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Abstract

Let A be a 0/1 matrix of size m × n, and let p be the density of A (i.e., the number of ones divided by m · n).
We show that A can be approximated in the cut norm within ε ·mnp by a sum of cut matrices (of rank 1), where the
number of summands is independent of the sizem ·n of A, provided that A satisfies a certain boundedness condition.
This decomposition can be computed in polynomial time. This result extends the work of Frieze and Kannan [16] to
sparse matrices. As an application, we obtain efficient 1 − ε approximation algorithms for “bounded” instances of
MAX CSP problems.
Key words: approximation algorithms, regularity lemma, matrix decomposition, cut norm, random discrete structures.

1 Introduction and Results
For many fundamental optimization problems there are NP-hardness of approximation results known, showing that
not only is it NP-hard to compute the optimum exactly, but even to approximate the optimum within a factor bounded
away from 1. For instance, in the MAX k-SAT problem it is NP-hard to achieve an approximation ratio better than
1 − 2−k [20]. Furthermore, it is NP-hard to approximate MAX CUT within better than 16/17 ≈ 0.94118 [20, 25]
(which can be tightened to ≈ 0.87856 under a stronger hypothesis [21]).

Frieze and Kannan [16] showed that the situation is much better for dense problem instances. For example, if
G = (V,E) is a graph on n vertices of density p = 2n−2|E|, then its MAX CUT can be approximated within a
factor of 1 − ε in time poly(exp((εp)−2) · n). Hence, if p > δ for some fixed number δ > 0, then this algorithm has
a polynomial running time. Similarly, if F is a k-SAT formula with at least δ2k

(
n
k

)
clauses (i.e., at least a constant

fraction of all possible clauses is present), then the maximum number of simultaneously satisfiable clauses can be
approximated within 1− ε in polynomial time for any fixed ε > 0.

The key ingredient in [16] is an algorithm for approximating a dense matrix A by a sum of a bounded number of
“cut matrices”. Applied to the adjacency matrix of a graph, this yields the aforementioned algorithm for MAX CUT.
∗Supported by DFG CO 646. Research done while visiting Carnegie Mellon University.
†Supported by Royal Society Grant 2006/R2-IJP.
‡Supported in part by NSF grant CCF0502793.

1



Moreover, an extension of this matrix algorithm to k-dimensional tensors yields the approximation algorithms for
dense instances of MAX CSP problems. To explain the matrix decomposition, let us consider a 0/1-matrix A of size
m× n, and let 0 ≤ p ≤ 1 be the density of A, i.e., the number of ones in A divided by m · n. A cut matrix is a matrix
D such that there are sets S ⊂ [m], T ⊂ [n] and a number d such that the entry Dij is equal to d if (i, j) ∈ S × T and
0 otherwise. We denote such a matrix by D = CUT(d, S, T ), and observe that cut matrices have rank one. The cut
norm of a m× n matrix M = (Mij)i∈[m],j∈[n] is

‖M‖2 = max
S⊂[m],T⊂[n]

|M(S, T )| , where M(S, T ) =
∑

(s,t)∈S×T

Mst.

Frieze and Kannan proved that for any A and any ε > 0 there exist cut matrices D1, . . . ,Ds such that

‖A− (D1 + · · ·+ Ds)‖2 < ε ·mn,

where s ≤ cε−2 for a constant c > 0. Indeed, such a decomposition can be computed in time ε−2 · poly(mn) (or even
in “constant” expected time O(ε−2 · polylog(1/ε)) by sampling). Hence, if p ≥ δ for some fixed δ > 0, i.e., if A is a
dense matrix, then setting ε′ = εp we can use this algorithm to find a decomposition of A within ε ‖A‖2 = ε ·mnp
efficiently by a sum of at most cε′−2 = c(εp)−2 ≤ c(εδ)−2 cut matrices. The crucial point here is that the number of
cut matrices is bounded independently of the size m · n of A.

The goal of the present paper is to extend this result to sparse matrices, where the density p of A is no longer
bounded below by a fixed number. Thus, in asymptotic terms, we are interested in p = o(1) as m,n → ∞. Clearly,
in this case the bound c(εp)−2 on the number of cut matrices in the decomosition guaranteed by [16] is no longer
“constant”, but grows with the size m · n of A. Of course, we cannot expect to obtain the same results in the sparse as
in the dense case for arbitrary sparse matrices; for in the light of the aforementioned hardness results this would imply
P=NP. Hence, our main result is that even in the sparse case a 0/1 matrix A (or, more generally, a k-dimensional
tensor) can be approximated in the cut norm by a sum of cut matrices with a number of summands independent of
m, n, and p, provided that A satisfies a certain boundedness condition. This condition basically requires that A does
not feature relatively large, extraordinarily dense spots. In addition, we shall use these decomposition results to obtain
(1− ε)-approximation algorithms for instances of MAX CSP problems that have a suitable boundedness property. As
we shall see, in a sense these results mediate between the “average” and the worst case analysis of algorithms.

1.0.1 Outline.

In this section we state our results and discuss related work. Section 2 contains a few preliminaries, and in Section 3
we present the algorithms and their analyses for decomposing matrices and graphs. Further, in Section 4 we deal with
k-dimensional tensors. Then, in Section 5 we apply the tensor algorithm to approximate MAX CSP problems. Finally,
Section 6 contains a few examples, which link our results to the “average case” analysis of algorithms.

1.1 Approximating 0/1 matrices
Let A be a 0/1 matrix of size m × n and density p. Given C, γ > 0, we say that A is (C, γ)-bounded if for any two
sets S ⊂ [m] and T ⊂ [n] of sizes |S| ≥ γm, |T | ≥ γn we have

A(S, T ) =
∑

(s,t)∈S×T

Ast ≤ C · |S| · |T | · p. (1)

In words, for any two sufficiently large sets S, T the number A(S, T ) of ones in the square S×T must not exceed the
number |S| · |T | · p that we would expect if S, T were random sets by more than a factor of C.

Theorem 1 There is an algorithm ApxMatrix, absolute constants ζ, ζ ′ > 0, and a polynomial Π such that the
following holds. Suppose that 0 < ε < 1

2 , C > 1. Let

κ =
ζC2

ε2
and γ = γ(ε, C) =

ζ ′ε

210κC
. (2)
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If A is a (C, γ)-bounded 0/1 matrix, then in time κ ·Π(m ·n), ApxMatrix(A, C, ε) outputs cut matrices D1, . . . ,Ds

such that s ≤ κ and ‖A− (D1 + · · ·+ Ds)‖2 ≤ ε ‖A‖2 .

We emphasize that the upper bound κ on the number of cut matrices depends only on C and ε, but not on the size of
A or the density p. Moreover, while for the sake of similicity we assume that ApxMatrix is given the boundedness
parameter C as an input, this can easily be avoided by performing a binary search (details omitted).

Given the 0/1 matrix A and partitions S of [m] and T of [n], we define a matrix AS×T as follows. If s ∈ S ∈ S
and t ∈ T ∈ T , then the corresponding entry (AS×T )s,t equals |S|−1|T |−1A(S, T ). Hence, on each square S × T
the matrix AS×T is constant, and the value it takes is just the average of A over that square.

Corollary 1 There is an algorithm PartMatrix and a polynomial Π that satisfy the following. Suppose that ε, C >
0, let κ, γ be as in (2), and assume that A is a (C, γ)-bounded 0/1 matrix of size m× n. Then in time 2κ · Π(m · n)
PartMatrix(A, C, ε) computes partitions S of [m] and T of [n] such that ‖A−AS×T ‖2 ≤ 2ε ‖A‖2 . The number
of classes in each partition S, T is at most 2κ.

1.2 Weak regular partitions of graphs
Let G = (V,E) be a graph on n vertices, and let 0 ≤ p ≤ 1 be such that |E| = n2p/2; we refer to p as the density of
G. Moreover, we assume that V = [n]. In addition, let A = A(G) be the adjacency matrix of G. Then we say that G
is (C, γ)-bounded if A has this property. Thus, if G is (C, γ)-bounded, then for any two sets S, T ⊂ V of size at least
γn we have eG(S, T ) ≤ Cγ|S||T |p, where eG(S, T ) is the number of S-T -edges in G.

We call a partition V of V a weak ε-regular partition of G if ‖A−AV×V‖2 ≤ ε ‖A‖2 = 2ε|E|. Hence,
if, for instance, S, T ⊂ V are disjoint sets of vertices, then the number A(S, T ) of S-T -edges is within 2ε|E|
of AV×V(S, T ). As we shall see below, this definition is related to the notion of regular partitions introduced by
Szemerédi.

Corollary 2 There is an algorithm WeakPartition and a polynomial Π that satisfy the following. Suppose that
C > 1, 0 < ε < 1

2 , and let κ, γ > 0 be as in (2), and let G = (V,E) be a (C, γ)-bounded graph on n vertices. Then
WeakPartition(G,C, ε) computes a weak 4ε-regular partition of G in time 22κ ·Π(n). This partition has at most
22κ classes.

1.3 Approximating k-dimensional 0/1 tensors
A k-dimensional tensor is a map M : R1 ×R2 × · · · ×Rk → R, where R1, . . . , Rk are finite index sets. Moreover,
extending the matrix case in the obvious way to k dimensions, we say that a tensor C : R1 ×R2 × · · · ×Rk → R is
a cut tensor if there exist sets Si ⊆ Ri for i = 1, 2, . . . , k and a real number d such that

C(i1, i2, . . . , ik) =

{
d if (i1, i2, . . . , ik) ∈ S1 × S2 × · · · × Sk
0 otherwise.

In this case we write C = CUT(d, S1, . . . , Sk). Further, we define the cut norm of a tensor as

‖M‖2 = max
Si⊆Ri

|M(S1, S2, . . . , Sk)|, where M(S1, . . . , Sk) =
∑

(s1,...,sk)∈S1×···×Sk

M(s1, . . . , sk).

Let A : R1 ×R2 × · · · ×Rk → {0, 1} be a 0/1 tensor. Set k1 = bk/2c. Then lettingR = R1 ×R2 × · · · ×Rk1
and C = Rk1+1 ×Rk1+2 × · · · ×Rk, we define a (2-dimensional) matrix B = B(A) : R× C → {0, 1} by

B((i1, i2, . . . , ik1), (ik1+1, ik1+2, . . . , ik)) = A(i1, i2, . . . , ik). (3)

We say that A is (C, γ)-bounded if B(A) has this property.
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Theorem 2 There are an algorithm ApxTensor, a polynomial Π and a constant Γ > 0 such that the following is
true. Suppose that C > 1 and 0 < ε < 1

2 . Let

γ = exp(−Γ(C/ε)2).

If A : R1×R2× · · · ×Rk → {0, 1} is a (C, γ)-bounded 0/1 tensor, then ApxTensor(A, C, ε) outputs cut tensors

Di = CUT(di, S1
i , . . . , S

k
i ) (S1

i ⊂ R1, . . . , S
k
i ⊂ Rk)

for i = 1, . . . , s with s ≤ (ΓC/ε)2(k−1) such that

‖A− (D1 + · · ·+ Ds)‖2 ≤ ε ‖A‖2 .

Moreover,
∑s
i=1 d

2
i ≤ (Cp)2Γ2k. The running time is (2(C/ε)2 + (C/ε)3k) ·Π(|R1 × · · · ×Rk|).

If R1, . . . ,Rk are partitions of R1, . . . , Rk, then we define a tensor AR1×···×Rk : R1 × · · · × Rk → [0, 1] as
follows: if ti ∈ ρi ∈ Ri for i = 1, . . . , k, then we set

AR1×···×Rk(t1, . . . , tk) =
A(ρ1, . . . , ρk)∏k

i=1 |ρi|
=

∑
(v1,...,vk)∈ρ1×···×ρk A(v1, . . . , vk)∏k

i=1 |ρi|
.

In words, on every rectangle ρ1×· · ·×ρk made up of partition classes ρi ∈ Ri the entry of AR1×···×Rk is the average
of A over that rectangle.

