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1 Introduction

We consider a simple model of an agent (which we call a spider) moving between the nodes of
a randomly growing web graph. It is presumed that the agent examines the page content of the
node for some specific topic. In our model the spider makes a random walk on the existing set of
vertices. We compare the success of the spider on web graphs of two distinct types. For a random
graph web graph model, in which new vertices join edges to existing vertices uniformly at random,
the expected proportion of unvisited vertices tends to 0.57. For the comparable copy-based web
graph model, in which new vertices join edges to existing vertices proportional to vertex degree, the
expected proportion of unvisited vertices tends to 0.59.

A web graph is a sparse connected graph designed to capture some properties of the www. Studies
of the graph structure of the www were made by [5] and [12] among others. There are many models
of web graphs designed to capture the structure of the www found in the studies given above. For
example see references [1], [2], [3], [4], [6], [7], [8], [9], [10], [11], [13], [14], [15], [16], [17], [18], [20],
[21] and [22]. for various models.

In the simple models we consider, each new vertex directs m edges towards existing vertices, either
randomly (random graph model) or according to the degree of existing vertices (copy model). Once
a vertex has been added the direction of the edges is ignored.

There are several types of search which might be applied to the www. Complete searches of the web,
usually in a breadth first manner, are carried out by search engines. Link and page data for visited
pages is stored, and from the link data an undirected model of the www can be constructed. This
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model may be replaced when a new search is made at a future time period or may be continously
updated by a continuously ongoing search. Such processes require considerable on-line and off-line
memory.

Another possibility, requiring less memory, is a search by an agent (sniffer, spider) which examines
the semantic content of nodes for some specific topic. This type of search can be made directly on the
www or on a (continously updating) model of the www stored by a search engine. Typical search
strategies might include: moving to a random neighbour (sampling pages for content), selecting
a random neighbour of large degree (locating the hub/authority vertices of the search topic) or
selecting a random neighbour of low degree (favouring the discovery of newer vertices during the
search).

In this paper we consider the following abstract scenario. We have a sequence (G(t),t =1,2,...) of
connected random graphs. The graph G(t) is constructed from G(¢ — 1) by adding the vertex ¢, and
m random edges from vertex ¢ to G(t — 1). We refer to such graphs as web-graphs. See references
(1], 121, [3], [5], 8], [9], [12], [16], [17], [18], [20] and [21] for various models of this and related types.

There is also a spider S walking randomly from vertex to vertex on the evolving graph G(t).

The parameter v, we estimate is the expected number of vertices which have not been visited by the
spider at step t, when t is large. This process is intended to model the success of a search-engine
spider which is randomly crawling the world wide web looking for new web-pages.

To be more precise, we consider the following model for G(t). Let m > 1 be a fixed integer. Let
[t] ={1,...,t} and let G(1) C G(2) C --- C G(t). Initially G(1) consists of a single vertex 1 plus
m loops. For ¢ > 2, G(¢) is obtained from G(¢t — 1) by adding the vertex ¢t and m randomly chosen
edges {t,v;},i=1,2,...,m, where

Model 1: The vertices vy, vs,..., v, are chosen independently and uniformly with replacement
from [t — 1].
Model 2 The vertices vy, v2, ..., v, are chosen proportional to their degree after step t — 1. Thus
if d(v, 7) denotes the degree of vertex v in G(7) then for v € [t — 1] and i = 1,2,...,m,
d(v,t —1)
Pr(v; =v) = ———~.
rlvi =v) =5 o)

While vertex ¢ is being added, the spider S is sitting at some vertex X; ; of G(t — 1). After the
addition of vertex t, and before the beginning of step ¢+ 1, the spider now makes a random walk of
length ¢, where £ is a fixed positive integer independent of ¢.

It seems unlikely that at time ¢, S will have visited every vertex. Let vy, (t) denote the expected
number of vertices not visited by S at the end of step t.

We will prove the following theorem:
Theorem 1. In either model, if m is sufficiently large then, as t — oo,
L d(s,) 1 ¢
vn®~2 3 (1 -0 (10 (R))) . 1)
O

We have said that m is fixed. We however have to accept errors of order 1/m and so in our
asympotics we let ¢ — oo first and then take m large.

Let

t
Me,m = lim 7Vl,m( )
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We will show that this gives the following limiting results for the models we consider.

Theorem 2. Let 1y = limy, o0 Ne,m, then

(a) For Model 1,

2 2 o0 2
e = 1| 2 et/ (40) / V12 gy,
¢ (e+2)/v2E

In particular, ;1 = 0.57---, and ng ~ 2/¢ as £ — oo.
(b) For Model 2
N = e£2€2/ y3e7Y dy.
’

In particular, ;1 = 0.59---, and np ~ 2/¢ as £ — oo.

O

Thus for large m,t and £ = 1 it is slightly more difficult for the spider to crawl on a web-graph
whose edges are generated by a copying process (Model 2) than on a uniform choice random graph
(Model 1).

2 Proof of Theorem 1: The main ideas

We first consider the case where £ = 1 and then generalise this case. When ¢ = 1 the spider makes
a random move to an adjacent vertex after vertex ¢ has been added. The construction of G(t) is
really the construction of a digraph D(t) where the direction of the arcs (z,y) satisfies z > y. The
space G(t) of graphs G(t) induces its measure from this space of digraphs.

Let Q(t) denote the set of pairs (G(t), W(t)) where G(t) € G(t) and W (t) belongs to the set Wga(¢)
of t-step walks taken by the spider S which are compatible with the construction of G. Among other
things, this means that the 7-th vertex of G(t) visited by the walk must be in [7].

The main idea of the proof is as follows. We fix a vertex s and estimate the probability that it is
not visited by the end of step . Thus for s < 7 < t we define the events

As(1) = {w € Q(t) : Vertex s is not visited by S during the time interval [s, 7]}

Let
to =t — 100(Int)>.

It is convenient to condition on the sequence d(s, 7) for 7 = s,s+1,...,t5. Let 0 = (6, : 1 <7 <)
be integers satisfying

6 =--=60,=m<0, <6, <Al =10(Int)® and 0,1 <0, +5 for T < o (2)

and let ® = {6 : (2) holds}.

