms (e.g., finding the node arrivals) for
w0 duplication-divergence model we need to observe [5, 13] the close affinity between (structural)
n  compression and symmetries of the graph. In turn, graph symmetries (motivated further
2 below), are closely related to the degree distribution, which is the main topic of this paper.
1 Indeed, as discussed in [13] a graph is asymmetric if two properties hold: (i) new nodes
7 do not make the same choices among old nodes, and (ii) old nodes have distinct degrees.
75 Thus the degree distribution plays a crucial role in many graph algorithms including graph
7 compression and others (e.g., inferring node arrival in such dynamic networks [15]).

7 Before we summarize our main results on the degree distribution in DD(¢, p, ) networks,
7 let us explore further the connection between compression and graph symmetries. The
7o linking concepts here are the graph entropy H(G) (also known as the labeled graph entropy)
s and structural graph entropy H(S(G)) (also known as the unlabeled graph entropy). Both
a1 quantities depend deeply on the degree distribution. Let G, be the set of all labeled graphs
&2 on n vertices (with vertices having labels 1, 2, ..., n) and S,, be the set of all unlabeled
s graphs on n vertices. Then, the graph entropy and the structural graph entropy are defined
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H(G) = Y Pr[G]logPr[G],
GegGn
H(S(@)= Y Pi[S(G)]logPr[S(Q)],
S(G)eS

where S(G) is the structure of graph G, that is, the graph G with labels removed.
It turns out that for many well-known random graph models, the structural graph entropy
can be expressed by a following formula:

H(G) — H(S(G)) = Elog |Aut(G)| — Elog |T(G)|

where H(G) and H(S(G)) are, respectively, the entropy of the labelled and unlabelled graph
generated by a given model, Aut(G) is the automorphism group of the graph G (representing
graph symmetries) and I'(G) is the set of all re-labelings of G that give a graph which can
be generated by the given graph model with positive probability [13].

In fact, many real-world networks, such as protein-protein and social networks, have been
shown to contain lots of symmetries, as presented in Table 1. This is in stark contrast to the
Erdos-Renyi and preferential attachment models, as both generate completely asymmetric
graphs with high probability , that is log |Aut(G)| = 0 [5, 13], and therefore we do not
consider these models as likely matches for these kinds of networks.

Network Nodes  Edges log|Aut(G)|
Baker’s yeast protein-protein interactions 6,152 531,400 546
Fission yeast protein-protein interactions 4,177 58,084 675
Mouse protein-protein interactions 6,849 18,380 305
Human protein-protein interactions 17,295 296,637 3026
ArXiv high energy physics citations 7,464 116,268 13
Simple English Wikipedia hyperlinks 10,000 169,894 1019
CollegeMsg online messages 1,899 59,835 232

Table 1 Symmetries of the real-world networks [19, 22].

Consequently, in order to study and understand the behavior of real-world networks we
need dynamic graph models that naturally generate internal graph symmetries. It turns out
that the discussed duplication-divergence model is such a candidate. However, at the moment
there do not exist any rigorous general results on symmetries for such graphs. Experimentally,
when generating multiple graphs from this model with different parameters, we observe the
pattern presented in Figure 1: there is a large set of parameters for which the generated
graphs are highly symmetric, as exhibited by the size of their automorphisms group (expressed
in a logarithmic scale), log |Aut(G)|. Moreover, as it was shown by Sreedharan et al. [19],
the possible values of the parameters for real-world networks under the assumption that they
were generated by this model lie in the blue-violet area, indicating a lot of symmetry.

In view of these, it is imperative that we understand symmetry and degree distribution
in duplication-divergence networks. Overall, both questions are tightly related, as already
discussed above. We note that in the previous work on various graph models, such as
preferential attachment [13], the analysis of the degree distribution was a vital step in proving
results on structural compression. For this, as discussed in [13], we need to study the average
and large deviation of their degree sequence, which is the main topic of this conference paper.
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0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1.0
p

Figure 1 Symmetry of graphs (log|Aut(G)|) generated by Pastor-Satorras model.

118 Turowski et al. showed in [21] that for the special case of p = 1, r = 0 the expected
uo logarithm of the number of automorphisms for graphs on ¢ vertices is asymptotically ©(¢logt),
120 which indicates a lot of symmetry. Therefore, they were able to obtain asymptotically optimal
11 compression algorithms for graphs generated by such models. However, their approach used
122 certain properties of the model which cannot be applied for different parameter values.

123 For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber in [7] that
124 depending on value of p either there exists a limiting distribution of degree frequencies with
125 almost all vertices isolated or there is no limiting distribution as ¢ — oo. Moreover, it is
e shown in [12] that the number of vertices of degree one is 2(Int) but again the precise rate
127 of growth of the number of vertices with degree k > 0 is as yet unknown. Recently, also for
s 1 =0, Jordan [9] showed that the non-trivial connected component has a degree distribution
s which conforms to a power-law behavior, but only for p < e~!. In this case the exponent is
1w equal to v which is the solution of 3 = v 4 p7~2.

131 In this paper we approach the problem of the degree distribution from a different
12 perspective. We focus on presenting exact and precise asymptotic results for the expected
13 degree and large deviations of a given vertex s at time ¢ (denoted by deg,(s)) and the average
w  degree in the graph (denoted by D(Gy)).

135 We discuss in Theorems 2-7 exact and precise asymptotics of these quantities when
st — 0o. We show that E[deg,(s)] and E[D(G})] exhibit phase transitions over the parameter
wr space: as a function of p and r. In particular, we find that E[deg,(s)] grows respectively
s like (ﬁ)p, \/glogs or (é)p 52P~1 depending whether p < %7 p= % or p > % Furthermore,
1w E[D(Gy)] is either ©(1), ©(logt) or ©(t?P~1) for the same ranges of p. We also determine
1o the exact constants for the leading terms that strictly depend on p, r, ¢y and the structure
11 of the seed graph Gy,. This confirms the empirical findings of [8] regarding the seed graph
12 influence on the structure of G;.