Corollary 3 There are an algorithm PartTensor, a polynomial Π and a constant Γ > 0 such that the following is
true. Suppose that C > 0 and 0 < ε < 1

2 . Let γ = exp(−Γ(C/ε)2). If A : R1 × R2 × · · · × Rk → {0, 1} is a
(C, γ)-bounded 0/1 tensor, then PartTensor(A, C, ε) computes partitionsR1, . . . ,Rk of R1, . . . , Rk such that

‖A−AR1×···×Rk‖2 < ε ‖A‖2 .

Each of the partitionsRi consists of at most exp((ΓC/ε)2(k−1)) classes. The running time is bounded by[
exp((ΓC/ε)2(k−1)) + (C/ε)3k

]
Π(nk).

1.4 More General Coefficient Values
It is not absolutely necessary to assume that our matrices and tensors are 0/1 valued. For convenience, we will only
describe the case where A is an m× n matrix (i.e., 2-dimensional). It will be apparant how to generalise the results to
higher dimensions.

We can in fact assume that our coefficient entries are in {0, 1, 2, . . . , d} for some positive integer d = O(1). We
write A = A(1) + · · · + A(d) where A(r)(i, j) = ~1Ai,j≥r/d for r = 1, . . . , d. Let p be the density of A(1) i.e. the
proportion of non-zero values. We assume that A(1) is (C, γ)-bounded, with γ = γ(ε/d, C) as in Theorem 1. Then
A(2), . . . ,A(d) have the following property: if S ⊂ [m] and T ⊂ [n] are sets such that |S| ≥ γm and |T | ≥ γn, then
A(j)(S, T ) ≤ C|S × T |p (j = 2, . . . , d). Therefore, we can apply the algorithm ApxMatrix from Theorem 1 to
each of these matrices and replace each A(i) by a sum of cut-matrices that is within cut-norm εmnp/d of its cut-norm.
The sum of these cut-matrix approximations is then within εmnp cut-norm of A.

1.5 An approximation algorithm for bounded MAX CSPs

Let V = {x1, . . . , xn} be a set of n Boolean variables. A (binary) k-constraint over V is a map φ : {0, 1}Vφ → {0, 1}
that is not identically zero, where Vφ ⊂ V is a set of size k. For an assignment σ ∈ {0, 1}V we let φ(σ) =
φ(σ(x))x∈Vφ . Further, a k-CSP instance over V is a set F of k-constraints over V , and we define

OPT(F) = max
σ∈{0,1}V

∑
φ∈F

φ(σ).
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We let Ψ = Ψk be the set of all 22k−1 non-zero maps {0, 1}k → {0, 1}. Let ψ ∈ Ψ and let φ : {0, 1}Vφ → {0, 1}
be a k-constraint, where Vφ = {xi1 , . . . , xik} with 1 ≤ i1 < · · · < ik ≤ n. Then we say that φ is of type ψ if for any
σ : Vφ → {0, 1} we have ψ(σ(xi1), . . . , σ(xik)) = φ(σ). With this notion we can represent a k-CSP instance F by a
family (Aψ

F )ψ∈Ψ of 22k − 1 k-tensors as follows. We let

Aψ
F (i1, . . . , ik) =

{
1 if there is a φ ∈ F of type ψ with Vφ = {xi1 , . . . , xik}
0 otherwise.

Further, we say that F is (C, γ)-bounded if all tensors Aψ
F are (C, γ)-bounded (ψ ∈ Ψ).

Theorem 3 There are an algorithm ApxCSP, a constant Γ > 0, and a polynomial Π such that for any k,C > 1,
0 < ε < 1

2 there is a number n0 = n0(C, ε, k) such that the following is true. Let

γ = exp(−Γ2−2k−2k−2(C/ε)2).

If F is (C, γ)-bounded k-CSP instance over V = {x1, . . . , xn} for some n ≥ n0, then ApxCSP(F , C, ε) outputs an
assignment σ : V → {0, 1} such that ∑

φ∈F

φ(σ) ≥ (1− ε)OPT(F).

The running time is at most Π
[
exp(k2k22k(C/ε)2k ln(C/ε))nk

]
.

1.6 Related work
1.6.1 Approximating dense matrices and tensors.

As mentioned earlier, Frieze and Kannan [16] dealt with dense matrices and tensors. More precisely, they showed
that for a tensor A : R1 × · · · × Rk → [0, 1] and an ε > 0 one can compute cut tensors D1, . . . ,Ds such that
‖A−

∑s
i=1 Di‖2 < ε|R1 × · · · ×Rk| in time O(ε2(1−k)polylog(1/ε)) with s ≤ O(ε)2(1−k) as ε→ 0. Let us point

out two things.

1. The running time of their algorithm depends only on ε, and not on the size of A. This is achieved by random-
ization. Basically the algorithm just works with a bounded (by a function of ε only) size sample of the input
data, and produces an implicit representation of the desired decomposition. (Further results of this type can be
found in Arora, Karger and Karpinski [5], Fernandez de la Vega [12], Goldwasser, Goldreich and Ron [18],
Alon, de la Vega, Kannan and Karpinski [2] and de la Vega, Kannan, Karpinski and Vempala [13]).) Of course,
if A : R1 × · · · × Rk → {0, 1} is a sparse 0/1 tensor with density p = ‖A‖2 /|R1 × · · · × Rk| = o(1) as the
problem size N = |R1 × · · · × Rk| → ∞, then this sampling approach cannot yield an approximation within
εNp. For any constant sized sample of A is likely to be just identically 0. Therefore, in the present work we do
not aim for a sublinear running time.

2. The error term ε|R1 × · · · × Rk| does not account for the density of A. For example, suppose that A is the
adjacency matrix of a graph G = (V,E) on n vertices with density p = 2n−2|E|. Then the algorithm from [16]
can be used to compute a cut norm approximation of A to within εn2 for any ε > 0. Hence, we can use this
approximation to solve graph partitioning problems such as MAX CUT within an additive error of εn2 (edges).
This is why this approach is limited to dense problem instances: if the total number of edges is of lower order
than n2, then an approximation within an additive εn2 for a fixed ε > 0 is of little value. For similar reasons
the techniques of [16] only apply to dense problem instances of k-ary MAX CSP problems, i.e., instances with
at least Ω(nk) constraints, where n is the number of variables.

In spite of these differences, some of the algorithms that we present are very similar to those from [16]. Thus, our
main contribution is to analyze these algorithms on sparse matrices/graphs/tensors. For instance, the matrix approxi-
mation algorithm for Theorem 1 is almost identical to the procedure described in [16, Section 4.1]. The only difference
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is that [16] employs as a subroutine a combinatorial procedure for approximating the cut norm of a givenm×nmatrix
within an additive error of εmn, whereas here we need to approximate the cut norm within a constant multiplicative
factor. To this end, we rely on an algorithm of Alon and Naor [4] (which is based on semidefinite programming).
Nonetheless, as we shall see in Section 3 new ideas are necessary to analyze, e.g., the number of cut matrices that are
necessary to approximate the input matrix A within the desired ε ‖A‖2 in the cut norm (rather than within εmn).

1.6.2 Szemerédi’s regularity lemma.

Theorem 2 and the concept of weak regular partitions is related to Szemerédi’s well-known regularity lemma [24].
While [24] only deals with “dense” graphs, Kohayakawa [22] and Rödl [23] independently extended the regularity
lemma to the sparse case; for a comprehensive survey on the subject see Gerke and Steger [17]. They showed that for
any ε > 0 and any C > 0 there is a number γ such any (C, γ)-bounded graph has a regular partition (V1, . . . , Vs) in
the following sense.

• We have |Vi − n/s| ≤ 1 for all i.

• All but εs2 pairs (Vi, Vj) satisfy the following. For any two sets S ⊂ Vi, T ⊂ Vj of size |S| ≥ ε|Vi|, |T | ≥ ε|Vj |
we have ∣∣∣∣eG(S, T )− |S × T |

|Vi × Vj |
· eG(Vi, Vj)

∣∣∣∣ ≤ εeG(Vi, Vj). (4)

The number s of classes is bounded by a function T (C/ε), i.e., it is independent of n. This is the key fact that makes
Szemerédi’s lemma so useful in extremal combinatorics. However, from an algorithmic perspective the bound T (C/ε)
is somewhat disappointing, because it is a tower function of height (C/ε)3:

2
...

2
2

 (C/ε)3.

In fact, there is an infinite family of graphs for which the number of classes in the smallest ε-regular Szemerédi
partition is a tower of height C/ε [19]. Moreover, the number γ required in the boundedness condition is as tiny as
T ((C/ε)3)−1.

While [22, 23, 24] focus on proving that a regular partition exists, [1, 3] deal with algorithmic versions of the
regularity lemma. In the dense case (i.e., |E| = Ω(n2)) there is a purely combinatorial algorithm [3] with run-
ning time T (ε−3) · poly(n). Moreover, an algorithm for the sparse case was presented in [1]; the running time is
T ((C/ε)−3) · poly(n) for (C, γ)-bounded graphs, and the algorithm is based on the semidefinite programming algo-
rithm for approximating the cut norm from [4]. For instance, this yields an algorithm for approximating the MAX
CUT on (C, γ)-bounded graphs within 1− ε in time T ((C/ε)3) · poly(n).

Corollary 2 relates to [1] as follows. While the “strong” regularity condition (4) takes into account the “mi-
croscopic” edge distribution within (almost) each pair (Vi, Vj), the “weak” regularity concept from Corollary 2 just
provides a “macroscopic” approximation w.r.t. the cut norm. This approximation is sufficiently strong for algorith-
mic applications such as MAX CUT (but it would not suffice for applications in extremal combinatorics that rely
on the “counting lemma”). In effect, the algorithm is more efficient. Indeed, instead of scaling as a tower function
T ((C/ε)5), the running time of the algorithm WeakPartition from Corollary 2 is bounded by exp(O(C/ε)2) in
terms ofC, ε. Although this may still seem impractical, this is just a worst-case upper bound, and it is quite conceivable
that it is practically much easier to find a good approximation in the cut norm than a good regular partition. Besides,
as Theorem 1 shows, one can approximate a (C, γ)-bounded adjacency matrix by a sum of O(C/ε)2 cut matrices (if
the actual partition of the vertex set is not needed), thus avoiding the exponential dependence on C/ε. Similarly, the
parameter γ required in the boundedness condition is just γ = exp(−O(C/ε)2), rather than γ = 1/T ((C/ε)3) as
in [1]. Consequently, Corollary 2 applies to a larger class of graphs.

A further novel aspect here is that we extend our results to k-dimensional tensors (or k-uniform hypergraphs). This
point is not addressed in [1].
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2 Preliminaries
An important ingredient to the algorithm ApxMatrix for Theorem 1 is the the following algorithmic version of
Grothendieck’s inequality from Alon and Naor [4].

Theorem 4 There is a polynomial time algorithm and a number α0 > 0 that has the following property. Given a
m× n matrix M, the algorithm outputs sets S ⊂ [m] and T ⊂ [n] such that |M(S, T )| ≥ α0 ‖M‖2.

Alon and Naor present a randomized algorithm with α0 > 0.56, and a deterministic one with α0 ≥ 0.03.
The algorithm ApxTensor for Theorem 2 employs an algorithm FKTensor from [16] as a subroutine.

Theorem 5 There are a polynomial ΠFK , an algorithm FKTensor and a number ΓFK > 0 such that the following
is true. Suppose that M : R1 × · · · × Rk → [0, 1] is a tensor and let 0 < δ < 1. Then FKTensor(M, δ) outputs
cut tensors D1, . . . ,Ds such that ‖M−D1 − · · · −Ds‖2 ≤ δ

∏k
i=1 |Ri| and s ≤ (ΓFK/δ)2(k−1). Moreover,∑s

i=1 ‖Di‖2∞ ≤ ΓkFK , and the running time is at most δ−3kΠFK(
∏k
i=1 |Ri|).