Let
D(O) ={(G(t),W(t)) € Q) : d(s,7) =0, s < T < t},

and for some event C let Pro(C) = Pr(C | D(0)) be the probability of the corresponding condi-
tional event.

‘We will show



Lemma 1. In both Model 1 and Model 2,

Pr(| ) D(0))=1-0(t ).

0cO®

O

Let

B Int
7= 100InInt
and let
B, ={s €[t/Int,t]: s is within distance g of a cycle of length at most o¢}.
Let
Gi(t) ={G(t) : |Be| <t7/%}.
We will prove that
Lemma 2. If 0 € ® then, in both Model 1 and Model 2,
Pro(G(t) ¢ G:(1)) = oft ™).

O

We then prove

Lemma 3. Ifs € [t/Int,t), s ¢ B: and 0 € ©, then

(a) y

Pro(Au(t) | Au(t— 1)) = 52 (140 (&) + Ot *)Pro(As(t— 1))
0
(b)
Pro(A,(s)) = 1 - O(s7).

O

(We condition on 6 in order to avoid some conditioning of the degree d(s,tp) due to assuming

As(to).)
From this we prove Theorem 1 as follows: If 8 € ® and s € [t/Int,t], s ¢ B, then

64,
2mt

Pro(As(t)) = (1 — (1+0 (#))) Pro(A(t — 1)) + O(t73).

We see then that if @ € ® and s € [t/Int,t), s ¢ B; and if 70 = 7 — 100(Int)3,

Proa(t) = I (1-52(+0(2) ®
T=5+1
t 0, )

1The O notation ignores polylog factors.



Note that we can go from (3) to (4) because 6, = 6., except for at most 100(Int)3A} instances.

Thus absorbing the cases where 8 ¢ © into the error term, (see Lemma 1), summing out the
conditional probabilities over degree sequences, we get that for s € [t/Int,t), s ¢ B,

pria) = Sere@) [ (1- o (1+0(3))

2mr
T=8+1

=B 1 (-7 nvoay).

T=s+1

Note that the contribution of s € [1,¢/Int]U B; to the expectation v, (t) can only be o(t) and (1)
follows. o

3 Proof of Theorem 1: The details

We emphasise that s > t/logt throughout and that m is a sufficiently large constant.

3.1 Proof of Lemma 1: Model 1

The degree d(s,t) of vertex s in G(t) is distributed as
m+ B(m,(s+1)"")+---+B(m,t ") (5)
where the binomials B(m, ) are independent.

Lemma 4.

(a) Pr(A(G(t)) > 2mInt) = O(t?)
where A(G(t)) is the mazimum degree in G(t).

(b) Pr(37: d(s,7+1) —d(s,7) > 5) = O(t™%).

3.2 Proof of Lemma 1: Model 2

Lemma 5.

(a) Pr(d(s,t) > 10(Int)5) = O(t3).
(b) Pr(3r: d(s,7+1) —d(s,7) > 5) = O(t3).
Proof (a) In order to get a crude upper bound on d(s,t), we divide the interval [s,t] into

sub-intervals using the points (nearest to) s,se'/®, ...se"/%, ..., se¥/8. Here selk~1/8 < t < [5ek/8],
so that £ < 8lnlnt, as s > ¢/Int.

Suppose that, at the start of T, = ([se™/®], [se("t1)/8]] we have an upper bound d(r) on the degree
of vertex s. We prove that if d(r) > 101Int then d(r + 1) < 2d(r) with probability 1 — o(¢~3).



Now as long as the degree of s is < 2d(r), the number X, of edges acquired at step 7 € I, is
dominated by B(m,d(r)/(m(m — 1))), so that the number of edges gained during this time has

expected value

< 2d(r)Inel/® = @

Thus, by Chernoff bounds, provided d(r) > 101nt,

Pr(d(r +1) > 2d(r)) < Pr <Z B(m, d(r)/(m(r — 1)) > d(r)) < (Z)d(r) — o(t™?)

T€l,
and thus d(r + 1) < 2d(r) with probability 1 — o(t=3). Choosing d(0) = 101Int, we see that
d(s,t) < d(0)2F < d(0)(Int)* = 10(Int)5.

This proves (a). For (b) we use (a) and the fact that d(s,7+ 1) —d(s, 7) can then be dominated by
B(10(Int)5, (2m7)1). O

3.3 Proof of Lemma 2: Model 1

Fixt/Int <i; <---<i5 <tandlet I ={i,...,i5}. We estimate Pr(I C By).

For each partition P of I into parts Ay, ..., Ax we consider the event

Ep ={3 small cycles Cy,...,Ck and paths P,,v € I such that
(1) |Ci|, | Py| < o9 for all ¢,v.
ii) If v € A; then P, joins v to C; UJ P,

wEA;,w<v ~ W

wEA;, w<v P"U’

(
(iii) P, is edge disjoint from and shares one (endpoint) vertex with C; U |J
(

iv) The k collections C;, P,,v € A; are pair-wise vertex disjoint. }

Thus {I C By} C Up Ep and

m

< —_—

Prgp) < Y. ] o (6)
Cl,...,CIk (m,y)EF*

P, v

where F* denotes the edge set of |JC; U |J P,. The term max{z.y] 18 @ bound on the probability

of the existence of edge (z,y) given the appearance or absence of other edges, not incident with
max{xz,y}.

Thus

where V* denotes the vertex set of | C; UJ Py, less I,

() (s




Thus

£ ((20) -

| Bt
Pr(|By| > t7/%) < M =o(t™3).

and

O
3.4 Proof of Lemma 2: Model 2
For this model we replace 5 by 10 and let I = {iq,42,...,410}. Let
Go(t) = {G(t) : d(s,t) < 2m+/t/s(Int)? for all 1 < s < t}.
It is shown below, see Lemma 11a, that
Pr(G(t) € Go(t)) =1 — Ot 1),
Therefore, we replace (6) by
2m(Int)? [max{z,y} 1
Pr(&p |Gt eGat) < Y ] \/ :
OroiCh () EF max{x,y} \| min{z,y} Pr(G(t) € Ga(¢))
vy VE
2m(Int)?
< 2 Z H 1/2 1/2
C1,...,Ck (z,y)EF*
P, ve
4
2m(Int)? 10 209 [t 2m(Int)?
< (O (X
=1 \v=1
5(t_23/5).
Thus we have B
B ((|16|>) _ 6(t—10) +6(t10_23/5) _ 6(t27/5)
and
E (|Bt|)
Pr(|B;| > t7/8) < w =o(t™3).
(10)
O

3.5 Proof of Lemma 3
3.5.1 Rapidly mixing walks
We now consider the random walk made by the spider S. A random walk on an fixed undirected

graph G is a Markov chain (X;), X; € V associated to a particle that moves from vertex to vertex
according to the following rule: The probability of a transition from vertex v, of degree d, to vertex



w is 1/d if v is adjacent to w, and 0 otherwise. Let m denote the steady state distribution of the
random walk. The steady state probability mg(v) of the walk being at a vertex v is,

me(v) = 4qG) (7)

where d(v) is the degree of v and d(G) is the total degree (i.e. sum of the degrees) of the graph G.