143 We also present some results concerning the the tail of the asymptotic distribution of
1 the variables D(G;) and deg,(s) for s = O(1). It turns out that it is sufficient to only go a
s polylogarithmic factor under or over the mean to obtain a polynomial tail, that is to get an
s O(t~4) tail probability.

147 These findings allow us to better understand why the DD(¢,p,r) model differs quite
us  substantially from other graph models such as the preferential attachment model [13, 23]. In
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particular, we observe that the expected degree behaves differently as ¢ — oo for different
values of s and p. For example, if p > I, then for s = O(1) (that is, for very old nodes)
we observe that E[deg,(t)] = Q(t?) while for s = O(¢t) (i.e., very young nodes) we have
E[deg, ()] = O(¢?P~!). This behavior is very different than the degree distribution for, say,
the preferential attachment model, for which the expected degree of a vertex s in a graph on
t vertices is of order /t/s for s up to an order of ¢* for some constant £ > 0 [13].

We now present our main results on degree distributions. All proofs are delegated to
appendices.

2 Main results

In this section we present our main results with proofs and auxiliary lemmas presented in
the respective appendices.
We use standard graph notation, e.g. from [6]: V(G) denotes the set of vertices of graph

G, Ng(u) — the set of neighbors of vertex u in G, degg(u) = |[Ng(u)| — the degree of u in G.

For brevity we use the abbreviations for G, e.g. deg,(u) instead of degg, (u). All graphs are
simple. Let us also introduce the average degree D(G;) of G as

1
D(O) = gy 2o deralw)

veV(G)

It is also known in the literature as the first moment of the degree distribution, and it is
related to the number of edges.

Formally, we define the model DD(¢, p,r) as follows: let 0 <p <1 and 0 <r <ty be the
parameters of the model. Let also Gy, be a graph on t vertices, with V(Gy,) = {1,...,%0}.
Now, for every t = tg,t9 + 1,... we create G441 from G, according to the following rules:
1. add a new vertex ¢t 4+ 1 to the graph,
2. pick vertex u from V(Gy) = {1, ..., ¢} uniformly at random — and denote u as parent(t + 1),
3. for every vertex i € V(Gy):

a. if 1 € Ny(parent(t + 1)), then add an edge between i and ¢ + 1 with probability p,

b. if i & Ni(parent(t 4 1)), then add an edge between i and ¢ + 1 with probability %.

We focus now on the expected value of deg,(s), that is, the degree of node s at time t.
We start with a recurrence relation for E[deg,(s)]. Observe that for any ¢ > s we know that
vertex s may be connected to vertex ¢ + 1 in one of the following two cases:

either s € Ny(parent(t + 1)) (which holds with probability degft(s)) and we add an edge

between s and ¢ + 1 (with probability p),

or s & Ni(parent(t + 1)) (with probability %) and we an add edge between s and

t 41 (with probability 7).

From the definition presented above we directly obtain the following recurrence for
El[deg, (s)]:

Bldet, (5] Gl = (2L 4 L REE) (g o) 4 1)
N (deg;(s) (1-p)+ 20l () :)) deg,(5)
= deg,(s) (1 + 2% - t%) + ;

23:5
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183 After removing the conditioning on Gy, we find:

r r
w Eldeg,y(s)] = Eldeg(s)] (1+5 - ) + 7. (1)
186 This recurrence falls under a general recurrence of the form
187 E[f(Gis1) | Ge]l = f(Gegr(t) + g2(t) (2)

18 where g1 and go are given functions. As we shall see these type of recurrences occur a few
189 times in this paper, therefore we need appropriate tools to solve it. We derive a series of
wo lemmas (Lemma 10-15), providing exact and asymptotic behavior of E[f(G})]. They are
11 based on well-known martingale theory and they use various asymptotic properties of Euler
12 gamma function. For convenience, the associated lemmas with their proofs were moved to
13 Appendix A.

104 First, we use Lemma 10 to obtain the equation for the exact behavior of the degree of a
15 given node s at time t:

t—1 t—1 t—1
T T P r
w Eldeg,(s)] = Eldeg, ()] [[ (1+ 2 - 5) + 2= [T (1+2-5)- 3)
167 k=s j=s J k=j+1

s However, we see that to solve this recurrence we need to know the expected value of deg,(s)
19 for all s > ¢y, which we tackle next.

200 Turning our attention to this variable we find the following lemma connecting E[deg, (¢)]
20 and the average degree E[D(G)] (see proof in Appendix B):

22 » Lemma 1. For any t > tg it holds that

203 E[degtﬂ(t + 1)} - ( - ;) E[D(Gt)] +r

204

25 It is quite intuitive that the expected degree of a new vertex behaves as if we would choose a
25 vertex with the average degree E[D(Gy)] as its parent, and then copy p fraction of its edges,
207 adding also almost r more edges to all other vertices in the graph.

208 Thus to complete our analysis we need to find E[D(G;)], that is, the average degree of
200 Gy. Using a similar argument to the above, we find the following recurrence for the average
20 degree of Gypq:

t+1
211 [ Gt+1 | Gt Zdegt'H ) | Gt
t
212 T it 1E Zdegt +2degyy (t+1) | G
1 (< .
213 = 1 <; deg, (i) +2E [degt-‘rl(t +1) ‘ Gt])

214

(tD(Gt) 4 QE[degt+1(t +1) ‘ GtD = D(Gy) (1 + 2p—-1 _ 2r )) + 2r

t+1 t+1  t(t+1 t+1

215

26 Therefore, after removing the conditioning on Gy:

B 2p—-1 _ 2r 2r
z; E[D(G+1)] = E[D(Gy)] (1 + t+1  tt+ 1)) + t+1
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This is again recurrence of the form (2) that we can handle in a uniform manner as discussed
above.

Finally, we obtain a recurrence which does not refer to any other variable defined over G,
or G11. We can solve this recurrence by using Lemma 10 from the next section and derive
Theorem 2. The proof is given in Appendix C.