Actually Frieze and Kannan have a slightly stronger statement [16, Section 6] (better running time), but the above is
sufficient for our purposes and easier to state.

If M is a real m× n matrix, then we let

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M2
ij

signify the Frobenius norm of M. Moreover, if G is a graph, then we denote the vertex set of G by V (G) and the edge
set by E(G). For sets S, T ⊂ V (G) we let eG(S, T ) signify the number of S-T -edges of G, and eG(S) signifies the
number of edges spanned by S.

Suppose that X is a set and that P1,P2 are partitions of X . We say that P1 is coarser than P2 if each class of P2

is contained in a class of P1. If S is an arbitrary set of subsets of X , then there is a unique partition P of X such that

1. each set in X is a union of classes of P ,

2. P is coarser than any other partition that satisfies 1.

This partition P has at most 2|S| classes.

3 Approximating and partitioning 0/1 matrices and graphs

3.1 Proof of Theorem 1
Let C > 1 and 0 < ε < 1

2 . Moreover, let α0 be the constant from Theorem 4 and set

κ =
513C2

ε2α0
, γ =

εα0

210κC
, γ′ = 2κγ.

Throughout this section we assume that A is a (C, γ) bounded 0/1 matrix of size m× n.

Algorithm 6 ApxMatrix(A, C, ε)
Input: A 0/1 matrix A of size m× n, numbers C, ε > 0.
Output: A sequence of cut matrices.
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1. Set A0 = A.
2. For j = 0, 1, 2, . . . , κ do
3. Compute sets Sj+1, Tj+1 of sizes |Sj+1| ≥ m/2, |Tj+1| ≥ n/2 s.t. |Aj(Sj+1, Tj+1)| ≥ α0 ‖Aj‖2 /4.
4. If |Aj(Sj+1, Tj+1)| < α0εmnp/4 and j ≥ 1, then output the cut matrices D1, . . . ,Dj and halt. Else,
5. Compute

dj+1 =
Aj(Sj+1, Tj+1)

|Sj+1||Tj+1|
,

set Dj+1 = CUT(dj+1, Sj+1, Tj+1), and let Aj+1 = Aj −Dj+1.
6. Output “failure”.

In order to approximate the given 0/1 matrix A by a sum D1 + · · ·+Dj of cut matrices, ApxMatrix proceeds as
follows. After j iterations, Aj = A −

∑j
i=1 Dj is the “error term” that results from approximating A by

∑j
i=1 Dj .

Thus, the goal is to eventually achieve an error term Aj that has a small cut norm. Therefore, Step 3 computes
sets Sj+1, Tj+1 of rows and columns such that |Aj(Sj+1, Tj+1)| is a good approximation of the cut norm of Aj .
If the term |Aj(Sj+1, Tj+1)| (and hence the cut norm of Aj) is small, then Step 4 terminates and outputs the cut
matrices D1, . . . ,Dj . Otherwise, Sj+1, Tj+1 witness a set of rows/columns on which

∑j
i=1 Dj does not provide a

good enough approximation. Therefore, Step 5 adds a further “patch” Dj+1, which is a cut matrix whose value on
Sj+1 × Tj+1 is just the average dj+1 of Aj over that square (note that dj+1 may be negative). This ensures that
Aj+1(Sj+1, Tj+1) = 0, and thus takes care of the discrepancy witnessed by Sj+1, Tj+1.

If the algorithm outputs cut matrices D1, . . . ,Dj , then clearly

‖A− (D1 + · · ·+ Dj)‖2 = ‖Aj‖2 ≤ εmnp = ε ‖A‖2 ,

because of the halting condition in Step 4. Hence, in order to establish Theorem 1, we need to prove that

(a) Step 3 of ApxMatrix can be implemented by a polynomial time algorithm,

(b) the halting condition in Step 4 is satisfied for some 1 ≤ j ≤ κ.

Proposition 1 In Step 3 the sets Sj+1, Tj+1 can be computed in time poly(mn).

Proof To obtain Sj+1, Tj+1, we use the polynomial time algorithm from Theorem 4, which yields sets S′j+1, T
′
j+1

such that |Aj(S′j+1, Tj+1)′| ≥ α0 ‖Aj‖2. If |S′j+1| ≥ n/2 then we take Sj+1 = S′j+1. If |S′j+1| < n/2 then since

A(R, T ′j+1) = A(S′j+1, T
′
j+1) + A(R \ S′j+1, T

′
j+1)

we get max{|A(R, T ′j+1)|, A(R \ S′j+1, T
′
j+1)|} ≥ α0 ‖A0‖2 /2. We can therefore take either R or R \ S′j+1 as our

set Sj+1 and note it is at least n/2 in size. We perform the same operation to get Tj+1, losing (at most) another factor
2 in the approximation. 2

With respect to (b), we will study the Frobenius norm of Aj . Namely, it is not difficult to show that ‖Aj‖2F ≤
‖A‖2F (1 − j · α2

0ε
2p/4). Since trivially ‖Aj‖F ≥ 0, this implies that the total number of iterations is at most

4/(α2
0ε

2p). Hence, if p is bounded from below by a constant, then this argument shows that the total number of
iterations is bounded by a number that does not depend on n,m. In fact, this is the basic argument used to establish
the matrix decomposition theorem in [16, Section 4.1].

But in the present work we do not assume that p remains bounded away from 0 by a number independent of n,m.
In effect, the aforementioned argument does not apply. As it turns out, the problem is that the above argument just uses
the trivial lower bound ‖Aj‖2F ≥ 0. By contrast, the basic idea here is to use the boundedness condition to establish
‖AF ‖2(1 − C2p) as a lower bound. Indeed, if we could show that ‖Aj‖2F ≥ ‖AF ‖2(1 − C2p) for all j, then the
bound ‖Aj‖2F ≤ ‖A‖2F (1− j · α2

0ε
2p/4) would imply that the number of iterations is at most 4C2/(α2

0ε
2), and thus

independent of m,n, p.
However, we can’t quite use the boundedness condition to prove that ‖Aj‖2F ≥ ‖AF ‖2(1 − C2p). The reason is

that the boundedness condition only applies to “sufficiently large” sets, i.e., sets of size at least γn. Therefore, to show
that ApxMatrix stops after at most κ iterations, we will consider slightly different sequences of matrices D′j , A

′
j , to
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which the boundedness condition applies. The matrices D′j , A
′
j will be “close” to Dj , Aj in cut norm, and to bound

the number of iterations we are going to investigate the Frobenius norm of A′j .
We construct the matrices D′j , A

′
j as follows. Let us assume (for contradiction) that ApxMatrix outputs “fail-

ure”, i.e., the number of iterations performed by Steps 2–5 is κ. Then during these κ iterations the algorithm con-
structed sets S1, . . . , Sκ of rows and T1, . . . , Tκ of columns. Let S be the coarsest partition of the set [m] of row
indices such that each Si is a union of classes of S (thus, S consists of the classes of the Venn diagram of the sets
S1, . . . , Sκ). Similarly, let T be the coarsest partition of the columns set [n] such that every Ti is a union of classes of
T . Clearly, both S and T have at most 2κ classes. The reason why the boundedness condition does not imply directly
that ‖Aj‖2F ≥ ‖AF ‖2(1−C2p) is that some classes of S and T may have size less than γm or γn. Therefore, we let

R0 =
⋃

S∈S:|S|<γm

S, C0 =
⋃

T∈T :|T |<γn

T

comprise the “small” classes of the partitions S, T . Setting γ′ = 2κγ, we have

|R0| ≤ γ′m, |C0| ≤ γ′n. (5)

Further, let A′0 = A′ be the matrix obtained from A by replacing all rows in R0 and all columns in C0 by 0. In
addition, define inductively sets S′j = Sj \R0 and T ′j = Tj \ T0 and

d′j+1 =
A′j(S

′
j+1, T

′
j+1)

|S′j+1||T ′j+1|
, D′j+1 = CUT(S′j+1, T

′
j+1, d

′
j+1), A′j+1 = A′j −D′j+1.

Let S ′ be the coarsest partition of [m] \ R0 such that each S′j is a union of classes of S ′, and define a partition T ′ of
[n] \ C0 analogously w.r.t. the sets T ′j . Then the construction of the sets S′j , T

′
j readily implies:

Fact 7 All classes of S ′ (resp. T ′) have size at least γm (resp. γn).

Consequently, we can use the boundedness condition to infer the following.

Lemma 1 For all 1 ≤ j ≤ κ we have ‖A′j‖2F ≥ ‖A′‖
2
F (1− 2C2p).

Proof Let M =
∑j
i=1 D′j . Then for any two sets S ∈ S ′, T ∈ T ′ the matrix M is constant on the square S × T ,

because every D′j is a cut matrix on the square S′j×T ′j , and S′j , T
′
j are unions of classes of S ′, T ′. Thus, lettingmS×T

signify the value that M takes on S × T , we obtain

‖A′j‖2F = ‖A′ −M‖2F =
∑

S∈S′,T∈T ′

∑
(v,w)∈S×T

(A′(v, w)−mS×T )2.

For any S ∈ S ′, T ∈ T ′ the sum
∑

(v,w)∈S×T (A′(v, w)−mS×T )2 is minimized iff

mS×T = m∗S×T = A′(S, T )/(|S| · |T |).

Therefore, ∑
(v,w)∈S×T

(A′(v, w)−mS×T )2 ≥
∑

(v,w)∈S×T

(A′(v, w)−m∗S×T )2

=
∑

(v,w)∈S×T

A′(v, w)2 − 2A′(S, T )m∗S×T +m∗ 2
S×T |S| · |T |

=
∑

(v,w)∈S×T

A′(v, w)2 −m∗ 2
S×T |S| · |T |.

Since A′ is (C, γ) bounded and because |S| ≥ γm, |T | ≥ γn by Lemma 7, we get m∗S×T ≤ Cp. Hence,

‖A′j‖2F ≥ ‖A′‖2F − (Cp)2mn. (6)

9



Finally, using the fact that A and A′ are 0, 1 matrices, we have

‖A‖2F − ‖A′‖2F =
m∑
i=1

n∑
j=1

A2
ij −A′ij

2 = A(R0, [n]) + A([m] , C0)−A(R0, C0)

≤ A(R0, [n]) + A([m] , C0)
(5)
≤ 2Cγ′mnp < mnp/2,

whence ‖A′‖2F ≥ ‖A‖2F /2 = mnp/2. Thus, the assertion follows from (6). 2

To show that our assumption that ApxMatrix performs at least κ iterations yields a contradiction, we shall derive
the following upper bound on ‖A′j‖2F .

Lemma 2 For all 1 ≤ j ≤ κ we have ‖A′j‖2F ≤ ‖A′‖
2
F (1− j · α2

0ε
2p/256).

Combining Lemmas 1 and 2 and setting j = κ, we conclude 2C2 ≥ κ · α2
0ε

2/256, which contradicts our choice of κ
(cf. (2)). This completes the proof of Theorem 1.

In the rest of this section we prove Lemma 2. The following lemma shows that A′ is close to A in cut norm.
Recall that γ′ = 2κγ.

Lemma 3 We have ‖A−A′‖2 ≤ 2Cγ′mnp.

Proof For any sets S ⊂ [m], T ⊂ [n] we have

|A(S, T )−A′(S, T )| ≤ A(R0, [n]) + A([m] , C0).

If |R0| ≥ γm, then we let R′0 = R0; otherwise, let R′0 ⊃ R0 be any superset of size γm. Then the fact that A is
(C, γ)-bounded implies that for any T ⊆ [n], |T | ≥ γn,

A(R0, T ) ≤ A(R′0, T ) ≤ C|R′0|np ≤ Cγ′mnp, from (5). (7)

Applying the same argument to A([m] , C0) gives the result. 2

In addition, we also need to show that the matrices Dj ,D′j are close in cut norm. To this end, we derive a bound on
the coefficients dj from Step 5 of ApxMatrix.

Lemma 4 |dj | ≤ 2jCp for all 1 ≤ j ≤ κ.