We will need a finite time approximation of the probability distribution 7y pertaining to a random
walk on a subgraph H = G(t) — s of G(t). We obtain this by considering the mizing time of the
walk based on a conductance bound (11) of Jerrum and Sinclair [23].

Let s,t be fixed with s € [ﬁ,t) \ B;. Let P denote the transition matrix of the random walk on
H. Let P%™ denote the distribution of the 7th step of a random walk on H which starts at vertex
i. For K CV(H) =[t]\ {s} let K =V (H)\ K and

ZieK,jef 7TH(i)P("aj)'

®x = T2 (K)

It follows from (7) that
e(K : K)

= Tam)

where e(K : K) is the number of edges from K to K, and d(K) is the total degree of vertices in set
K.

The conductance of the walk is defined by

®(s,t) = min Pk
mr(K)<1/2

Let
Gs(t) = {G(t) 2 B(s,t) > ﬁVS € [t/lnt,t]} .

Lemma 6. If @ € O then, in both Model 1 and Model 2,

Pro(G(t) ¢ Ga (1) = oft™?).

3.5.2 Proof of Lemma 6: Model 1

Since d(K) < 2m|K|+ e(K : K) it suffices to prove a high probability lower bound on e(K : K), in
both models.

Lemma 7. )
Pry (@(s,t) < ﬁ) =o(t™?).
Proof For K C [t] let d(K,t) = Y .k d(s,t). Then
Pr(3K C [t]: |K| > 3t/4 and d(K,t) < (1.1)mt) = o(e™ ™) (8)

for some absolute constant ¢ > 0.



To see this let K C [¢] with |K| = k = 3t/4. Then

t
E(d(K,t)) > E(d(ft—k+Lt,t)) =mk+m Y s=(t=k)
s=t—k+1
3 1
>2mk —m(t —k)In(t/(t —k)) = (2 ~ 1 ln4> mt > (1.15)mt.
Applying Theorem 1 of Hoeffding we see that

t '
Pr(3K C [t]: |K| > 3t/4 and d(K,t) < (1.1)mt) < <3t/4> e o™
for some absolute constant ¢’ > 0. This completes the proof of (8)

Now for K, L C [t]\ {s}, let (K : L) denote the number of edges of G(t) which have one end in K
and the other end in L (we only use this definition for L = K = [t] \ (K U{s}) and L = K).

It follows from (8) that with probability 1 — o(t=3)

. e(K : K) —5|K]| . e(K : K) — 5|K]|
®(s,t) > min —- > min —. (9)
n(K)<1/2m|K|+e(K : K) ~ |K|<3t/am|K|+e(K : K)

(e(K : K) —5|K| bounds the number of K : K edges in H,(t) and then observe that the degree sum
of K is at most m|K|+e(K : K).)

We prove the following high probability lower bound on e(K : K). Together with (9) this proves
the lemma. o
Pro(3K : e(K : K) < m|K|/150) = o(t™?). (10)

Suppose K C [t], k= |K|and Yx = e(K : K). Let k = 2vkt and K_ = KN[x] and K. = K\ K_.
Case 1: |K_| > 3k/7.

t—ak/7—1
3(m — 5)k/T _ 3(m — 5)k t—1
Eo (Yi) > > 1 .
o (Vi) 2 ; rrak/7 = 7\t 4k/T

Explanation: Consider the > ¢t — k — 4k/7 — 1 vertices of [t] — [«] — {s} — K. Each chooses at
least m — 5 random neighbours from lower numbered neighbours (plus themselves) and the sum
minimises the expected number of these choices in K_. The 5 comes from 6., —6; <5 for 8 € ©.

Applying Theorem 1 of [19] we obtain

13mk t—1 Kk + 4k /7 P
Pro(Yx < Eg (Yx)/2) < —= \ =\ :
ro(Yi < G(K)/)—exp{ 8 7 n(m+4k/7)} ( t—1 >

So,

Pro(IK : |K_| > 3k/7, |K| < 3t/4 and Yk < E (Yk) /2) <

k
3t/4 " K+ 4k /7 3mk/56  3t/4 te [k +4k/T 3m/56
2 ) (o1 2% (o <
= \k t—1 =\ k t—1

3t/4

s k(1 4 3\ *
—_ — — — — — 73‘
(5 (Vi GE) )



This yields (10) for this case.

Case 2: |K_| < 3k/7.

Assume first that k£ > 1000. Now let Zx denote the number of edges from the set W of [k/15] lowest
numbered vertices of K which have their lower numbered endpoints also in K. Zk is dominated
by B(m[k/15],+/k/t) since there are at most 3k/7 + [k/15] < k/2 vertices of K below any vertex
w of W and there are at least k vertices in all below such a w. We use Yx = ¢(K : F) >M—Zk
where M = (m — 5)[k/15]. For |K| < t/1000 we write

£/1000 ' o\ M/2
Pro(3K : 1000 < |K| <t/1000, Zx > M/2) < > (k)QM (t) <
k=1000
£/1000

£ () e

k=1000
For |K| > t/1000 we use Chernoff bounds and write, for some absolute positive constant ¢ > 0

3t/4
t
Pro(3K : £/1000 < |K| < 3t/4, Zx > IM/10) < 3 (k)eCM ot ).
k=t/1000

For |K| < 1000 we can write

1000 3mk/28
t mk 1000
Pro(3K : KK>m4<§: = o(t73).
ro oK, K) 2 3mk/4) < 1 (k'> <3mk/28) <t1/2> o(t™)

Note that if e(K, K) > 3mk/4 then at least 3mk/4 — 3mk/7 of these edges must have one end in
K,.