» Theorem 2. For Gy ~ DD(t,p,r) and for all t > to we have

CT(t+c3)T(t+ ca)
E[D(Gy)] = F(t);(H- 1) :
L(to)L(to + 1) S LG+ 1
(D(Gto)F(to +c3)[(to + ca) " QTJ;) L +es+ DI +ca+ 1))’

where cg =p+ \/p? +2r, ca =p — /P> +2r, and ['(z) is the Euler gamma function.
Furthermore, asymptotically as t — oo we find

1ET2p(1 +o(1)) ifp< % and r > 0,
2rint (1+ o(1)) ifp=1% andr >0,
_ 1 T(t)T
E[D(Gy)] = { 1271 Gellteet) (1 + o(1))
2Tt03F2[t t0+1it2+1,1 1;1]
D(Gr,) + tgoigzz,_’;f%Jr ifp>3% orr=0,

where D(Gy,) is the average degree of the initial graph G, and

avazas ) _ N (@)i(az)i(ag) 2!
3P T 7Z]_; (b1)i(b2)e 1!

is the generalized hypergeometric function with (a); =ala+1)...(a+1—1), (a)g =1 the
rising factorial (see [1] for details).

As we see, the asymptotic behavior of E[D(G;)] has a threefold characteristic: when p < %
and r > 0, the majority of the edges are not created by copying them from parents, but
actually by attaching them according to the value of r. For p = % and r > 0 we note the
curious situation of a phase transition (still with non-copied edges dominating), and only if
either p > % or 7 = 0 do the edges copied from the parents contribute asymptotically the
major share of the edges.

Finally, we turn to estimations of the tails of the distribution of D(G;). It turns out that
this variable is concentrated in the sense that with probability 1 — O(t~4) it is contained
only within polylogarithmic ratio from the mean.

More specifically, the right tail of the distributions may be bounded as following:

» Theorem 3. Asymptotically for Gy ~ DD(t,p,r) it holds that
Pr[D(G;) > AC log?(t)] = O(t™™)  forp<
Pr[D(Gy) > AC log*(t)] = O(t™")  forp= <,
Pr[D(G;) > ACt* og?(t)] = O(t~*) forp> %

for some fized constant C > 0 and any A > 0.
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23:8 Towards graphs compression: The degree distribution of duplication-divergence graphs

25 Similarly, we have the behavior of the left tail:

x> Theorem 4. For Gy ~ DD(t,p,r) with p > L asymptotically it holds that

254 Pr |D(G,) < %tQP—llog—?’—E(t) =0(t™).

255

w6 for some fized constant C > 0 and any €, A > 0.

27 Note that since D(G;) = O(logt) for p < 3, the bounds of the above form are trivial and
23 not interesting.

250 Now we return to the computation of the expected values of E[deg,(¢)] and E[deg,(s)].
%0 By applying Theorem 2 to Lemma 1 we obtain the following corollary.

1 B Corollary 5. For allt >ty it is true that

IFt+cg— DIt +cq—1)

262 E[deg,(t)] = (pt —p —1)

I(t)?
-2
T(to)T(to+ 1) I(j+1)?
D(G +r,
2 ( ( tO)F(to —|— Cg)F(tO + C4 Zt —|— C3 —|— 1 F( —|— Cy —|— 1)
264
x5 where c3, ¢4 are as above.
266 Moreover, asymptotically as t — oo it holds that
—1_ T(to)T(to+1 .
Pt G D (G ) (1 + 0(1)) ifp<ir=o0.
55 (1+0(1)) ifp<jg,r>0,
267 Eldeg,(t)] = < 2rpInt (1 + o(1)) ifp=1%1,1>0,
T(to)T(to+1) _ . 1
l“(t0+003)1“(0to+c4) t2p 1(1 + 0(1)) ifp> 55
2rto to+1,to+1,1 .
D(Gy, ) + t?+2pt0 2 312 [to+23+1,g0+C4+1 ; 1])

268

00 WIith the same notation as in Theorem 2.

a0 As was mentioned above, the asymptotic expected behavior is similar to the behavior of
o E[D(Gy)].

m We are finally in a position to state the exact and asymptotic expressions for E[deg, (s)].
o This we need to split in two parts: first, for the initial vertices of G, (1 < s < tg) and all
o other vertices (tg < s < t). Note that the first of the theorems may be derived directly from
s Eqn. (3), (using only lemmas from Appendix A) and the second one requires Corollary 5.
as  For the proofs of both theorems see Appendix C.

ar » Theorem 6. For all 1 < s < tg it is true that

(t —+ cl)F(t —+ 02)

278 E[degt (S)} = F(t)

T(to)? LG +1)
d
279 egtU(S)F(to +¢1)T(to + ¢2) Z I'(j+ + DI +ca+1)

280

p+\/p +4r p—\/p2+4r
2

281 where ¢ = , c3 and ¢4 as above.
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Asymptotically as t — oo:

rint (1+ o(1))

['(to)?
7| deg,, (5) Frore )t Tesy
Eldeg,(s)] =
to,to+1,1

T (t0)T (to+1)
+ (t0+c1f1)F(go+C2+1)3F2[

(140(1))

to+er+1,toFeat1)

ifp=0andr >0,

)

ifp>0orr=0.

Here we observe only two regimes. In the first, for the case when p = 0, when edges
are added mostly due to the parameter r, we have logarithmic growth of E[deg,(s)]. In the
second one, edges attached to s accumulate mostly by choosing vertices adjacent to s as
parents of the new vertices, and therefore the expected degree of s grows proportionally to

tP.
» Theorem 7. For alltg < s <t it is true that
L(t+ )Tt + c2)
E[degt(s)} = F(t)2

l(ps—p—r)

I'(s+e3—1I(s+ca—1)
[(s+c1)T(s+ ¢2)

T(to)T(to + 1) 2

Z

(D(GtO) F(to + C3)F(t0 + C4 —

rT(s)? .

rG+1)

I(j+1)° )

F(j+ces+DT(j+ca+1)

Z

+ T(s+c1)T(s+ c2)

where ¢1—c4 are as above.
Asymptotically as t — oco:

(i) for s = O(1)

j—|—01—|—1 (G +ea+1)

I(j+1)?