Proof The proof is by induction on j. For j = 1 we have

d1 =
A0(S1, T1)
|S1||T1|

≤ Cp,

because A0(S1, T1) ≤ Cp|S1||T1| by the boundedness condition. Furthermore, assuming that |di| ≤ 2iCp for all
i ≤ j, we can bound dj+1 as follows.

|Aj(Sj+1, Tj+1)| =

∣∣∣∣∣A0(Sj+1, Tj+1) +
j∑
i=1

di|Sj+1 ∩ Si| |Tj+1 ∩ Ti|

∣∣∣∣∣
≤ |Sj+1||Tj+1| ·

[
Cp+

j∑
i=1

|di|

]
≤ |Sj+1||Tj+1|Cp

j∑
i=0

2i ≤ 2j+1|Sj+1||Tj+1|Cp.

Thus, |dj+1| = |Aj(Sj+1, Tj+1)|/(|Sj+1||Tj+1|) ≤ 2j+1Cp. 2

Lemma 4 implies the following bound on the cut norm of Dj −D′j .

Corollary 4 For all 1 ≤ j ≤ κ we have
∥∥Dj −D′j

∥∥
2
≤ 28jCγ′mnp.
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Proof We proceed by induction. The definitions of dj and d′j imply that

∣∣d′j − dj∣∣ =

∣∣∣∣∣A′j−1(S′j , T
′
j)

|S′j ||T ′j |
− Aj−1(Sj , Tj)

|Sj ||Tj |

∣∣∣∣∣ =

∣∣|Sj ||Tj |A′j−1(S′j , T
′
j)− |S′j ||T ′j |Aj−1(Sj , Tj)

∣∣
|Sj ||S′j ||Tj ||T ′j |

≤
∣∣Aj−1(S′j , T

′
j)−Aj−1(Sj , Tj)

∣∣
|S′j ||T ′j |

+

∣∣(|Sj ||Tj | − |S′j ||T ′j |)Aj−1(Sj , Tj)
∣∣

|Sj ||S′j ||Tj ||T ′j |

+

∣∣A′j−1(S′j , T
′
j)−Aj−1(S′j , T

′
j)
∣∣

|S′j ||T ′j |
≤ 16(mn)−1(|Aj−1(R0, Tj)|+ |Aj−1(Sj , C0)|)

+64(mn)−2|Aj−1(Sj , Tj)|(|R0||C0|+ |R0||Tj |+ |Sj ||C0|)
+16(mn)−1

∣∣A′j−1(S′j , T
′
j)−Aj−1(S′j , T

′
j)
∣∣ , (8)

because |Sj | ≥ m/2, |Tj | ≥ n/2 by construction and |S′j | ≥ |Sj | − |R0| ≥ m/4, |Tj | ≥ |Tj | − |C0| ≥ n/4 by (5).
Observe that for j = 1 the third term in (8) equals 0. Furthermore, the boundedness condition and (5) imply that

A(R0, [n]) + A([n] , C0) ≤ 2Cγ′mnp, (see (7)) and so we conclude that |d′1 − d1| ≤ Cγ′p(32 + 192) = 224Cγ′p,
and thus

‖D1 −D′1‖2 ≤ |d1 − d′1|mn+ 2Cγ′mnp ≤ 226Cγ′mnp.

Now assume inductively that for 1 ≤ i ≤ j − 1 we have

‖Di −D′i‖2 ≤ 28jCγ′mnp. (9)

Then, for j > 1 Lemma 4 implies that

|Aj−1(R0, Tj)| ≤ |A(R0, Tj)|+
j−1∑
i=1

|di||R0|n ≤ 2jCγ′mnp.

Similarly, |Aj−1(Sj , C0)| ≤ 2jCγ′mnp. Thus the first term in (8) is at most 2j+5Cγ′p.
Moreover, once more by Lemma 4 we have

|Aj−1(Sj , Tj)| ≤ |A(Sj , Tj)|+mn

j−1∑
i=1

|di| ≤ 2jCmnp.

Consequently, the second term in (8) is at most 3 · 2j+6Cγ′p. Finally, by induction we obtain

∣∣A′j−1(S′j , T
′
j)−Aj−1(S′j , T

′
j)
∣∣ ≤ j−1∑

i=1

|D′i(S′j , T ′j)−Di(S′j , T
′
j)| ≤

j−1∑
i=1

‖D′i −Di‖2

≤ Cγ′mnp

j−1∑
i=1

28i < 28j−7Cγ′mnp.

Hence, the third term in (8) is at most 28j−3Cγ′p. Plugging these bounds into (8) we get |d′j − dj | ≤ 28j−1Cγ′p.
Finally, (5) and Lemma 4 yield∥∥Dj −D′j

∥∥
2
≤ |dj − d′j |mn+ (|R0|n+m|C0|)|dj | ≤ 28j−1Cγ′mnp+ 2j+1Cγ′mnp ≤ 28jCγ′mnp,

as desired. 2

Combining Lemma 3 with Corollary 4, we conclude that the two matrices Aj = A −
∑j
i=1 Dj and A′j =

A′ −
∑j
i=1 D′j are close in cut norm.

Corollary 5 For all 1 ≤ j ≤ κ we have
∥∥A′j −Aj

∥∥
2
≤ 28j+1Cγ′mnp.
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Proof of Lemma 2. We are going to show that

‖A′j+1‖2F ≤ ‖A′j‖2F − α2
0ε

2mnp2/256 (10)

for any 1 ≤ j < κ; this bound immediately implies the assertion. Remember that |Aj(Sj+1, Tj+1)| ≥ α0 ‖Aj‖2 /4
by the construction of Sj+1, Tj+1 in Step 3 of ApxMatrix. Therefore, combining Corollary 5 with Lemmas 3 and 4,
we obtain

|A′j(S′j+1, T
′
j+1)| ≥ |Aj(Sj+1, Tj+1)| − |Aj(Sj+1, Tj+1)−Aj(S′j+1, T

′
j+1)|

−|A′j(S′j+1, T
′
j+1)−Aj(S′j+1, T

′
j+1)|

≥ α0εmnp/4−

(
2Cγ′mnp+

j∑
i=1

2iCγ′mnp

)
− 28j+1Cγ′mnp

≥ α0εmnp/8, (11)

where the last inequality follows from our choice of γ and the fact that γ′ = 2κγ. Further, as

d′j+1 =
A′j(S

′
j+1, T

′
j+1)

|S′j+1||T ′j+1|

by construction, (11) implies that

‖A′j‖2F − ‖A′j+1‖2F =
∑

(s,t)∈S′j+1×T ′j+1

A′j(s, t)
2 − (A′j(s, t)− d′j+1)2

= d′j+1
2A′(S′j+1, T

′
j+1) =

A′j(S
′
j+1, T

′
j+1)2

|S′j+1||T ′j+1|
≥ (α0εmnp)2

256mn
,

whence (10) follows. 2

3.2 Proof of Corollary 1
Let 0 < ε < 1

2 and C > 1, and let κ, γ be as in (2). Given a (C, γ)-bounded matrix A of size m× n and the numbers
C, ε, PartMatrix calls ApxMatrix(A, C, ε) to obtain cut matrices

Di = CUT(di, Si, Ti) (i = 1, . . . , s)

for some 1 ≤ s ≤ κ. Then, it computes the coarsest partition S of [m] such that each class Si is a union of classes of S
(1 ≤ i ≤ s). Similarly, T is the coarsest partition of [n] such that each class Ti is a union of classes of T (1 ≤ i ≤ s).

This construction ensures that |S|, |T | ≤ 2s ≤ 2κ. Hence, the running time of PartMatrix is (κ+ 2κ)Π(mn)
for a fixed polynomial Π. Thus, to complete the proof of Corollary 1 we just need to show that ‖A−AS×T ‖2 ≤
2ε ‖A‖2. Since the matrix D =

∑s
i=1 Di satisfies ‖A−D‖2 ≤ ε ‖A‖2 by Theorem 1, it suffices to prove that

‖D−AS×T ‖2 ≤ ‖D−A‖2 . (12)

To prove (12), we use the same argument as in [16, Section 5]. Let X ⊂ [m] and Y ⊂ [n] be sets such that
|(D −AS×T )(X,Y )| = ‖D−AS×T ‖2. On each square S × T with S ∈ S and T ∈ T the matrix D −AS×T is
constant. We may therefore assume that X is a union of classes of S and Y is a union of classes of T . Furthermore,
as A(S, T ) = AS×T (S, T ) for any S ∈ S and T ∈ T by the definition of AS×T (S, T ), we conclude that

‖D−AS×T ‖2 = |D(X,Y )−AS×T (X,Y )| =

∣∣∣∣∣D(X,Y )−
∑

S∈S:S⊂X

∑
T∈T :T⊂Y

AS×T (S, T )

∣∣∣∣∣
=

∣∣∣∣∣D(X,Y )−
∑

S∈S:S⊂X

∑
T∈T :T⊂Y

A(S, T )

∣∣∣∣∣ = |D(X,Y )−A(X,Y )| ≤ ‖D−A‖2 ,

thereby proving (12). 2
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3.3 Proof of Corollary 2
Let C > 1 and 0 < ε < 1

2 , let κ, γ be as in (2) and suppose that G = (V,E) is a (C, γ)-bounded graph on n vertices
V = {1, . . . , n} with adjacency matrix A. The algorithm WeakPartition(G,C, ε) calls PartMatrix(A, C, ε)
to obtain two partitions S, T of V such that ‖AS×T −A‖2 ≤ 2ε ‖A‖2. By Corollary 1 both S, T have at most 2κ

classes. Then, the algorithm constructs the coarsest partition V of V that is a refinement of both S and T . Clearly,
|V| ≤ 22κ, and the running time of the algorithm is at most 22κΠ(n) for some fixed polynomial Π.

To complete the proof, we need to show that ‖AV×V −A‖2 ≤ 4ε ‖A‖2. Since ‖A−AS×T ‖2 ≤ 2ε ‖A‖2
by Corollary 1, we just need to prove that ‖AV×V −AS×T ‖2 ≤ ‖A−AS×T ‖2. To show this, we use a similar
argument to that given in the proof of Corollary 1. Namely, let X,Y ⊂ V be such that |(AV×V −AS×T )(X,Y )| =
‖AV×V −AS×T ‖2. Since both AV×V and AS×T are constant on each square S×T with S, T ∈ V , we may assume
that X,Y are unions of classes of V . Therefore, the definition of AV×V entails that

‖AS×T −AV×V‖2 = |(AS×T −AV×V)(X,Y )|

=

∣∣∣∣∣∣AS×T (X,Y )−
∑

S,T∈V:S×T⊂X×Y
AV×V(S, T )

∣∣∣∣∣∣
=

∣∣∣∣∣∣AS×T (X,Y )−
∑

S,T∈V:S×T⊂X×Y
A(S, T )

∣∣∣∣∣∣
≤ |(AS×T −A)(X,Y )| ≤ ‖AS×T −A‖2 ,

as claimed. 2

4 Approximating and partitioning k-dimensional tensors

4.1 Proof of Theorem 2
Let 0 < ε < 1

2 and C > 1. Let κ = 64(ζ + 100)(C/ε)2, where ζ is the constant from Theorem 1, and set γ = 2−3κ.
Throughout this section we assume that A : R1 × · · · ×Rk → {0, 1} is a (C, γ)-bounded tensor. Let k1 = bk/2c.

Algorithm 8 ApxTensor(A, C, ε)
Input: A tensor A : R1 × · · · ×Rk → {0, 1}, numbers C, ε > 0.
Output: A sequence of cut tensors.

1. Set up the matrix B = B(A) as in (3) and let p be the density of B.
2. Call PartMatrix(B, C, ε/8) to obtain partitions S of R1 × · · · × Rk1 and T of Rk1+1 × · · · × Rk (cf.