This completes the proof of (10). O
3.5.3 Proof of Lemma 6: Model 2

Lemma 8. There is an absolute constant & > 0 such that

Pro(3K C [t] — {s}, |K| > (1 - &)t: d(K,t) < (1+&)mt) = o(t™).

Proof Let ¢ be a small positive constant and divide [t] into approximately 1/{ consecu-
tive intervals Iy, I, ... of size [(t] plus an interval of t — |1/{|[¢t]. We put a high probability
bound on the total degree d(I;,t). Now consider the random variables B,k = 1,2,... where
Br = d(I1, k[¢t])/(m[(t]).- Now 1 = 2 and conditional on the value of Sy
1
(Be+1 — Be)m[(t] is dominated by B <m rctl, p ’“2;: )

It follows that we can find an absolute constant ¢ > 0 such that

3
< — )} < ememet,
Prg <ﬂk+1 < Bk (1+ 4k)> <e
So, with probability 1 — O(e~°™¢t) we find that
e,
d(I,t) < 2m[¢t] [ (1 i 4k> < 2m[Ct] x 411/ < 6m( /e,

k=1

10



for small enough (.

Now d([[(t]],t) dominates d(L,t) for any set L of size [(t]. So, if m > 1/(c() then the probability
there is a set of size [(t] which has degree exceeding 6m('/4 is exponentially small (< ([Ctﬂ)e_t))'
In which case, every set K of size at least ¢t — [(t] has total degree d(K,t) > 2mt — 6m('/*t and
the lemma follows by taking ( sufficiently small. m|

Lemma 9. If m is sufficiently large then
Pro (®(t) < — ) = 0(t9)
r — | = .
0 Int

Proof For K C [t], |K| = k we say K is small if Int < k < ¢t and K is large otherwise, where

c=e"8.

3.5.4 Case of K small

Let K_ = KN |[vVkt]and let K, = K\ K_.

Case of |[K_| > k/2.

Let X; = X;(K_) be the number of those edges directed into K_ from vertices created after
time v/kt. The number of such edges generated at step 7 > vkt dominates B(m — 5,mq/(2mr)),
independently of any previous step. (Here ¢ = |K_|). Thus

t
(m—5)¢g _(m—5)g ¢t
E(X;) > Z 5r = ) In E(l—i—o(l)).
T>\/H
Hence . .
mq q
< 2m-)< ——2in-
Pr(Xt lnk>_ep( 731 k)
Thus

)
-
A/~
LLl
>
IS
~—
8
N
A
|
_
—
|
—
|
~~
3
o~
~—
|
2|3
—
x| o+
~—

A\
@
]
ko)
|
S
/-~
3
w
—
=}
|
—
=}
S
Do
®
_
N~
N——
N——

< t*

k
12
of which at most mk/2 are incident with K. This completes the analysis of this case.

provided m is sufficiently large. Thus whp the set K_ has at least 2% Int/k edges directed into it,

Case of |K | > k/2. We consider the evolution of the set K| = {uy,uy,...,u,} fromstep T' = vkt
onwards. Assume that at the final step ¢ there are §k edges directed into K from K. We can assume
w.lo.g. that § < m/10, for otherwise there is nothing to prove.

The number Y;,; of K : K edges generated by vertex u;i; is a Binomial random variable with

expectation at most
2mk + 0k

i1 =m .
Hi+1 2mt; 4

The numerator in the above fraction is a bound on the total degree of K.

11



If Z=Z(K4)=Y}_, Y; then

E(2) 2mk + ok <l+ +1>

< 5 0 o
2mk + 0k r

IN
—_
o
(S8

Thus, for a > 0,

Pr (3K, : Z(Ky) > ak) i (t) (m>ak

<

- s r Vkt x ak
o k

< k 3mkl/2 te

- atl/? k

< ¢

if a =m/4, k < ct and m is sufficiently large. We have therefore proved that for small values of &
there are at least mk/2 — mk/4 out-edges generated by K not incident with K on the condition
that § < m/10, completing the analysis of this case.

3.5.5 Case of K large

Let T = t/2 and let ct < |K|,|K| < (1 — &)t where £ is as in Lemma 8. Let M = [T] and
N=[T+1¢. Let K =KNM, K, = KNN, ¢g=|K_| and r = |[K;|. We calculate the
expected number of edges u(K_,K;) of L = (K4 x (M \ K_))U ((N\ K;) x K_) generated at
steps 7, T' < 7 < t which are directed into K. At step 7 the number of such edges falling in L is an
independent random variable with distribution dominating

mq T—q)m
1T€N\K+B(m—5,%>+17.6K+B(m—5,%>.
Thus
(m —5)q 1 (m-=5)(T-gq) 1
wK-_,Ky) = Z ;‘i‘f Z .
TEN\K+ T€K+
m—>5 1 1
= 5 |&-n > ;—l—(T—(k—r))Zf
TEN\K 4 TEK

Let u(k) = ming_ x, u(K_,K,). Then 'somewhat crudely’

1 t
Z - Z lnT+
TEN\K+T r
1 t
> 1w,
T€K+T -7

Thus




Putting £ = xt and r = pt we see that

u(k) > —5—g(x, p)
where
_ 1
g(n,p)—(m—p)ln1+2p+(§—N+p)ln1_p.
We put a lower bound on g:
2
pggimpliesn—pzgandsog(n,p)z§In1+§.
So we can assume that p > £/2. Then
1-— 2
n—p§T§ implies g(n,p)zgln2_§.
1-— 1-— 1-— 2
K—p> 2§andp§T£ implies  g(k, p) > 2§In2_£
_ 1—
K—p> 6andp>T£ implies &k >1-—¢.

We deduce that within our range of interest,
(k) > nmt
for some absolute constant 7.

Let Z be the number of edges generated within L, so that Z counts a subset of the edges between
K and K. Then

zte—nmt/S

IN

1
Pr (EIK_,KJr CN:ZzZ< 5nmt>

< e—nmt/lO

Recall that m is sufficiently large. This completes the proof of the lemma, except for very small
sets K.