E[deg:(s)] = tP(1 + o(1))
I(s+cg—1I'(s+cs—1)
(ps—p—r) F(53+ CQF(S—FCi)
L(to)L(to +1) 3
D(Gt”)I‘(tO +03)F(t0 +C4 zt:
rI(s)?
+ F(s + 01)(F)(s + 02) <1 +sh [ €+c1s+sl+€1+102+1 ’ 1]

(ii) for s = w(1) and s = o(t)

[(to)T(to+1)
D(Gto)rzﬂﬂLg3—F(g0+C4)

rlog (%) (14 o
sy (8" +0( )

(4)P s~ (1 +0(1))

E[de =
2r to+1,t0+1,1
D(Gto) + Mﬁ 352 [t0+23+1720+04+1 )
T (to)(to+1) P _
FloreTitter (2) 711+ 0(1))

s
s2+ps—r

)

jHe+DI(G+ca+1)

ifp<—,7‘—0
ifp=0,r>0,
ifO<p<i,r>0,

ifp— s, r >0,

N

ifp>
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307

w8 (iii) fors=ct—o(t), 0 <c <1,

C(to)T (to+1 1 p— .
D(Gro) tlipsenttirent” @ A +oM)  ip<zr=0,
r(1—logc) (1+o(1)) ifp=0,r>0,
Uon s —2) (1+0(1) fo<p<j
c P < 3, T > 0,
w0 Eldeg,(s)] = (563 .
Tlogt(lJro(l)) ifp==1,r>0,
2rt to+1,t0+1,1
( (Gro) + WM3F2[W+23+130+C4+171])
C(to)T (to+1 _ .
310 %t% tebm 1(1 +0(1)) if p> %
3 The theorem above shows that there is a threefold behavior with respect to the range

a2 of s: s small (constant), s medium (growing, but slower than t), and s large (when s is
az  directly proportional to t). In the first case we observe a behavior very similar to the one
ais for 1 < s <ty. In the second case we have a dependency on both s and t depending on the
as  values of p and . When the majority of the edges are created due to the copying (for r =0
as or p > 1), then E[deg,(s)] = © ((£)” s?~!). When the majority of the edges are created
ar due to the random addition (for r > 0 and p < 1), then E[deg,(s)] = © ((f)p) Finally, we
25 observe a phase transition for p = 1, r = 0 with E[deg,(s)] = © ((%)p log s). In the last case,
s the rates of growth of E[deg,(s)] are exactly like for E[deg,(t)]: ©(1), ©(logt) or O(t**~1)
a0 respectively for different ranges of p and r.

321 Note that given the results presented in [19] and [22] we expect the real-world networks
2 to fit the range p > % and r > 0.
33 Finally, we derive the theorems showing the concentration of the quantity deg,(s), given

24 Gg. It is possible to show the following result:

»s B Theorem 8. Asymptotically for Gy ~ DD(t,p,r) and s = O(1) it holds that

Pr[deg,(s) > AC tPlog?(t)] = O(t~*)

Ww
[$1¢)
<o

28 for some fized constant C > 0 and any A > 0.
320 We also prove a respective lower bound:

s0 B Theorem 9. For Gy ~ DD(t,p,r) with p > 0 and s = O(1) it holds asymptotically that

531 Pr |deg,(s) < %t” log ?¢(t)| = O(t™4)

332

s for some fized constant C > 0 and any A > 0.

334 Note that in the p = 0 case, missing from Theorem 9 it is clear that we have with
ss  high probability at least a positive constant fraction of vertices with degree 0, as deg,(t) ~
36 Bin (t, %)

337 Finally, we strongly believe that since deg,(¢) is closely dependent on the degree dis-
ss  tribution in Gy_q, it is very unlikely that for s close to ¢t the analogous bounds with only
s logarithmic factor from the mean for deg,(s) exist.

w 3 Discussion

s In this paper we have focused on a rigorous and precise analysis of the average degree of a
a2 given node over the evolution of the network as well as the average degree. We present exact
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and asymptotic results showing the behavior of important graph variables such as D(Gy),
deg,(t) and deg,(s).

It is worth noting that it is the parameter p that drives the rate of growth of expected
value for these parameters. The value of the parameter r and the structure of the starting
graph Gy, impact only the leading constants and lower order terms.

We note that there are several phase transitions of these quantities as a function of p
and r. However, as demonstrated in [19], it is seems that all real-world networks fall within
a range % < p <1, 7 >0 - and this case should probably be the main topic of further
investigation.

The proposed methodology can be easily extended to obtain variance and higher moments
of the above quantities. Future work may include investigations into both the large deviation
of the degree distribution as well as proving properties of the degree distribution (i.e., the
number of nodes of degree k) as a function of both degree and time ¢. This, in turn, would
allow us to differentiate between the ranges of parameters for which we obtain an asymmetric
graph with high probability and the range where non-negligible symmetry occurs. Estimation
of the graph entropy and the structural entropy would give us a way towards our ultimate
aim: good quality (and efficient) algorithms which would match the entropy for this graph
model.
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A  Useful lemmas

Here we derive a series of lemmas useful for the analysis of the following type of recurrence

E[f(Gnt1) | Gn] = f(Gn)g1(n) + g2(n) (5)

for some nonnegative functions g;(n), g2(n) and a Markov process G,,. It should be again
noted that our recurrences for E[deg,(s)] and E[D(G¢)] (e.g., see (1) and (4)) fall under this
pattern.

First lemma is a generalization of a result obtained in [7], where only the case g1 (n) = 1+2,
a > 0, was analyzed.