Corollary 1).
3. Let Â : R1 × · · · ×Rk → [0, 1] be the tensor defined by

Â(i1, . . . , ik) = min


1,

BS×T ((i1, . . . , ik1), (ik1+1, . . . , ik))

Cp

ff
,

where BS×T is the approximation of B corresponding to the parition S × T (cf. Corollary 1).
4. Call FKTensor(Â, ε/(2C)) to obtain cut tensors D1, . . . ,Ds.

Output the cut tensors Cp ·D1, . . . , Cp ·Ds.

The basic idea behind the algorithm ApxTensor for Theorem 2 is to transform the given sparse tensor A into
a dense tensor Â and to apply the algorithm FKTensor from Theorem 5 to the latter. To obtain Â, ApxTensor
sets up the |R1 × · · · × Rk1 | by |Rk1+1 × · · · × Rk| matrix B(A) as in (3). As this matrix is (C, γ)-bounded by
assumption, we can apply PartMatrix to obtain a cut norm approximation BS×T that is constant on rectangles
S × T with S ∈ S, T ∈ T and whose entries are in [0, 1]. Then, Â is (basically) obtained by dividing BS×T by Cp.
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Finally, ApxTensor applies FKTensor to Â to obtain cut tensors D1, . . . ,Ds, which of course need to get scaled
by a factor Cp to get the desired approximation of A.

The key step in the analysis is to show that CpÂ is close to A.

Lemma 5 We have
∥∥∥A− CpÂ∥∥∥

2
< ε ‖A‖2 /2.

Proof Let m =
∏

1≤i≤k1 |Ri| and n =
∏
k1<i≤k |Ri|. Moreover, let B̂ be the matrix defined by

B̂((i1, . . . , ik1), (ik1+1, . . . , ik)) = CpÂ(i1, . . . , ik).

Then ∥∥∥A− CpÂ∥∥∥
2
≤

∥∥∥B− B̂
∥∥∥

2
(13)

≤ ‖B−BS×T ‖2 +
∥∥∥B̂−BS×T

∥∥∥
2

≤ ε

8
‖B‖2 +

∥∥∥B̂−BS×T
∥∥∥

2
(14)

=
ε

8
‖A‖2 +

∥∥∥B̂−BS×T
∥∥∥

2
. (15)

Here (13) follows from the fact that the LHS is effectively the maximum over a subset of choices of the RHS. Equa-
tion (14) follows from our choice of S, T and (15) follows because ‖A‖2 = ‖B‖2 = the number of 1’s in both
matrices/tensors.

To bound
∥∥∥B̂−BS×T

∥∥∥
2

, observe that

0 ≤ B̂(i, j) ≤ BS×T (i, j) for all i ∈
∏

1≤a≤k1

Ra, j ∈
∏

k1<b≤k

Rb. (16)

Moreover, let S0 be the union of all classes S ∈ S such that |S| < γm. Similarly, let T0 be the union of all T ∈ T of
size |T | < γn. Then

|S0| ≤ 2κγm < εm/100, |T0| ≤ 2κγn < εn/100 (17)

due to the upper bound on the number of classes in S, T from Corollary 1 and our choice of γ. Further, we claim that

B̂(i, j) = BS×T (i, j) for all i ∈
∏

1≤a≤k1

Ra \ S0, j ∈
∏

k1<b≤k

Rb \ T0. (18)

To see this, consider i 6∈ S0, j 6∈ T0, and let S ∈ S , T ∈ T be the classes such that i ∈ S, j ∈ T . Then by
the construction of S0, T0 we have |S| ≥ γm, |T | ≥ γn. Therefore, the fact that B is (C, γ)-bounded implies that
B(S, T ) ≤ C ·|S×T |·p. Hence, BS×T (i, j) = B(S, T )/|S×T | ≤ Cp. The definiton of Â in Step 3 of ApxTensor
yields (18).

Finally, for any two sets X ⊂
∏

1≤ai≤k1 Ra, Y ⊂
∏
k1<b≤k Rb we obtain∣∣∣(B̂−BS×T ))(X,Y )

∣∣∣
≤
∣∣∣(B̂−BS×T )(X \ S0, Y \ T0)

∣∣∣+
∣∣∣(B̂−BS×T )(X ∩ S0, Y )

∣∣∣+
∣∣∣(B̂−BS×T )(X,Y ∩ T0)

∣∣∣
(18)=
∣∣∣(B̂−BS×T )(X ∩ S0, Y )

∣∣∣+
∣∣∣(B̂−BS×T )(X,Y ∩ T0)

∣∣∣
(16)
≤ |BS×T (X ∩ S0, Y )|+ |BS×T (X,Y ∩ T0)|
≤ |B(X ∩ S0, Y )|+ |B(X,Y ∩ T0)|+ 2 ‖B−BS×T ‖2
≤ |B(X ∩ S0, Y )|+ |B(X,Y ∩ T0)|+ ε

4
‖B‖2 . (19)
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As B is (C, γ)-bounded and |X ∩ S0| ≤ |S0| ≤ εm/100, |Y ∩ T0| ≤ |T0| ≤ εn/100 by (17), we have (see (7))

|B(X ∩ S0, Y )| , |B(X,Y ∩ T0)| ≤ ε ‖B‖2 /100.

Consequently, (19) yields
∣∣∣(B̂−B)(X,Y )

∣∣∣ ≤ 27ε ‖B‖2 /100. Since this is true for any X,Y , we conclude that∥∥∥B̂−B
∥∥∥

2
< ε ‖B‖2 /3. Plugging this bound into (15) completes the proof. 2

Proof of Theorem 2. The desired bound on the running time follows directly from Corollary 1 and Theorem 5.
Moreover, since FKTensor is applied with δ = ε/(2C), Theorem 5 implies that the number of cut tensors is at most
s ≤ (ΓC/ε)2(k−1) for a certain constant Γ > 0. Furthermore, Lemma 5 and Theorem 5 yield∥∥∥∥∥A− Cp

s∑
i=1

Di

∥∥∥∥∥
2

≤
∥∥∥A− CpÂ∥∥∥

2
+ Cp ·

∥∥∥∥∥Â−
s∑
i=1

Di

∥∥∥∥∥
2

<
ε

2
‖A‖2 + Cp ·

∥∥∥∥∥Â−
s∑
i=1

Di

∥∥∥∥∥
2

≤ ε

2
‖A‖2 + Cp · ε

2C

k∏
i=1

|Ri| = ε ‖A‖2 ,

as desired. 2

4.2 Proof of Corollary 3
Let 0 < ε < 1

2 and C > 1. Moreover, let Γ be a sufficiently large constant. Suppose that A : R1× · · · ×Rk → {0, 1}
is a (C, γ)-bounded 0/1 tensor. The algorithm PartTensor calls ApxTensor to obtain cut tensors

Di = CUT(di, S1i, . . . , Ski) (1 ≤ i ≤ s)

such that ‖A−
∑s
i=1 Di‖2 ≤ ε ‖A‖2 /2. Then, for each 1 ≤ j ≤ k ApxTensor outputs the coarsest partition Rj

of Rj such that each of the sets Sji is a union of classes of Sj (i = 1, . . . , s).
Each partitionRj has at most 2s classes. Hence, the upper bound on s from Theorem 2 entails the upper bound on

|Rj | stated in Corollary 3. Moreover, bound on the running time follows from Theorem 2 as well. Hence, we finally
need to show that

‖A−AR1×···×Rk‖2 ≤ ε ‖A‖2 .

To simplify the notation we let D =
∑s
i=1 Di, B = AR1×···×Rk . We know that

‖D−A‖2 ≤ ε ‖A‖2 /2. (20)

To complete the proof, we are going to show that ‖D−B‖2 ≤ ε ‖A‖2 /2 as well. Thus, let X1 ⊂ R1, . . . , Xk ⊂ Rk
be sets such that

‖D−B‖2 = |(D−B)(X1, . . . , Xk)| .

Since both D and B are constant on any rectangle S1 × · · · × Sk with Si ∈ Ri, we may assume that Xi is a union
of classes of Ri for all 1 ≤ i ≤ k. Furthermore, if Si ∈ Ri for 1 ≤ i ≤ k, then B(S1, . . . , Sk) = A(S1, . . . , Sk).
Therefore,

‖D−B‖2 = |(D−B)(X1, . . . , Xk)| =

∣∣∣∣∣D(X1, . . . , Xk)−
∑

S1∈R1:S1⊂X1

· · ·
∑

Sk∈Rk:Sk⊂Xk

B(S1, . . . , Sk)

∣∣∣∣∣
=

∣∣∣∣∣D(X1, . . . , Xk)−
∑

S1∈R1:S1⊂X1

· · ·
∑

Sk∈Rk:Sk⊂Xk

A(S1, . . . , Sk)

∣∣∣∣∣
= |(D−A)(X1, . . . , Xk)| ≤ ‖D−A‖2 ≤ ε ‖A‖2 /2,

by (20). Hence, ‖A−B‖2 ≤ ‖A−D‖2 + ‖D−B‖2 ≤ ε ‖A‖2, as desired. 2

15



5 Approximating MAX CSP problems
Throughout this section we keep the notation from Section 1.5. Given 0 < ε < 1

2 ,C > 1, we set γ = exp(−Γ(C/ε)2),
where Γ is the constant from Theorem 2. Moreover, we assume that F is a (C, γ)-bounded k-CSP instance on n
variables V = {1, . . . , n}, where n > n0 for some sufficiently large number n0 = n0(C, ε, k). Let m = |F| be the
number of constraints.

5.1 The algorithm ApxCSP

Algorithm 9 ApxCSP(F , C, ε)
Input: A k-CSP instance F over V = {x1, . . . , xn}, numbers C, ε > 0.
Output: An assignment σ̂ : V → {0, 1}.

1. Set up the tensors Aψ
F for all ψ ∈ Ψ.

Let α = ε2−2k−2k−2.
Call ApxTensor(Aψ

F , C, α) for each ψ ∈ Ψ to obtain tensors

Bψ =

sX
i=1

Dψ
i , where Dψ

i = CUT(dψi , S
ψ
i1, . . . , S

ψ
ik).

Let P be the coarsest partition of V such that each set Sψih is a union of classes of P (1 ≤ i ≤ s, 1 ≤ h ≤ k,
ψ ∈ Ψ).

2. Let δ = C−1Γ−ks−12−2k−4k−4 and ν = dδne.
Compute an optimal solution (τ̂ψih(1), τ̂ψih(0), ẑP )i∈[s],h∈[k],ψ∈Ψ,P∈P to the following optimization problem.

OPT′′ = max
X
ψ∈Ψ

sX
i=1

X
y∈{0,1}k

dψi ψ(y)νk
kY
h=1

τψih(yh)

s.t. 0 ≤ τψih(1) ≤ b|Sψih|/νc is an integer for all 1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ,

τψih(0) = ν−1Sψih − τ
ψ
ih(1) for all 1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ

τψih(1)ν ≤
X

P∈P:P⊂Sψ
ih

zP ≤ (τψih(1) + 1)ν for all 1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ

0 ≤ zP ≤ |P | for all P ∈ P.

(The numbers zP are not required to be integers.)
Output an assignment σ̂ : V → {0, 1} such that ||σ̂−1(1) ∩ P | − ẑP | ≤ 1 for all P ∈ P.

The first step of ApxCSP relies on the procedure ApxTensor from Theorem 2. Since we assume that all the
tensors Aψ

F are (C, γ)-bounded, we can apply ApxTensor to each of them to obtain an approximation Bψ consisting
of a bounded number of cut tensors Dψ

i . The basic idea is to approximate the MAX CSP problem, i.e., the optimization
problem

OPT = max
σ∈{0,1}V

∑
φ∈F

φ(σ) = max
σ∈{0,1}V

∑
ψ∈Ψ

∑
(z1,...,zk)∈V k

Aψ(z1, . . . , zk)ψ(σ(z1), . . . , σ(zk))

by the optimization problem

OPT′ = max
σ∈{0,1}V

∑
ψ∈Ψ

∑
(z1,...,zk)∈V k

Bψ(z1, . . . , zk)ψ(σ(z1), . . . , σ(zk)).