For sets K of size s < Int we note that, as G(t) is connected, the conductance ®x is always
Q(1/|K]).- O

3.6 Proof of Lemma 3: Continued

Define
G1(t) N Ga(t) N Ga(t) Model 2
We apply the main result of [23].
) d2\ "
Pir(w) - mato) < (1- 5 ) T (1)
2 Tmin

where iy = min, 7g(v).
Using (11) and Lemma 6 we see that with po = 10(Int)3, whp

[P (v) — mh (v)] = O(¢™) Vo € [t]\ {s}. (12)

13



We are glossing over one technical point here. Strictly speaking, (11) only holds for Markov chains
in which P(z,z) > 1/2 for all states z. To get round this one usually makes the walk flip a fair coin
and stay put if the coin comes up heads. In our case we also omit to add a new vertex if the coin
is heads. So what we have been describing is the outcome, ignoring those times when the coin flip
is heads.

For the moment, we fix some 0 € ©® and assume that t/Int < s < t.

Now by definition tg = ¢t — 10po and we define

I = [to+1,t—1]

J = {o€l: 3relsuchthat X, =0}

& = {X-#s,7el}

& = {3,jeJ: X;=jand j has a neighbour in {X, : o € [to,? — 2]}}
Fr = {UI=k k20
For = {|J[ >k} k>0

and write

Pro(X;=s|As(t—1)) =
> Pro(X; =s| Xy =w,G(to) = G, &0, As(to) Pre(Xs, = w,Glto) = G | As(t — 1))+

GeG(to)
we(to]\{s}

Pro(X; =s5,G(to) € G(to) | As(t —1)). (13)
It follows from Lemma 6 that
Pro(X: = 5,G(to) ¢ G(to) | As(t—1)) = o(t’3Prg(As(t - 1))’1). (14)

To deal with the rest of (13) we write
PI'g(Xt =S | Xto =w, G(to) == G, go,As(t())) = PI'g(Xt =S | Xto =w, G(to) = G,go)
1
= Pro(X; =s| Xy, = w,G(to) = G, €0, Fi)Pro(Fi | X, = w,G(to) = G, &)
k=0
+ Prg(Xt =S | Xto =w, G(to) =G, 80,.7:22)131‘0(]:22 | Xto = ’w,G(to) =G, 50) (15)

Given w, G(tp), conditioning on B def &y N Fy is “almost” equivalent to S doing a random walk on
G(to) — {s} starting at w. In fact we get

Lemma 10.

PI‘@(Xt =S | XtO = w, G(to) = G, B) =

o e, 22, 2 (P ) ) (140 ()

YyEN (s;to)

where N(s,t9) denotes the set of neighbours of s in G(to).

Proof We emphasize that throughout the proof of this lemma, a graph G € G(to) is fixed as
well as X;, = w. All probabilities are conditional on this, even if not stated explicitly. The only
randomness in the graph G(t) itself is due to new vertices.

14



Let
M = {Av € [tg],v # s: v has more than five neighbours in I}.

Then in both models

1/2 2\ 8 _
Pro(M | Glto) = G) < |1° (2”“0(1‘”0)> — O(t3). (17)

mto

Fix y € N(s,tp) and let Wi(y) denote the set of walks in H = G(tg) — s which start at w, finish at y,
are of length Ao = t —to = 100(Int)3 and which leave N* exactly k times where N* is the (random)
set of neighbours of I U {s} in G(t). Let Wi, = U, Wi (y) and let W = (wp, w1, ..., wx,) € Wi(y).
Let

P _PI‘g(Xg(i):wi,’izo,l,...,)\o|M)

W Pre(Xp(i) =wii=0,1,...,h)
Here X¢(i),7 =0,1,..., Ao is the sequence of vertices visited by S at times tg,to + 1,...,¢ and we
will use Wg = Wy, ¢ to denote this walk. We let Xg (i), = 0,1,..., o is the set of vertices of H
visited by a random walk Wg = Wy, g on H with start vertex w.

k
12pwz(m—_5) :
m

(18)

Then

This is because a vertex can have at most 5 edges joining it to s and then

Pl‘g(Xg(i) = w; | Xg(’i — 1) = wifl,./\/l) > % w;_1 € N*.
PI‘g(XH(Z):w,L |XH(Z—1):1.U.L,1) :1 W;—1 ¢N*
Furthermore,
Prg(B | M) = Z Z PI‘g(Ww’G(/\o) =W | M)
k>0 WEW,
= Z Z pwPro(Wy, m(Ao) = W)
k>0 WeEW;,
m—5\"
> i
> Son ("0
k>0
where

Pk = Z PI‘g(WH()\o) = W) = PI‘g(WH()\()) c Wk)
WeEW;

We will show later that
po+p1+p2>1—0(m™") (19)

which immediately implies that

2
Prg(B | M) = po + p1 (1 - E) + p2 (1 - i) >1-0(m™).
m m

Now write
Pro(Xe(ho) =y |B,M) = > > Pre(Wa(ro) =W | M)Prg(B| M)~
k>0 WeWs (y)
= > Y pwPro(Wu(he) = W)Pre(B| M) .
k>0 WeW(y)

15



Now if
Pro(Wru € Wi(y))

Py = Pro(Xa(ho) = y)
= Pro(Wg(Xo) leaves N* exactly k times | Xg(Ao) = v)
then we have
k
m—5 PI‘g(XG()\()) =Yy | B,M) 1
< <P . 2
kE>0pk,y ( — ) S Pre(Xn0u) =3) - ro(B | M) (20)

We need to be careful about probability spaces here. Let N# denote the the set of neighbours of I
in G(to). In our conditional probability space, the px,, are now to be thought of as random variables
dependent on N#.

We will show later that
Pro4(poy +P1y + P2y >1-0(m™")) =1-0(t"/?). (21)
where Prg 4 stresses that IV # is randomly chosen.

So, from (20), we obtain

5\’ _
Pro(Xn(30) =) (1 ) Prosny + 1+ pmy 2 1- 0(m™)) <

Pro 4 (Xg(ho) =y | B,M) <
Pro(Xu (o) = y)(1+0(m™))
or using (17)

‘PI‘@(XG(/\O)::U|B’M) _1‘ :0(1).