» Lemma 10. Let (G,);%,,, be a Markov process for which Ef(Gy,,) > 0 and (5) holds with
g1(n) >0, g2(n) >0 for alln =ng,no +1,.... Then
(if) The process (M), defined by My, = f(Gr,) and

n=ng

T ot S0 11

=ng ] no no

is a martingale.
(ii) For alln > ng

n—1 n—1
Ef(Gn) = f(Gno) [ 91(k)+ D 9205 H g (k

k:no j:no _]+1
n—1 J 1
= k
H g1(k) Z 92(J H 91 (k)
k=ng Jj=no k=ng
Proof. Observe that
n 1 n 7 1
E[M,, G, =E[f(G, Gy — g2(J
[ +1 | } [ ( +1) | ]klz_;[ g1(k‘) j;o 2( )kg() 91(76)
n—1 n—1 J
= f(Gn) Z 92

k‘:no Jj=mno k="o

which proves (i). Furthermore, after some algebra and taking expectation with respect to
G, we arrive at

J

n—1 n—1
B/(G) =50 [T o+ 3 w0) [T - k e

k=ng j=no k:no k no
n—1 n—1 n—1
= f(Gn,) H g1(k) + Z 92(J) H g1(k)
k=ng j=no k=j+1
which completes the proof. |

We now observe that any solution of recurrences of type (5) contains sophisticated products
and sum of products (e.g., see Eqn. (3)) with which we must deal to find asymptotics. The
next lemma shows how to handle such products.
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Towards graphs compression: The degree distribution of duplication-divergence graphs

» Lemma 11. Let Wi (k), Wa(k) be polynomials of degree d with respective roots a;, b;
(i=1,...,d), that is, Wy (k) = [T, (k — a;) and Wa(k) = []%_,(k — b;). Then

Jj=1
n—1 d
11 Wi(k) 11 I'(n —a;) I'(no — b;)
Pt Wa(k) =5 T'(n—bi) '(no — a;)
Proof. We have
n—1 n—1 d d n—1
(k) k— no — b;)
H H(k) H H H H k— H I'(n I'(no — a;)
= k=ng i=1 i=1 k=ng
which completes the proof. <

The next lemma presents well-known asymptotic expansion of the gamma function but
we include it here for the sake of completeness.

» Lemma 12 (Abramowitz, Stegun [1]). For any a,b € R if n — oo, then

'n+a) . fa—b (a—bt1) _
F(n—&-b)in bz< k >Bk a) 0t

c (14 @D (1Y)

where B,(Cl)(x) are the generalized Bernoulli polynomials.

Now we deal with sum of products as seen in (5). In particular, we are interested in the
following sum of products

Z Hz 1 PG+ ai)

J=no 1 1 (j + b; )
with a = Zle a;, b= Zle b;. In the next three lemmas we consider three cases: a +1 > b,
a+l=banda+1<b

» Lemma 13. Let a;,b; € R (k € N) with a = Zle a;, b= Zle b; such that a +1 > b.
Then it holds asymptotically for n — oo that

Hz +ai)_ naberl max{a—b,
Z : (+b)_a—b+1+0(n ! bO})

Jj=mno
Proof. We estimate the sum using Lemma 12 and the Euler-Maclaurin formula [20, p. 294]

Blns o eo(l) - [ (o)

Jno J=no

G B

which completes the proof. |
» Lemma 14. Let a;,b; € R (k € N) with a = Y% a;, b= Y% | b; such that a +1 = b.
Then asymptotically

Hzl +a1)_nn
JZ;O - (]+bi)_l +0(1)
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Proof. We proceed as before
1 1 "1 1
Z l_[Z L +a) _ Z = <1+O<,)> :/ - (1+O<_>>dj:1nn+0(1)
i= no (]+b) j:noj J noj J
which completes the proof. |

» Lemma 15. Let a;,b; €R (i=1,....k ke N) witha=3"_ a;, b=3"_ b; such that
a+1<b. Then it holds for every n € N, that

k
ZHZ 1 ) _ Hi:l F(n+az) k+1Fk|:n+a1;7m’n+a§’1'1
k n+by,...,n+by
nHz 1 (J +bi) [Timi T(n+b;) ' g

where pFy[§; 2] is the generalized hypergeometric function. Moreover it is true that asymp-
totzcally

Bl (o )

Proof. The proof of the first formula follows directly from the definition of the generalized
hypergeometric function. Second formula follows from Lemma 12, as we know that for

n — 00:
B S o () (oo
oG (o 6)
as desired. <

B Proof of Lemma 1

Now we turn our attention to the proof of Lemma 1. We first observe that it follows from
the definition of the model that the degree of the new vertex ¢ + 1 is the total number of
edges from ¢t + 1 to Ni(parent(t + 1)) (chosen independently with probability p) and to all
other vertices (chosen independently with probability 7). Note that it can be expressed as a
sum of two independent binomial variables

deg, 1 (t + 1) ~ Bin (deg;(parent(t 4 1)), p) 4+ Bin (t — deg, (parent(t + 1)), g) .

Hence
Eldeg,,,(t+1) | Gi] = Zt: r(deg, (parent(t + 1)) = k) zk: (f;)pa(l _p)k-a
a=0
t—k , .
2 (t bk) (;)b (1-7) )
= zt: Pr(deg, (parent(t + 1)) = k) (pk + %(t - k))
k=0
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505 = (p - g) Z k Pr(deg,(parent(t + 1)) = k) + r.

506 k=0

507 Since parent sampling is uniform, we know that Pr(parent(t + 1) = i) = 1 and therefore

t

508 D(Gy) = Z Pr(parent(t + 1) = i) deg,(7) Z k Pr(deg,(parent(t + 1)) = k).

500 i=1 k=0

s Combining the last two equations above with the law of total expectation we finally establish
su Lemma 1.

52  C  Proofs of Theorem 2 and Theorems 6—7

sz We start with the proof of Theorem 2. First, we observe that by combining Eqn. (4) with
s Lemmas 10 and 11 we prove the first part of Theorem 1. In similar fashion, the second part
si5 of Theorem 2 follows directly from the first part, combined with Lemmas 13, 14 and 15 for
s the respective ranges of p.