The following lemma, whose proof we defer to Section 5.2, shows that any assignment σ that approximates OPT′ well
also provides a good approximation for OPT.
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Lemma 6 Let σ ∈ {0, 1}V be such that∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(σ(z)) ≥ OPT′ − 2−k−1εm. (21)

Then
∑
φ∈F φ(σ) ≥ (1− ε)OPT(F).

It is worth pointing out that OPT′ can be solved exactly in “polynomial” time. This is because the tensors Bψ

consist of only a bounded (w.r.t. n) number of cut tensors. More precisely, the partition P constructed in Step 1 of the
algorithm has the following property: if S1, . . . , Sk ∈ P , then all the tensors Bψ , ψ ∈ Ψ, are constant on the rectangle
S1 × · · · × Sk. Therefore, as far as OPT′ is concerned, the individual variables in each set S ∈ P are completely
indistinguishable. More precisely, consider an assignment σ : V → {0, 1} and let

ZP = |{v ∈ P : σ(v) = 1}| for each P ∈ P, (22)

T ψih(1) =
∑

P∈P:P⊂Sψih

ZP , T ψih(0) = |Sψih| − T
ψ
ih(1) for 1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ. (23)

In words, T ψih(y) is the number of variables in Sψih that attain the value y under σ (y = 0, 1). Let us further define

σ(y) = (σ(y1), . . . , σ(yk)) for y ∈ V k.

Then ∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(σ(z)) =
∑
ψ∈Ψ

s∑
i=1

∑
z∈

Qk
h=1 S

ψ
ih

dψi ψ(σ(z)) =
∑
ψ∈Ψ

s∑
i=1

∑
y∈{0,1}k

dψi ψ(y)
k∏
h=1

T ψih(yh).

Hence, to solve OPT′ optimally, we could just try all possible tuples (ZP )P∈P such that 0 ≤ ZP ≤ |P | is an integer.
Since the number of such tuples is at most n|P| and the number |P| of classes is independent of n, this yields a
polynomial time algorithm for any fixed ε, k, C.

To speed things up, we use an idea developed in [16] for dense MAX CSP problems; this will eventually lead
to the problem OPT′′ detailed in Step 2 of ApxCSP. The basic idea is the following. Instead of optimizing over all
possible (ZP )P∈P , we could just enumerate all tuples (T ψih(1))i,h,ψ with 0 ≤ T ψih(1) ≤ |Sψih|. The issue is that not
all such tuples correspond to an assignment σ : V → {0, 1} as in (22) and (23). Hence, for each tuple (T ψih(1))i,h,ψ
we will have to check feasbility, i.e., if there is a tuple (ZP )P such that (23) holds. Since we are just aiming to solve
OPT′ approximately, we can drop the requirement that all ZP must be integeral. Thus, checking (23) turns into a
linear programming problem. In effect, we can reduce the running time from exp(|P| · lnn) to exp(sk22k · lnn).
(Remember that in general |P| is exponential in sk22k .)

Finally, to remove the lnn factor, we chop each set Sψih into chunks of size ν = dδne, where δ > 0 is bounded by
a function of C, ε, k only. Hence, instead of optimizing over the number 0 ≤ T ψih(1) ≤ |Sψih| of variables to be set to 1
in each Sψih, we optimize over the number 0 ≤ τψih(1) = bT ψih(1)/νc ≤ bSψih/νc of chunks set to 1. This is sufficient
because we just need to solve OPT′ within an additive ε2−k−1m (cf. (21)). Of course, for each τψih(1) the number of
possible values is at most 1 + δ−1, i.e., independent of n. To check feasibility, we then have to verify that there are
0 ≤ zP ≤ 1 (P ∈ P) such that τψih(1)ν ≤

∑
P∈P:P⊂Sψih

zP ≤ (τψih(1) + 1)ν for all i, h, ψ, which is again an LP

problem. This leaves us with the optimization problem OPT′′ quoted in Step 2 of ApxCSP. After finding an optimal
solution to OPT′′, the algorithm sets up the assignment σ̂ that mirrors the resulting zP values. We defer the proof of
the following proposition to Section 5.3

Proposition 2 The assigment σ̂ satisfies (21).

Proof of Theorem 3. The fact that the assignment σ̂ computed by ApxCSP satisfies at least (1 − ε)OPT constraints
follows from Lemma 6 and Proposition 2. Thus, we finally need to analyze the running time. By Theorem 2 the
running time of Step 1 is at most

22k2(C/α)2(C/α)3kΠ′(nk)
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for some polynomial Π′. Moreover, for each ψ ∈ Ψ the resulting decomposition of Aψ
F consists of s ≤ (ΓC/α)2(k−1)

cut matrices for some constant Γ > 0. Hence,

|P| ≤ Λ = 2k22ks.

Step 2 solves OPT′′ by enumerating all possible values for the integer variables τψih(1). The number of these integer
variables is sk22k . Futhermore, for each τψih(1) there are at most 1 + |Sψih|/ν ≤ 1 + δ−1 ≤ δ−2 values to consider.
Therefore, the total number of possibilities that Step 2 enumerates over is at most

Λ′ = exp(−2sk22k ln δ).

For each of these choices we need to check the feasibility of the system of linear inequalities

τψih(1)ν ≤
∑

P∈P:P⊂Sψih

zP ≤ (τψih(1) + 1)ν, 0 ≤ zP ≤ |P | (1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ, P ∈ P).

This can be performed in time polynomial in the encoding length of these linear equations. There are |P|+k22ks ≤ 2Λ
constraints and |P| ≤ Λ variables. The encoding length of the numbers involved is at most ln(n/δ). Therefore, the
running time is

poly (|Λ| ln(n/δ)) .

Consequently, the total running time is at most

Π(exp(−sk22k ln δ) · nk) ≤ Π
(

exp(kΓk22k(C/ε)2k ln(C/ε)) · nk
)

for some fixed polynomial Π and a constant Γ > 0. 2

5.2 Proof of Lemma 6
We shall prove below that for any τ ∈ {0, 1}V∣∣∣∣∣∣

∑
φ∈F

φ(τ)−
∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(τ(z))

∣∣∣∣∣∣ ≤ 2−k−2εm. (24)

This implies the assertion as follows. Since (24) holds for any τ ∈ {0, 1}V , we have OPT′ ≥ OPT(F) − 2−k−2εm.
Hence, if σ ∈ {0, 1}V satisfies (21), then (24) yields∑

φ∈F

φ(σ) ≥
∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(σ(z))− 2−k−2εm ≥ OPT′ − 3
4
· 2−kεm ≥ OPT(F)− 2−kεm. (25)

Finally, as for a random assignment τ ∈ {0, 1}V we have

E

∑
φ∈F

φ(τ)

 ≥ 2−km,

we conclude that OPT(F) ≥ 2−km. Hence, the assertion follows from (25).
To prove (24), we fix τ ∈ {0, 1}V and let D =

∑
ψ∈Ψ

∣∣∑
z∈V k(Aψ −Bψ)(z)ψ(τ(z))

∣∣ , so that∣∣∣∣∣∣
∑
φ∈F

φ(τ)−
∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(τ(z))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ψ∈Ψ

∑
z∈V k

Aψ(z)ψ(τ(z))−
∑
ψ∈Ψ

∑
z∈V k

Bψ(z)ψ(τ(z))

∣∣∣∣∣∣ ≤ D. (26)
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In order to estimate D, let Tψ = ψ−1(1) ⊂ {0, 1}k for any ψ ∈ Ψ. Moreover, for any t = (t1, . . . , tk) ∈ {0, 1}k

define R(t) =
∏k
i=1 σ

−1(ti) ⊂ V k. Then∣∣∣∣∣∣
∑
z∈R(t)

(Aψ −Bψ)(z)

∣∣∣∣∣∣ ≤ ∥∥Aψ −Bψ
∥∥

2
.

Therefore, the bound
∥∥Aψ −Bψ

∥∥
2
≤ αm entails

D =
∑
ψ∈Ψ

∣∣∣∣∣∣
∑
t∈Tψ

∑
z∈R(t)

(Aψ −Bψ)(z)

∣∣∣∣∣∣ ≤
∑
ψ∈Ψ

∑
t∈Tψ

∥∥Aψ −Bψ
∥∥

2
≤ 22k+kαm ≤ 2−k−2εm.

Thus, (24) follows from (26).

5.3 Proof of Proposition 2
Lemma 7 We have OPT′ − OPT′′ ≤ 2−k−2εm.

Proof Given an assignment σ ∈ {0, 1}V , we let θψih(y) = |Sψih ∩ σ−1(y)| for all ψ, i, h and y = 0, 1. Then

∑
ψ∈Ψ

∑
v∈V k

Bψ(z)ψ(σ(z)) =
∑
ψ∈Ψ

s∑
i=1

∑
z∈V k

Dψ
i (z)ψ(σ(z))

=
∑
ψ∈Ψ

s∑
i=1

∑
z∈

Qk
h=1 S

ψ
ih

dψi ψ(σ(z)) =
∑
ψ∈Ψ

s∑
i=1

∑
y∈{0,1}k

dψi ψ(y)
k∏
h=1

θψih(yh). (27)

We obtain a feasible solution to OPT′′ by letting zP = |σ−1(1) ∩ P | for all P ∈ P , τψih(1) = dθψih(1)/νe, and
τψih(0) = ν−1|Sψih| − τ

ψ
ih(1) (1 ≤ i ≤ s, 1 ≤ h ≤ k, ψ ∈ Ψ). To complete the proof, we shall compare the objective

function value attained by this solution with (27). To this end, observe that |θψih(y) − τψih(y)ν| ≤ ν for all i, h, ψ, y.
Therefore, ∣∣∣∣∣

k∏
h=1

θψih(yh)−
k∏
h=1

τψih(yh)ν

∣∣∣∣∣ ≤ 2kνnk−1 for all i, y, ψ. (28)

Since by Theorem 2 we have |dψi | ≤ CpΓk for all i, ψ, (28) yields∣∣∣∣∣∣
∑
ψ∈Ψ

s∑
i=1

∑
y∈{0,1}k

dψi ψ(y)

[
k∏
h=1

θψih(yh)− νk
k∏
h=1

τψih(yh)

]∣∣∣∣∣∣ ≤ CpΓk · s22k+2kνnk−1

≤ CpΓk · δs22k+2k+1nk ≤ 2−k−2εm (29)

by our choice of δ. Finally, combining (27) and (29), we conclude that OPT′′ ≥ OPT′ − 2−k−2εm, as desired. 2

Proof of Proposition 2. Letting θψih(y) = |Sψih ∩ σ−1(y)| for all ψ, i, h and y = 0, 1, we have

∑
ψ∈Ψ

∑
v∈V k

Bψ(z)ψ(σ(z)) =
∑
ψ∈Ψ

s∑
i=1

∑
y∈{0,1}k

dψi ψ(y)
k∏
h=1

θψih(yh). (cf. (27)).

Furthermore, since |zP − |σ−1(1) ∩ P || ≤ 1, we have

τψih(1)ν ≤
∑

P∈P:P⊂Sψih

zP ≤
∑

P∈P:P⊂Sψih

1 + |σ−1(1) ∩ P | ≤ |σ−1(1) ∩ Sψih|+ s ≤ |Sψih|+ ν;
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the last inequality follows from our assumption that n > n0 = 2s/δ. Similarly,

(1 + τψih(1))ν ≥
∑

P∈P:P⊂Sψih

zP ≥
∑

P∈P:P⊂Sψih

|σ−1(1) ∩ P | − 1 ≥ |σ−1(1) ∩ Sψih| − s ≥ |S
ψ
ih| − ν,

Hence, |τψih(y)ν − θψih(y)| ≤ 2ν. Consequently,∣∣∣∣∣
k∏
h=1

θψih(yh)−
k∏
h=1

τψih(yh)ν

∣∣∣∣∣ ≤ 22kνnk−1 for all i, y, ψ. (30)

As |dψi | ≤ CpΓk for all i, ψ by Theorem 2, (30) yields∣∣∣∣∣∣
∑
ψ∈Ψ

s∑
i=1

∑
y∈{0,1}k

dψi ψ(y)

[
k∏
h=1

θψih(yh)− νk
k∏
h=1

τψih(yh)

]∣∣∣∣∣∣ ≤ CpΓk · s22k+3kνnk−1 ≤ 2−k−2εm (31)

by the definition of δ. Thus, (30) and (31) yield the assertion 2

6 Examples
We present a few examples of bounded problem instances of MAX CUT and (MAX) k-SAT. The present techniques
provide a unified approach to problems that were previously studied by individually tailored methods. The first two
examples demonstrate how our results can be used to generalize average case analyses of algorithms. In the third
instance we show how our techniques complement a prior result on “planted” random 3-SAT.