Pro(Xg(Mo) =) m
Therefore
Pro(Xg(ho) =y |B,M) = (1+0(m™"))Pre(Xa(Xo) =y)
Pro(Xg(ho) =y, B,M) = (1+0(m™"))Pre(Xn(ho) = y)Pre(B, M)
or ) )
Pro(Xa(o) = 4,B) + O(t™%) = (1+0(m™")Pra(Xa(h) = )(Pre(B) + O(t™%) (22
Now we will show later that 1
Pro(B) > > (23)
and (11) implies
d(y,to) — &
Pro(Xp(Xho) =y) = % +O0(t3) =™
mto
where 1 < ¢, <5 is the number of (s,y) edges in G(ty). So from (22) we have

PI‘g(Xg()\o) =Y | Xto = waG(tO) =G, B) = (1 + O(m_l))d;yT,:z)

Thus,

— d(y to) 1

— — — — 1 )

Pro(X,=s| Xy =w,G(to) =G, B) =(1+0(m™"))Eg ( GNE( " oty d(y,t))
Y $,to

+O(m ) Pre(X; 1 € N(s,t — 1)\ N(s,tp))-

16



And then Lemma 10 follows from
Pro(X,_1 € N(s,t — 1)\ N(s,1)) = O(¢t2), (24)

which will be proved below.

3.6.1 Proof of (19,21)

Clearly (21) implies (19). We therefore start with (21). Observe first that N# the set of neighbours
of I in G(to) satisfies

Pr(Wg(Xo) N N# £ 0) = O(t~Y/?). (25)
To see this we use the fact that the walk is defined on H and N# is independent of H. We also

need an upper bound of O(¢'/2) for maximum degree in G(t) and this follows from Lemmas 4(a)
and 11(a).

Since N* = N# U N(s,to) we only have to show now that the probability that Wy leaves a vertex
of N(s,tp) three times or more is O(m~!). Furthermore, this event depends on G(tp), which is fixed
and not on G(t).

Given G € G(ty) and W = Wg(Xo), the total degree of the vertices of W is O(t*/2) in Model 2. In
Model 1 we would have O(t!) for the RHS of (25).

Now let W(a, b,v) denote the set of walks in H from a to b of length v and for W € W(a,b,~) let
Pr(W) = Pr(W,,u(y) = W). Then for z € V(H) we have

Pr(W1)Pr(W3)
Pr(Xun(h/2) = 2 | Xun(h) =y) = Sy DR
WieEW(w,z,A0/2) Pr(W(w’ya)‘O))
WaeW(z,y,X0/2)
~1 Z Pr(Wl)ﬂ'm,HPl‘(Wg)

- 7rz,H
W1ieW(w,z,X0/2) Pr(W(w7ya/\0))
WaEW(2,9,20/2)

and with W3 equal to the reversal of Wy,
: Pr(W:)Pr(Ws)
1
= ’Il”z’Hﬂ'y’H Z IS Vil SRV
WieW(w,z,Xo/2) PI‘(W(’w, Y, )\O))
WsEW(y,z,)\o/Q)
1

= Tl b, 2, 00/2) PE(W(, 2, Mo/2)

o Pr(W(waya)\O)) e o
-1

__ TamTyH ot M))?

= pr(W(w,y,Ao))(“’” o)

= ﬂ-z,H —_— O(t723)-

It follows that the variation distance between the distribution of a random walk of length Ag from
w to y and that of Wy, Wieversed js O(t=22) where W;, W3 are obtained by (i) choosing = from the
steady state distribution and then (ii) choosing a random walk W from w to z and a random walk
W3 from y to . Furthermore, the variation distance between distribution of W; and a random walk
of length X\/2 from w is O(t 2%). Similarly, the variation distance between distribution of W3 and
a random walk of length ) from y is O(¢ 2%).

Now consider W; and let Z; be the distance of X (i) from s. We observe that since s ¢ By, C B,
while the walk is within oy of s the distance to s must go up or down in one step and that
1
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We will deduce from this that, where Ny (s) is the set of G(¢y) neighbours of s,
Pr(W; or W3 make a return to Ng(s)) = O(1/m) (26)

and this together with (25) implies (21).
To verify (26) we first see that

>\0/2 oo+k
2%k 1
k=0
< )iﬂ (o0 + 2k)e ootk
= &= \(m—-5)(00 +k)
< X2(2e/(m —5))°° (27)

Then we have

Prg(3i>0: Z2i21,1<Zl,ZQ,...,Z27:_1 SO’(]lZO:].)S
2 1\ 2\’ 2
i —_— ) =—. (2
Z(i)(m—S) <Z<m—5> m—7 (28)
>0 >0

Equation (26) follows from (27) and (28).

3.6.2 Proof of (23)

This follows from Pr(& | X;, = w,G(ty) = G,Fy) = 1 — O(m~1), and this follows much as in the
proof of (21). In particular, we see that if a walk in G starts at w # s ¢ B; then the probability it
visits s in g steps is O(m ). Then we will see that Prg(Fy | X;, = w,G(tg) = G) = 1 —o(1) (see
(29) below). In the proof below we condition on & but the proof is valid without this conditioning.

This completes the proof of Lemma 10. o

We will next argue that

Pro(For | Xt = w,G(to) = G, &) = O@F) k=1,2 (29)
Pro(X; =s| Xy, =w,G(to) = G, &, F1) = O@t™). (30)
Eo (d(y,t) — d(y,t0)) = O(t™/?). (31)

It follows from (13)-(16) and (29)—(31) that

O+,
2mt

Pro(X; = s | Xy, = w,G(ty) = G, &) = <1 +0 (%)) +O(t3Prg(As(t —1))71).  (32)

and removing the conditioning on X, = w, G(tp) = G yields Lemma 3a.