517 Finally, we proceed to the proof of Theorems 6 and 7. First, we apply Lemma 10 with
ss g1(t) =14+ 2 — %5 and ga(t) = % to Eqn. (1) and we obtain aforementioned Eqn. (3). Now
50 'we combine this result with Lemma 11. First, we if we apply it for 1 < s < tg we obtain
s directly the exact formula in Theorem 6.

521 Similarly, for Theorem 7, we get the almost identical formula. The only difference is that
s2  we do not stop the recurrence at Gy,, but at G,:

523 [degt( )} (t i f;()ggt i 62)

t—1

T(s)? (j+1)
(E[degxs)]r(sm e +§;F +cl+1r<]+02+1>)

525

p+\/p +4r p—\/p2+4r
5 .

56  where Cc1 =

527 Now it is sufﬁ(nent to apply Corollary 5 to this equation to get the exact formula for
528 ]E[degt(s)]
529 The asymptotic formulas in Theorems 6 and 7 — as it was in the case of E[D(G})] above —

s are derived as straightforward consequences of Lemmas 13, 14 and 15.

s D Proof of Theorem 3

s In order to prove the theorem we proceed as following: first we provide an asymptotic bound
s on E [exp(Adeg,, (¢t + 1))|G], then we apply it for a suitable choices of A, which allow us
s to use Chernoff bound.

» Lemma 16. For any A\ = O(%) it holds that
E [exp(Adeg,,(t +1))|G] < exp (ApD(Gy)(1+ O(Mt)) + A (1 + O(N))).
Proof.

535 E [exp(/\ degtH(t + 1))|Gf]

% zi: [exp ()\Bin(degt (i),p) + ABin (t — deg, (7), g)) |Gt]
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—_

¢ g, (i) ror t—deg, (i)
537 gg 1—p+p6 (1—¥+¥6)‘) .

538

530 Since ¥ < 1+ z + a2 for all z € [0,1], (1 + )Y <1+ 2y + (vy)? for 0 < 2y < 1 and
s 14 x < e for any x:

sa1 E [exp(Adeg, (t + 1))|G]

t t—deg, (1)
< 1;(1+px(1+0(x))degt<“ (1+ %(1+0( ))>
< 12 1+ pAdeg, (i)(1 + OA)) (14 rA(1 + O(N))
544 < % ; (14 pAdeg, (i)(1 4+ O(At))) exp (rA(1 4+ O(N)))
545 = (1 4+ pAD(G)(1 + O(At))) exp (rA(1 4+ O(N)))
s < exp (ApD(G)(1 4+ O(At)) + Mr(1 + O(N))) .
548 <
549 Now we are ready to finally prove the theorem.

t
550 E [exp (>\t+1D Gt+1 | Gt] = [exp <>\t+1 (H—lD(G ) + — t—|— 1 degtH(t + 1 >) ’ Gt:|

/\t+1t 2>\t+1
552 zexp(t+1D(Gt) E |exp —— deg, 1 (t+1)) | Gy
553 Now we may use Lemma 17 with A = 2;‘?11 to get

554 E [exp ()\tJrlD Gt+1 ‘ Gt] =
27"/\t+1

s o (Ao (1 25 1 00 + T3 o).

556

557 Let us define for k =tgp,...,t —1

2p—1
558 A = Ait1 (1 + ( f+ 1 ) (1 + O()\k;Jrl)))

559

s and let e, > Ag for all k.
561 Then clearly

o e lxt I (2 o T1 (e (2 s om»)]

k=to k=tgo
£\ 271 " (2p—1)(1+0(er))
563 C | A () (1+0(1)), N <) (I1+0(1))
to tO
564
565 It follows that

566 E [exp (A:D(Gy))] < exp (Mg D(Gy)) H ex <2T>\k+1 (1+ o(k_l))>

k=to
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23:18 Towards graphs compression: The degree distribution of duplication-divergence graphs

n n 2res41+C1
s67 < exp (A, D(Gy,)) exp <27’5t+1 In . + C’1> = exp (Ay D(Gy,)) <t)
0

568 0
se0  for a certain constant Cf.

s Finally, let A = & (i

—(2p—1)(1+0(ev)))
to)
sn follows that

so that Ay, < e;. Then from Chernoff bound it

572 Pr[D(G:) > aED(G¢)] = Prlexp(D(G:) — aED(G)) > 1]
573 < exp (—aMED(G,)) E[exp (A D(G4))]

¢ 2rer41+Ch
57 < exp (—aMED(G:)) exp (A, D(Gy,)) (t)

575 0

2p—1
576 Assume €, = m For p > 1 we have ED(G,) = C5 (%) P (1+0(1)), and therefore

2p—1
577 Pr [D(Gt) > OCCQ (;) (1 + 0(1))‘|

0

t —(2p—1)e; ¢ 2re;41+Ch
578 <exp | —aCse; () exp (e(to — 1))) ( )

to to

exp(—2p—|—1)> ( tg—1 )

0 <exp|—als——— |exp| ———— |exp(2r+C

i (et In i72) ) P 2+

s81 The last two elements are bounded by a constant, so it is sufficient to pick o = CAQ exp(2p—

s 1)In%(t) to complete the proof for the case p > 1
583 Now, for p < 1 and p = 3 it is sufficient to use ED(G;) = C2(1+ o(1)) and ED(G,) =
s Calnt(1+ o(1)), respectively.

s E  Proof of Theorem 4

sss  We start the proof by obtaining a simple lemma, analogous to Lemma 16:
» Lemma 17. For any A = O(%) it holds that
E [exp()\ deg, (t + 1))|Gt] < exp (2ApD(Gy)(1 + O(N)) 4+ 2Ar (1 + O(N))) .
Proof.