6.1 MAX CUT
Let 0 ≤ p = p(n) ≤ 1 be a sequence of edge probabilities, and let Gn,p be a random graph on n vertices V =
{1, . . . , n} obtained by including each of the

(
n
2

)
possible edges with probability p independently. We say that Gn,p

has some property E with high probability (“w.h.p.”) if the probability that E holds tends to 1 as n → ∞. For any
graph G we let I(G) denote the set of all subgraphs H of G such that |E(H)| ≥ 0.01|E(G)|. Furthermore, for a fixed
ε > 0 we say that an algorithm A approximates MAX CUT within 1− ε on Gn,p-bounded graphs if the following two
conditions are satisfied:

1. For any input graph G the algorithm A either outputs a cut that is within a 1− ε factor of the maximum cut, or
just outputs “fail”. In the first case we say that the algorithm succeeds, in the second case it fails.

2. If G = Gn,p is a random graph, then with high probability A succeeds for all graphs in I(G).

Thus, the algorithm never outputs a solution that is off by more than 1 − ε, and for almost all outcomes G = Gn,p it
succeeds on all subgraphs G∗ ⊂ G that contain at least 1% of the edges of G. One can think of G∗ being constructed
by a malicious adversary, starting from the random graph G.

Theorem 10 Suppose that np ≥ c0(ε) for a number c0(ε) that only depends on ε > 0. The polynomial time algorithm
ApxCSP from Theorem 3 approximates MAX CUT within 1− ε on Gn,p-bounded graphs.

Proof MAX CUT fits into the general CSP framework discussed in Section 1.5 as follows. The set of variables is
the vertex set of the input graph G∗ = (V,E∗). Moreover, each edge e = {v, w} ∈ E∗ yields the (binary) contraint

σ ∈ {0, 1}V 7→
{

1 if σ(v) 6= σ(w),
0 otherwise.

Thus, the objective function value of the resulting CSP F is just the number of crossing edges of a maximum cut of
G∗.
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Let ε > 0, and let γ be as in Theorem 3 with C = 360. We claim that if np ≥ c0(ε) for a sufficiently large
c0(ε) > 0, then whp G = Gn,p has the property that for any G∗ ∈ I(G) the CSP instance F is (360, γ)-bounded. By
the construction of F , it is sufficient to show that the adjacency matrix A = A(G∗) is (180, γ)-bounded. To see this,
consider any two sets S, T ⊂ V of sizes |S|, |T | ≥ γn. Then

A(S, T ) ≤ 2eG∗(S, T ) ≤ 2eG(S, T ).

Since G = G(n, p) is a random graph, we have E(2eG(S, T )) ≤ 2|S × T |p. Moreover, as eG(S, T ) is binomially
distributed, Chernoff bounds entail that

P [2eG(S, T ) > 3|S × T |p] ≤ exp(−0.01|S × T |p) ≤ exp(−0.01 · γ2n2p) ≤ exp(−0.01γ2c0(ε) · n).

Hence, if c0(ε) is sufficiently large, then A(S, T ) ≤ 3|S×T |p with probability at least 1− exp(−2n). Since there are
at most 2n ways to choose S, T , the union bound entails that whp for all pairs of sets S, T of size at least γn we have

A(S, T ) ≤ 3|S × T |p. (32)

Finally, let q be the density of A. Since the number of edges of G(n, p) is (1 + o(1))
(
n
2

)
p whp (by Chernoff bounds),

and since G∗ ∈ I(G), we have 0.009p ≤ q whp. Hence, (32) entails that A(S, T ) ≤ 180|S × T |q for all S, T of size
at least γn whp, i.e., A is (180, γ)-bounded. 2

Theorem 10 readily yields a result on the “planted model” for MAX CUT. In this model a random graph G =
Gn,p,q is generated by partitioning the vertex set V = {1, . . . , n} randomly into two parts V1, V2, inserting each
possible V1-V2-edge with probability p, and each possible edge inside V1, V2 with probability q < p independently.
Improving upon prior work by Boppana [6], Coja-Oghlan [7] showed that a MAX CUT of Gn,p,q can be computed in
polynomial time whp, provided that n(p − q) ≥ ζ

√
np ln(np) for a certain constant ζ > 0 (actually [6, 7] are stated

in terms of MIN BISECTION, but things carries over to MAX CUT easily). Since the random graph Gn,p,q can be
obtained by first choosing Gn,p, then choosing a random partition (V1, V2), and finally removing random edges inside
of V1, V2, Theorem 10 encompasses this model. In fact, Theorem 10 comprises various generalizations of the “planted
cut” model (e.g., instead of planting a single cut, we could plant an arbitrary number of cuts, etc.).

6.2 MAX k-SAT
Let V = {x1, . . . , xn} be a set of n propositional variables, and let Fk(n, p) signify a k-SAT formula obtained
by including each of the (2n)k possible k-clauses with probability 0 ≤ p ≤ 1 independently (hence, we think of
each clause as an order k-tuple of literals). Let m = (2n)kp denote the expected number of clauses. We say that
Fk(n, p) has some property E with high probability if the probability that E holds tends to one as n→∞. Moreover,
for any k-SAT formula F we let I(F ) denote the set of all sub-formulas F∗ of F that contain at least 0.01m clauses.
Furthermore, for a fixed ε > 0 we say that an algorithmA approximates MAX k-SAT within 1−ε on Fk(n, p)-bounded
formulas if the following two conditions are satisfied:

1. For any input F the algorithmA either outputs an assignment such that the number of satisfied clauses is within
a 1− ε factor of the optimum for MAX k-SAT or just outputs “fail”.

2. If F = Fk(n, p), then whp A succeeds on all formulas in I(F ).

Theorem 11 Suppose that k ≥ 2 is fixed and that c0(ε)ndk/2e ≤ m = o(nk) for a number c0(ε) that only depends
on ε. The polynomial time algorithm ApxCSP from Theorem 3 approximates MAX k-SAT within 1 − ε on Fk(n, p)-
bounded formulas.

Proof Let F = Fk(n, p) be a random k-SAT formula. Then the problem of finding an assignment that maximizes
the number of simultaneously satisfied clauses can be stated as a MAX CSP problem in the sense of Section 1.5 as
follows. Each clause l1 ∨ · · · ∨ lk of F yields Boolean function as follows. Let si = 1 if li is just a variable yi, and
si = −1 if li is the negation of a variable yi. Then the clause yields the function

σ ∈ {0, 1}V 7→ max
i=1,...,k

1 + 2σ(yi)si − si
2

∈ {0, 1}.
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Hence, for at most 2k functions ψ ∈ Ψ the tensor Aψ
F is non-zero, and each of these 2k functions corresponds to one

way of choosing the signs (s1, . . . , sk).
Furthermore, the tensors Aψ

F corresponding to a sequence (s1, . . . , sk) of signs are random. More precisely, for
any tuple of indices 1 ≤ i1 < · · · < ik ≤ n the entry of Aψ

F (i1, . . . , ik) is one iff one of the k! clauses corresponding to
any permutation of the variables xi1∨· · ·∨xik occurs inF ; since we are assuming thatm = o(nk), the probability that
more than one of these clauses occurs is o(1). Hence, the entries of Aψ

F are mutually independent random variables.
Therefore, similarly as in the proof of Theorem 10 Chernoff bounds show that Aψ

F is (1000, γ)-bounded for any fixed
γ > 0 whp. 2

In particular, Theorem 11 applies to plainly random formula Fk(n, p), in which case the algorithm yields a lower
and an upper bound on the number of simultaneously satisfiable clauses. If k ≥ 3, then for m ≥ c0(ε)ndk/2e the
optimal assignment of Fk(n, p) satisfies a 1 − 2−k + o(1) fraction of the clauses whp (by a standard first moment
argument). Hence, w.h.p. the polynomial time algorithm ApxSAT yields a proof that there is no assignment satisfying
more than a 1 − 2−k + ε fraction of all clauses. The problem of deriving such a proof in polynomial time is known
as the “strong refutation problem” for random k-SAT (cf. Feige [9]), and a number of authors have tailored algorithms
specifically for this problem [8, 10, 15]. For even values of k, Theorem 10 matches the best known result [8].

6.3 Planted 3-SAT
Througout this section we let δ > 0 be a sufficiently small and ζ > 0 a sufficiently large constant; their precise values
will be specified implicitly in due course.

Consider the following model of random 3-SAT. Let V = {x1, . . . , xn} be a set of Boolean variables, and let
L = {x1, x̄1, . . . , xn, x̄n} be the set of literals. Let ~p = (p1, p2, p3) be a triple of numbers between 0 and 1. Then the
random formula F (n, ~p) is the outcome of the following experiment.

• Choose an assignment σ : V → {0, 1} uniformly at random.

• For any triple (l1, l2, l3) ∈ {x1, x̄1, . . . , xn, x̄n} of literals such that i = |{j ∈ {1, 2, 3} : σ(lj) = 1}| ≥ 1
include the clause l1 ∨ l2 ∨ l3 with probaility pi independently.

In words, F (n, ~p) has a “planted” assignment σ, and each possible clause containing i ≥ 1 satisfied literals under
σ gets included with probability pi independently. Considering the clauses as ordered triples of literals, we see that
the expected total number of clauses is n3p3 + 3n2p2 + 3n2p1. The following result concerning this model is due to
Flaxman [14].

Theorem 12 There is a polynomial time algorithm SpecSAT that satisfies the following. Assume that either p2 ≥
δ(p1 + p3) or p1 ≥ (1 + δ)p3 or p1 ≤ (1 − δ)p3. Moreover, assume that n2(p1 + 3p2 + 3p3) ≥ ζ. Then SpecSAT
applied to a random formula F = F (n, ~p) finds a satisfying assingment whp.

SpecSAT exploits spectral properties of the “projection graph” G(F) of a random formula F = F (n, ~p). The
vertex set of the projection graph is the set of literals, and two literals l, l′ are adjacent iff they occur together in a clause
of F . Hence, each clause corresponds to a triangle in G(F). If the triple ~p satisfies the assumptions of Theorem 12,
then the assignment σ yields a partition of G(F ) with one of the following properties; let T be the set of literals set to
true under σ and F = L \ T .

1. The number of T–F -edges is at least ( 1
2 + δ′)|E(G(F))|.

2. The number of edges within the set T is at least ( 1
4 + δ′)|E(G(F))|.

3. The number of edges within the set F is at least ( 1
4 + δ′)|E(G(F))|.

Here δ′ > 0 is a number that depends only on δ. In each of the three cases, the partition T ∪ F of the vertex set L is
reflected in spectral properties of G(F). The algorithm SpecSAT exploits this spectral information to recover (a very
good approximation to) the partition (T, F ) and hence a satisfying assignment.