For part (b) we see that X, = s if and only if [i] s chooses X,_; as one of its m neighbours and
then [ii] S moves to s. If we condition on X, 1 = z and d(z,s — 1) = d then Prg([i]) < %
2 1

and Prg([id] | [i]) < 2 (we write < 2 in place of the more natural T

more than once). This proves part (b).

to account for z being chosen

18



3.6.3 Proof of (29)

Let us generate X;,7 € I using as little information about the edges incident with I as possible.
Thus, at step i we first establish whether any of ¢tg + 1,...,7 are neighbours of X;_;. If the answer
is NO, we do not determine these neighbours. Thus up to the first time we get the answer YES,
the conditional distribution of the neighbours of ¢g,%y 4+ 1,...,7 is that they are chosen from a set
of size t — o(t) either randomly (Model 1) or from the same set with probabilities proportional to
degree (Model 2). Let J; = {YES at ¢ and X; € {to + 1,...,4}}. If d(X;-1,7) = d then

Pr(Yi | d) = O (|1| : % - é) _0 <@) : (33)

Since F>1 C U,;c; Vi we have (29) for k = 1.

Now assume that i; is the first ¢ for which }; occurs and that X;, 1 = j;. Arguing as in the first
paragraph of this subsection, we see that the conditional probability that }; occurs for i > 1, with
Xi,—1 = ja # j1 is also O(t~!|I]) and this completes the proof of (29).

3.6.4 Proof of (30)

Let J = {j1} and let j; be visited for the first at time ¢;. If t; < to+5 x 103(Int) then we can view
the walk from time ¢; onwards as a walk of length > 5 x 10°(Int) on the graph H' = H + j;. Using
(12) for H' we can argue, as in the proof of (16) that the conditional probability X; = s is O(t™1)
as required.

Suppose next that t; > to + 5 x 10°(Int).

We write

Pro(Xt =S | Xto = ve(tO) = G1 8())-7:1) -
PI‘o(Xt =S | Xto = waG(tO) = Ga 507gl,fl)Pr(El | th = w,G(tO) = G, go,fl)+
PI'g(Xt =S | Xto = w,G(to) = G,go,gl,fl)Pl'(gl | Xto = ’w,G(to) = G, 50,.7:1).

Observe that Pr(&; | Xy, = w,G(ty) = G,&,F1) = O(t=3/2). Use (33) plus an extra O(t1/2)
factor for the extra neighbour(s).

So now assume that & does not occur and let ky = Xy, 1. Suppose first that k1 #= Xy, 1 so
that k; is chosen from a set of size t — o(t). Model 1: If v € [to] \ {s} then its steady state random
walk probability 7 (v) is at least 1/(2t9) and the probability that k; = v is at most twice this. It
follows that in any subsequent step of a simple random walk, the probability S is at v is at most
27 (v). At this point we are conditioned on & and F; has no further effect. Thus we are essentially
conditioned on B which has probability at least 1/2. Thus the probability S ever returns to j; is
O(t~Y|I]). Failing this, by considering the vertices visited after the last visit to /; we deduce that
the probability we arrive at a neighbour of s, at time ¢ — 1 is also O(t~!) and (30) follows.

Model 2: Now if v € [to] \ {s} its steady state random walk probability 7(v) is asymptotically equal
to the probability it is chosen as k; and we can use the analysis for Model 1.
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Now let £ be the last time that j; is visited before time ¢ We first deal with the possibility that
to=t—1and j; € N(s,t —1). We first argue that
Pr(INN(s,t—1)#£0]|J] =1,Xs, = w,G(to) =G, &) <
Pr(INN(s,t —1) #0| Xy = w,G(to) = G, &) x Pr(|J| =1| Xy, = w,G(ty) = G,E&) ™!
=0@t™). (34)

This is because

Now let t2 be the last time that j; is visited before time ¢ Let k; be the unique neighbour of j; on
our walk. If k; is never visited, or if each visit to k; is the middle of the sequence of visits ji1, k1, j1
then S’s walk is essentially a random walk on H and we can argue as in (16). If there is a visit to
k1 at time ¢ say, and Xy, 11 = l; # ki then [; will have been chosen from a set of size ¢t — o(t).

3.6.5 Proof of (31)

This follows from the fact that in Model 2, the maximum degree in G(t) is O(t'/2) whp, see e.g.
[16]. For Model 1 the maximum degree is O(Int) with sufficiently high probability.

3.6.6 Proof of (24)

We first observe that _
Pro(|N(s,t — 1)\ N(s,t0)| > 2) = O(t™?)

and so we only need to consider the case N(s,t — 1) \ N(s,t9) = {y1} where y; € I.

If y; —to < 5o then we can prove Prg(X, 1 =y | X,, = w’,...) = O(t™') essentially by replacing
to by y1. If y1 — to > Bup then either (i) there exists u € I such that X, = Y7 or (ii) we can
coindition on X, # yi,u € I and proceed as for (16). Finally note that the probability of (i) is
O(t™') by the argument for (16).

3.7 (>1

We follow the above analysis and note that the degrees do not change during the spider’s walk and
that error estimates do not increase (no new vertices are added).

4 Proof of Theorem 2

4.1 Model 1

Theorem 3.

2

1
Ene,m=(1+0(m‘1))/ exp ((m+%)lnw+2%(1‘“’2£")> da-
0
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ne = \/§e<e+2)2/(4e) / = e 22 4z
¢ (6+2)/v/3E

Thus, when £ =1, n; = 2/7e®/*(1 — ®(3/+/2)) where ®(z) is the standard normal cumulate. Thus

m ~ 0.5717.... Purthermore, as £ — 0o, 1y ~ 2/%.

Proof We write d(s,t) as
d(s,t) =Xs + X1+ + Xp + -+ X,

where X, = m and for 7 > s, the X; = B(m, -15) are independent.

Now
t d(, ) t 1 T
>y - ylvx
T=8 T=8 r=s
t t 4
- 2o ()
‘1 ¢ 1
Thus

e
~—
o | =
J|»
S|
/~
+
Q
/~
| —
N———
N———
N———
~
Il I
) @
o]
ko) Lol
| |
/N TN
[ =
+ +
Q Q
/N TN
3= S+
N————
N——  ~—
I\D‘ S
~ N
¥~ 19
3 w
IIM‘* QU
w [§D/gﬂ\
s 3|5
=3 N——
o~
~
)
N——

Then we can write

Now
t r A X t r A1 Xp
E (_) 2m _ E (_) 2m
II(; IIE (;
r=s r=s
A1 t 2 m
S\ 2 1 1 T\ zm
- O IO e )
(t) H ( r—1+r—1 t )
r=s+1
A1 2 A1
2 =
= (1+40(1)) (7> ’ exp{mlns—l—m (1— (f)z )}
t 1 t
Thus

Vv
—~
=
+
o
~—~
=
N—r
N—r
o~
S—

2
a
]

o
VS
N

3
+
0|2
N——
—
+
y""

2>
/N
=
|
8
N
e
N——
~
Y
8

I/g,m(t)

<1+O(%>)t /01 exp((m+§> lnz+2%(1—m%)> da.
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Replacing A1 by A2 to get an upper bound, we deduce that

Vem(t) = <1+O(%>>t/01 exp((m+§> lnz—i-# (1—w2m>> dz.