587 E [exp(Adeg, 4 (t +1))|G{]

t
1 , , . AT
588 =7 ;E {exp ()\Bm(degt (1),p) + ABin (t — deg, (i), ;)) |Gt}
< lzt: (1 - p + pe) (1 -+ feA)tfdeg"(i)
589 =7z - prTp ; p .
590 1=

501 Since e* < 1+ax+a?forallz € [0,1], (1+2)Y <1+2zyfor 0 <y <1,and 1 +x < €*
seo for all o

593 E [exp(/\ degtH(t + 1))|Gf]

t—deg, (1)
(1+ pA(1+ O(N)) &) (1 + Q(1 + O(A)))

S
‘MH

594 <
t

i=1
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(14 2pAdeg,(i)(1 + O(N))) (1 4+ 2rA(1 + O(X))))

A
| =
.M“

1=1

(1+2pAdeg, (1)(1 + O(N))) exp (2r(1 + O(N)))

A
| =
-Mﬂ

=1
(14 2pAD(G)(1 + O(N))) exp (2r(1 + O(N))))
exp (2ApD(G)(1 4+ O(N)) + 2Ar(1 4+ O(N))) .

IN

<

Next, using the lemma above and Theorem 3 we limit the growth of D(G}) over certain
intervals:

» Lemma 18. Let p > % For sufficiently large t and all k < t it is true that
Pr{D(Geriye) — D(Gre) 2 AC((k + 1)~ — k22~ log?(1)] = O(t~4)
for some fized constant C' > 0 and any A > 1.

Proof. First, let us define events B; = [D(Gjy1) > (A +1) C; 3%~ log?(i)] with a constant
C) such that by Theorem 3 it is true that Pr[B;] = O(i~4~'). Let us also denote Ay =
Ugg;tl)t_l B; and observe that Pr[A] = O(t~=4).

Now, we note that from Lemma 16 for any A = o(1)

E [exp (A(D(G41) — D(Gy)))

Gta _‘Bt:l

2\
<E [exp <t+1 deg, | (t + 1)> ’Gu ﬁBt}

2\r

< {exp (%D(Gt)(uou)n 1(1+O()\))>

t+
<exp (A(A+1)Cot?log?(t)(1 + o(1)))

ﬁgt}

for a certain constant Cs.
Now we proceed as following;:
Pr[D(G (r41)1) — D(Grt) = d|Gre]
< Pr[D(G(k+1)t) - D(th) > d‘th, ﬁAk} Pr[ﬁA] + PI‘[Ak]
< exp(~Ad)E [exp (A(D(G41)) — D(Gke)) |G, 7 Ak | +O(t™)
(k+1)t—1

<on(-d) [ B |ew ((DGisr) = DG |Giy 8| + 0
i=kt
(k+1)t—1
< exp(—Ad) H exp (A (A+1)C2i? 2 log?(4)(1 + o(1))) + Ot~ %)
i=kt

(k+1)t—1
< exp(—\d) exp ( > AA+1)CaiP P log? (1) (1 —|—0(1))) + 0t

i=kt
< exp(—Ad)exp (A (A+1) C5((k + 1)*~1 — 2P~ 1) og?(t)) + O(t ™)
for a certain constant Cj.

Finally, it is sufficient to take A = (((k +1)?P~! — k?P71) log2(t))_1 and d = AC,((k +
1)2—1 — 21201 ]og?(t) for sufficiently large Cy to obtain the final result. <
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23:20 Towards graphs compression: The degree distribution of duplication-divergence graphs

620 Now we may return to the main theorem. Let Y}, = D(G r41)¢) — D(Grt). We know that
60 for p > %

EYy = ED(G41y¢) — ED(Gye) = Cy ((k + 1)~ — k2= 1) 2771 (1 4 o(1))

633 for some constant C7.

634 Let now define the following events:
t2p—1
635 A = I:Yk; < ]
ft)
t2p 1 5
636 Ay = |: 70 <Y, <Cy((k+ 1)2p ! k‘2p_1)t2p_1 log (t)

Az = [V > Co((k +1)* 7" — k= 1)t*P~ log?(1)]

e for a constant Co such that (from the lemma above) Pr[A3] = O(t~2). Here f(t) is any
s0 (monotonic) function such that f(t) — oo as t — oo.
641 We know that

642 EY, =E [Yk|A1] Pr [Aﬂ +E [Yk‘AQ] Pr [Az] +E [Yk|A3] Pr [Ag,]
643 EY, > C4 ((k+1)2p71 71621)71) $2r—1
t2p—1
644 E [Yi]|A;1] < 70
E [V As] < Co(k +1)%P71 — 2P~ 1)$2P =1 1og? (1)
646 E [Yk|./43] < (ki + 1)t

647

ss and therefore for sufficiently large ¢ it holds that

Pr{Ay] < Co ((k+ 1)~ — k%=1 log?(t) — Cy ((k + 1)2P~1 — k2P—1)
649

v Co ((k + 1)20=1 — k21 log?(t) — %

650 S 1-— LQ

651 2C5 log*(t)

652 Let now 7 = kt.

653 Pr [D(G-,—) < tzp_lf_l(t)] =Pr

655 =1

6 Therefore, if we assume k = % log®(t), we get

o PP S T

oo and ﬁnally

660 Pr (Gt)

661 L

g7 og PV ()| = 07 ).

62 for some constant C3 and any € > 0.
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A. Frieze, K. Turowski, W. Szpankowski

F Proof of Theorem 8

E [exp (Aes1degyyq(s)) | Gi] =

_ <degt(5)p + t — deg(s) T) exp (Ar41 (degy(s) +1))

t t t
N (dgt() (1-p)+ L2080 (1 ;‘)) exp (s 1 degy(s))
= exp (Ai41 degy(s))
(B 1= gt pexp (o) + E5E (12T Tenp () )

< exp (Ar41 degy(s)) (1 + (pdegt(s) +1 - degt(s))) (M1 + )‘t2+1)>

4 t2

oo (Amdegt(S) . (pdegt(s) LTl degt(S))> (e + Am))

4 2

= exp (/\t+1 deg,(s) (1 + (E - L) 1+ >\t+1)>> exp </\t+1 (14 Aty1) g) .

t t2

Let us assume that A\ <e; =0(1) for all s <k <t¢. Then for all k =s,s+1,...,t we

have

Ak = Akt1 (1 + (% — %) (1+ )\k+1)> < Agkt1 (1 + (% — %) (1 +€t)>

which lead us to

As < )\ttl:[l (1 + (% — %) (1 +€t>) < At exp ((1 +e)
k=s

t—1

k=s

(G-7))

< A\sexp <(1+€t)/: (Z_l;dk)) = A\ exp <(1+€t) (pan—H‘C—i)))

t p(1+€t) r
<A\ <> exp (; 1+ st)) .

S

It follows that
t—1

E [exp (Ar degy(s)) [G] < exp (s deg, () [ exp (Mt (14 M) 1)

k=s

t

< exp e () x (= 1+ 0y rin ) < xp (1, e (9) <>(+)

Now, let \; = & (ﬁ)_p(lﬁt)exp (=% (1+¢&)) so that A\, < €.

bound it follows that

Then, from Chernoff

Prdeg,(s) > aE deg,(s)|Gs] = Prlexp(deg,(s) — aEdeg,(s)) > 1|Gs]

< exp (—aXE[deg,(s)|G;s]) Elexp (A: deg,(s)) |Gs]

< exp (~aNEldeg,()16.) exp (A, e 5) (-

t>rst(1+st)

Let’s assume &, = 7. Recall now from Theorems 6 and 7 that if s = O(1), then it holds

that E[deg,(s)|Gs] = C1t? and therefore

Pr[deg,(s) > aC1t?|Gs] < exp (—anett_pE‘) exp (ex deg,(s))) (t

req(1+ey)
9
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695 < exp (—ﬁ’) exp (delgr:is)) exp (2r)

696

eo7 for certain constants Csy, Cj.
698 Therefore, it is sufficient to set o = c% In®¢ to get the final result.

w G Proof of Theorem 9

0 We proceed similarly as in the proof of Theorem 4:
m > Lemma 19. Let p > 0 and s = O(1). For sufficiently large t and all k < t it is true that

e Prldeg(s) — degy(s) > AC((k + 1)? — k)P log? ()] = O(t*)

703

wa  for some fized constant C > 0 and any A > 1.

s Proof. Let us define events B; = [deg,,(s) > (A + 1) C; i" log*(i)] with a constant Cy such
26 that by Theorem 8 it is true that Pr[B;] = O(i=4~!

707 Now, for any A = o(1) it holds that

1
)

w E {exp (Mdegy,, (s) — deg,(s))) ‘Gt, ﬁgt}

deg, (s t — deg,(s ror
700 = [ g;( )(1 —p+pexp(N\)) + fgt() (1 — + 7 exp()\)) _|Bt:|
pdeg,(s) | r(t —deg(s))
710 < exp (( tt + 2 t ()\ + )\2)
m < exp (AM(A+ 1) Cy ptP~ " log?(t) (1 + 0(1))) .
73 Let us now denote Ay = Ul(»i-;tl)t_l B; and observe that Pr[Ay] = O(t~4). We proceed
na  similarly to the proof of Theorem 4:
s Pr[deg(k_i_l)t(s) — degy(s) = d|G]
716 < Prldegj11y(s) — degy,(s) > d|Gre, 7 Ax] Pr[-A] + Pr[Ay]
< exp(~Ad)E [exp (Adeg1):(5) — degye(s))) [Gra ~Ap| + 00
(k+1)t—1
718 < exp(—Ad) H E [exp (A(deg, ;1 (s) — deg,(s))) ’Gi, ﬁBi] + 0@t
i=kt
(kt1)t—1
<exp(-Ad) [ exp(A(A+1)CriP og®(i)(1+0(1))) + O(t*)
i=kt
(h+1)t—1
720 < exp(—Ad) exp Z MA+1)CriP Mog? () (1 +0(1)) | +O@tH)
i=kt
2 < exp(—Ad) exp (A (A + 1) Co((k + 1)P — kP)tPlog?(t)) + O(t ™)

73 for a certain constant Cs.
724 Therefore, it is sufficient to take A = (((k + 1)? — kP) log2(t))_1 and d = AC3((k+1)P —
s kP)tP log?(t) for sufficiently large C to obtain the final result. <

~
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A. Frieze, K. Turowski, W. Szpankowski

Now we return to the proof of the main theorem. Let Z;, = deg(kﬂ)t(s) — deg,,(s). We

know that for p > 0

EZy = ED(G(ri1y) — ED(Gre) = C1 ((k +1)P — kP) (1 + o(1))

for some constant C1.
Let now define the following events:

Az = {ft(t) < Zk < Co((k +1)P — kP)tP log?(t)

As = [Z), > Co((k + 1)P — k)P log®(t)]

for a constant Cy such that (from the lemma above) Pr[A3] = O(t~2). Here f(t) is any

(monotonic) function such that f(t) — oo as t — oo.
We know that

EZ, =E [Zk|./41] Pr [.Al] +E [Zk;'AQ] Pr [.AQ] +E [Zk‘.Ag] Pr [./43]

EZ, > Cy ((k+ 1)P — kP) 22!
2p—1

t
E[Z;]A4] < m

E[Z1]Az] < Co((k + 1) — kP)tP log?(t)
E[Zp|As] < (E+ 1)t

and therefore for sufficiently large ¢ it holds that

Cy ((k+1)P — kP)log*(t) — Cy ((k +1)P — kP)

PrA,] < !
) < Co ((k +1)P = k») log*(t) — 715

Cq
2C5 log*(t)

Let now 7 = kt. Then,

Pr[D(G,) <t f~!(t)] =Pr

ﬂYist(t)]sH

i=1
: 3
Therefore, if we assume k = % log®(t), we get

Pr |D(G:) < s | = e (-Alog(e) = 0

and finally

Pr {D(Gt) < %tp log_3p_5(t)} =0@t™").

for some constant Cs and any € > 0.

(1
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