The values of this integral are easily tabulated. For ¢ = 1 they quickly reach a value of about 0.57
as m grows. The approximation is accurate to the second decimal place for m > 4.

As m — oo, by using the transformations x = e ¥ and z = /¢/2y + (I + 2)/(v/2£) we obtain
e L+2 l
Sy S ) d
/) exp < 2 ) 4y > Y
\/5 (£+2)%/(46) /°° —22/2
= —e e dz
¢ (e+2)/v/2E

e

2
ENEN

. 2 _ 2
since e” /2f:°e V' /2dy ~ 1/ as & — .

4.2 Model 2

Theorem 4. -
Ne = 62%2/ y3e7Y dy.
¢
When € =1, m; = 0.59634.... Furthermore, as £ — oo, 1y ~ 2/¢.

Lemma 11.

(a)
Pr(3s,t: d(s,t) > 200m+/t/s(Int)?) = O(t 7).

(b) Ift/Int < s <t and r < 2m+/t/s(Int)?) then
e =men = ("7 )7 o0 Gf)r (o (=) +0(%)

1
Proof (a) Fix s < t and let X, = d(s,7) for 7 = s,s+ 1,...,¢t and let A = (%tl) t2. Now
conditional on X, = z, we have

X‘r+1 = X‘r + B (ma L)

2mTt
and so
B(M X =a) = (150 We*)m
< exp{)\x (1+)\+)\2)}
- ew{ie (14 1“)}
Thus

E () <E (exp{ ( s *) }) .
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If weput Ay =X and A1 = A (1 + %) then provided A\s < 1 we will have
E (e/\Xt) S em)\s‘

Now provided A, < A = ﬁ we can write

1+ A
AHSAT(H + >

2T
and then
: 1+A
A < )\Tl_[:S (1 + ;T )
< 10A(t/s)'/?
which is < A by the definition of A.
Putting u = 200m(t/s)'/?(Int)? we get
Pr(X,>u) < ™t~
< exp{A(10m(t/s)"/? —u}
< 19

and part (a) follows.

(b) Let 7 = (71, ...,7,) where 7; is the step at which the transition from degree m + j to degree
m+ j+ 1 occurs. Let 79 = s and let 7,41 = t. Let p(s,t,7: 7) = Pr(d(s,t) = m+r and 7). Then

T

p(sit,rom) =[] [ ®s(m) |1 (1—%>m ;

j=0 Ti<T<Tjy1

where &3 = 1 and

o, = (1+0 () m(m +j — 1) <1_m+j_1)m1'

2m7'j 2m7'j

In the above and in the following we use the fact that 7; > s > (m + r)° and r = o(s'/2).

Now
m+j>’” m+j (1 (m+j
I1 1—- -7 = exp|-——— Y =10 2
'rj<T<Tj+1( 2mT 2 7 <T<Tj4+1 T T
. t- >
_ exp<_m2+ﬂ (logﬁ'l+0<m+3>>>
Tj 75
m+j
_ i\ °® (m+4)?
a (Tj+1> (1+O( Ti >)
Thus
Pr(d(s,t) =m+r) = Zp(&tﬂ" i)
T
where
. _ (m4r)? m(m—i—l)---(m—i—?‘—l) S mﬂii L
o tor7) = (140 (22)) . ()" e @
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Now

= - a([Gee(R)
- (+o(s >>2—.<f .

The result follows. O

>

5)-
5

S

Assuming the same conditions on 7, s as in Lemma 11b, define

p(s,t,r) = f[ exp (-e%) .

T=8

As in the proof of Lemma 11 let d(s,t) = m + r and let 7 = (74, ..., 7»-) denote the transition steps
of d(s,t) from m to m + r. As before, let 79 = s and 7,11 = t. Let p(s,t,7 : T) be the value of p
given T.

Then
I < m+J
p(s,t,r:T) = exp —%Z Z —
j=0 TJ'ST<TJ‘+1
£ i(m +3) (1o lyo
Pl 2. j) (log L o
£
— (1 +0 (M)) (f) 2 tf'rf/2m7_1£/2m”‘7_ £/2m
S t T .
Thus, combining p(s,t,r : 7) with p(s,¢,7 : 7) from (36) and summing over T we have
Ep(s,t,r) = Y p(s,t,7:7)p(s,t,7: 7)
T

_ (1+O(M)) (;)(WH)/? (m—i—:—l) = tr(l—i-f/m)/z ZH (1 e/m)/2

\ (1+e/m)/z
m+r)?2 m+r—1 1-0
- (1+0(%)+0(W))( r )(%}LW)

Thus summing over r we get

E p(s,1) = (1+0(1)) Lt :
p(s,t) = 0 — .
’ 14 L ( )(1+€/ )/2
Thus, using the transformations, z = s/t and y = £/+/z, we find
t Y m
. E vp m(t) . 1 14 =
mlgmoo - mlémoo t Z Tln +£/m)/2
st t doo b e\ 4 £ (z)

as required.
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5

Extensions and further research

There are some natural questions to be explored in the context of the above models.

o It should be possible to extend the analysis to other models of web-graphs e.g. [12], [16]. In

principal, one should only have to establish that random walks on these graphs are rapidly
mixing.

One can consider non-uniform random walks. Suppose for example that each v € [t] is given
a weight A(v) and when at a vertex v the spider chooses its next vertex with probability
proportional to A(v). If A(v) = >y, A(v) (N(v) denotes the neighbours of v) then the
steady state probability 7(v) of being at v in such a walk is proportional to ©(v) = A(v)A(v).
Again, once one shows rapid mixing it should be possible to obtain an expression like (1) for
the number of unvisited vertices.

We have only estimated the expectation of the number of unvisited vertices. It would be
interesting to establish a concentration result.
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