However, if p2 ≤ δ(p1 +p3) and (1−δ)p3 ≤ p1 ≤ (1+δ)p3, then the partition (T, F ) does not stand out anymore.
In fact, if p2 = 0 and p1 = p3, then G(F) is a quasi-random graph (i.e., the global edge distribution is identical to
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that of a uniformly random graph with the same number of edges). Hence, in this case it is not possible to recover the
partition (T, F ) from G(F). Nonetheless, in the case p2 = 0 and p1 = p3 it is easy to find a satisfying assignment,
because then F is a random 3-XOR formula and thus a satisfying assignment can be found by Gaussian elimination.
Of course, this trick only applies if p2 is identically zero; if p2 > 0 but p2 < δ(p1 +p3), then the resulting problem is a
perturbed 3-XOR formula, in which case Gaussian elimination fails. Our contribution here is an algorithm for solving
F (n, ~p) that also applies to this case.

Theorem 13 There is a polynomial time algorithm Find3SAT that satisfies the following. Suppose that n2(p1 +
3p2 + 3p3) ≥

√
n ln10 n. Then applied to a random formula F = F (n, ~p) Find3SAT yields a satisfying assignment

whp.

Note that Theorem 13 requires the expected number of clauses to be at least n3/2 ln10 n, whereas Theorem 12
just requires ζn clauses for some constant ζ > 0. The reason for this is that random “perturbed” 3-XOR formulas
seem more difficult to deal with than other types of random formulas. Indeed, perturbed 3-XOR formulas play a
distinguished role in the context of refuting the existence of a satisfying assignment for a random 3-SAT formula
F3(n, p). Here p is chosen so that F3(n, p) is unsatisfiable whp and the goal is to certify in polynomial time that no
satisfying assignment exists (cf. Section 6.2). Given a random formula F = F3(n,m) with m ≥ ζn clauses for some
large enough constant ζ, it is easy to certify in polynomial time that if F has a satisfying assignment τ , then τ satisfies
all but δm clauses in a 3-XOR fashion (i.e., either all or exactly one literal is satisfied) [9]. But in order to refute the
existence of a satisfying assignment of this type (and thus to certify that the formula has no satisfying assignment at
all), the best current polynomial time algorithm requires m ≥ ζn3/2 [11]. In fact, techniques that allow to improve
the bound in Theorem 13 to n3/2−Ω(1) may very well yield improved refutation algorithms (and vice versa).

Algorithm 14 Find3SAT(F)
Input: A 3-SAT formula F over the variables V = {x1, . . . , xn} with m clauses.
Output: An assignment τ : V → {0, 1}.

1. If SpecSAT(F) finds a satisfying assignment of F , output this assignment and terminate.
2. Let R be the 4-SAT formula obtained from F as follows.

If l1, l2, l3, l4 are four literals such that there is a variable z such that the clauses l1 ∨ l2 ∨ z and
l3 ∨ l4 ∨ z̄ occur in F , then include the clause l1 ∨ l3 ∨ l2 ∨ l4 into R.

Call ApxCSP(R, 100, δ) and let τ ′ be the resulting assignment. Let τ ′′ be the inverse of τ ′. Let τ be the
assignment among τ ′, τ ′′ that satisfies the larger number of clauses of F .

3. Repeat the following dlnne times.
4. For any literal λ set to false under τ compute the number νλ of clauses λ ∨ l ∨ l′ such that l, l′ are

literals set to true under τ . Let Λ = {λ : 8nνλ > m}. Modify τ so that all literals in Λ get set to true.
5. Output τ if it is a satisfying assignment. Otherwise, output “fail”.

In its first step Find3SAT calls SpecSAT, which finds a satisfying assignment whp unless p2 ≤ δ(p1 + p3) and
(1− δ)p3 ≤ p1 ≤ (1 + δ)p3. If SpecSAT fails, Find3SAT sets up the 4-SAT formulaR via the resolution principle.
Hence, R is a satisfiable 4-SAT formula. Then, Find3SAT applies ApxCSP to R. The following lemma shows that
calling ApxCSP is feasible.

Lemma 8 Suppose that p2 ≤ δ(p1 + p3) and (1− δ)p3 ≤ p1 ≤ (1 + δ)p3. For any fixed number γ > 0 the formula
R is (100, γ)-bounded whp

Hence, ApxCSP outputs an assignment τ that satisfies at least a 1− δ fraction of all clauses ofR.

Lemma 9 Suppose that p2 ≤ δ(p1 + p3) and (1 − δ)p3 ≤ p1 ≤ (1 + δ)p3. The assignment τ computed in Step 2 is
within Hamming distance at most 0.01n of the planted assignment σ whp

Hence, Step 2 yields an assignment that is “close” to the planted assignment whp Then, Steps 3 and 4 perform a local
improvement operation.
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Lemma 10 Suppose that p2 ≤ δ(p1 +p3) and (1− δ)p3 ≤ p1 ≤ (1+ δ)p3. After i iterations of Step 4 the assignment
τ is at Hamming distance at most 5−in from the planted assignment σ.

Finally, Theorem 13 is an immediate consequence of Theorem 12 and Lemmas 8–10.

6.3.1 Proof of Lemma 8.

Let F be a 3-SAT formula over V . We set up a 4-tensor A(F) : L4 → {0, 1} with entries

A(l1, l2, l3, l4) =
{

1 if the clause l1 ∨ l2 ∨ l3 ∨ l4 occurs inR
0 otherwise.

In order to show that F is (100, γ)-bounded whp, it suffices to show that

A(F(n, ~p)) is (100, γ)-bounded whp for any fixed γ > 0. (33)

Let q = p1 + p2 + p3, set ~q = (q, q, q), and let F∗ = F (n, ~q). We can think of F∗ as a random formula obtained
by first choosing F = F (n, ~p), and then adding each possible clause with i satisfied literals that is not present in F
with probability (q − pi)/(1 − pi) independently. Since the expected number of clauses in F(n, ~q) is at most three
times the expected number of clauses in F (n, ~p), the following implies (33).

A(F (n, ~q)) is (33, γ)-bounded whp for any fixed γ > 0. (34)

To show (34), we employ the following result from [8, Lemma 3.3]. We let ~J signify a matrix with all entries
equal to one.

Lemma 11 Let F = F (n, ~q), Let B(F) be the (2n)2 × (2n)2 matrix constructed from A(F) as in (3). Let Q = nq2.
Then ‖Q~J −B(F)‖ = o(n2Q).

Proof of (34). Let B = B(F (n, ~q)). The expected number E ‖B‖2 of ones in B is (2n)4Q. For B((l1, l2), (l3, l4))
equals one iff there is a variable z such that both l1∨ l3∨z and l2∨ l4∨ z̄ occur in F (n, ~q), and since the probability of
this event is q2, and there are n ways to choose z, we have P [B((l1, l2), (l3, l4)) = 1] = nq2 = Q. Hence, Chernoff
bounds entail that ‖B‖2 ∼ (2n)4Q whp. Consequently, the density Q̂ = (2n)−4 ‖B‖2 satisfies Q̂ ∼ Q whp.

Let S, T ⊂ L×L be sets of size at least γn2. Let~1S ∈ {0, 1}L×L be the indicator of S, and let~1T be the indicator
of T . Then by Lemma 11

|Q|S × T | −B(S, T )| =
∣∣∣〈(Q~J −B)~1T ,~1S

〉∣∣∣ ≤ ‖Q~J −B‖ · ‖~1T ‖ · ‖~1S‖

= o(n2Q) ·
√
|S × T | = o(Q|S × T |),

where the last step follows from the assumption |S|, |T | ≥ γn2. Hence, B(S, T ) ∼ Q|S × T | whp. As Q ∼ Q̂, this
implies that B(S, T ) ∼ Q̂|S × T |, and thus B(S, T ) ≤ 1.01Q̂|S × T | whp. Consequently, B is (1.01, γ)-bounded
whp, whence (34) follows (with room to spare). 2

6.3.2 Proof of Lemma 9.

Let α = 0.01.

Lemma 12 W.h.p. either τ ′ or τ ′′ is within Hamming distance ≤ αn of σ.

Proof Without loss of generality we may assume that σ(x) = 1 for all x ∈ V . We will use a first moment
argument to show that whp any assignment τ ′ that satisfies a (1− δ)-fraction of the clauses ofR has the property that
either τ ′ or its inverse τ ′′ is at Hamming distance at most αn from σ. Then the assertion follows from Theorem 3.

Thus, consider any assignment τ ′ such that both τ ′ and τ ′′ are at Hamming distance more than αn from σ. Then
there are at least αn literals l such that σ(l) = 1 and τ ′(l) = 0 and at least αn literals l′ such that σ(l′) = 0 and
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τ ′(l′) = 1. For a variable z we let `z be the set of all clauses l1 ∨ l2 ∨ z in F = F (n, ~p) such that σ(l1) = σ(l2) = 1
and τ ′(l1) = τ ′(l2) = 0 (l1, l2 ∈ L). Moreover, ¯̀

z denotes the set of all clauses l3 ∨ l4 ∨ z̄ in F such that σ(l3) = 1
and σ(l4) = τ ′(l3) = τ ′(l4) = 0 (l3, l4 ∈ L). Then (|`z|, |¯̀z|)z∈Z is a family of mutually independent binomial
random variables. Moreover, for all z ∈ V

E(|`z|) ≥ α2n2p3 ≥
√
n ln9 n, E(|¯̀z|) ≥ α2n2p1 ≥

√
n ln9 n. (35)

Let us call z bad for τ ′ if either `z < E(|`z|)/2 or ¯̀
z < E(|¯̀z|)/2. Then (35) implies in combination with Chernoff

bounds that z is bad with probability at most exp(−
√
n). Since the numbers |`z|, |¯̀z| are independent for all z, this

entails that with probability at least 1 − 4−n there are at most n/2 bad variables. Hence, by the union bound there is
no assignment τ ′ such that both τ ′ and τ ′′ are at Hamming distance more than αn from σ and τ ′ has more than n/2
bad variables.

Thus, suppose that there are less than n/2 bad variables for τ ′. Consider a z ∈ V that is not bad. Then every pair
of clauses (l1, l2, z) ∈ `z , (l3, l4, z) ∈ ¯̀

z yields a clause (l1, l3, l2, l4) of R that τ ′ does not satisfy. Consequently, τ ′

fails to satisfy at least ∑
z∈V

`z ¯̀
z ≥

n

2
· α

4

4
n4p1p3 = α4n5p1p3/8 (36)

clauses. On the other hand, the expected number of clauses in R is at most 2n5p1p3 by our assumption that p2 <
δ(p1 + p3) and (1− δ)p3 ≤ p1 ≤ (1 + δ)p3. Hence, by Chernoff bounds the total number of clauses in R is at most
3n5p1p3 whp. Therefore, the assertion follows from the lower bound (36) on the number of clauses that are unsatisfied
under τ ′, provided that δ is sufficiently small. 2

To complete the proof of Lemma 9, we establish the following two facts.

Fact 15 W.h.p. any assignment χ : V → {0, 1} at Hamming distance at least (1 − α)n from the planted assignment
σ fails to satisfy at least (1− α)4n3p3 clauses of F = F (n, ~p).

Proof We use a first moment argument. If χ is at Hamming distance at least (1 − α)n from σ, then there are at
least (1− α)n literals l such that σ(l) = 1− χ(l) = 1. Hence, the expected number of clauses l1 ∨ l2 ∨ l3 occurring
in F (n, ~p) such that σ(li) = 1 − χ(li) = 1 for i = 1, 2, 3 is at least (1 − α)3n3p3 ≥ (1 − α)3n3/2 ln9 n. Clearly,
each of these clauses is unsatisfied under χ. Moreover, the number of such clauses is binomially distributed, whence
Chernoff bounds entail that with probability at least 1− 4−n χ fails to satisfy at least (1− α)4n3/2 ln9 n clauses. As
there are only 2n assignments V → {0, 1} in total, the assertion follows from the union bound. 2

Fact 16 W.h.p. any assignment χ : V → {0, 1} at Hamming distance at most αn from the planted assignment σ fails
to satisfy at most 6α(n3p3 + 3n3p1 + 3n3p2) clauses of F = F (n, ~p).

Proof Any clause of F = F (n, ~p) that is unsatisfied under χ contains a literal l such that σ(l) 6= χ(l). The
probability that a randomly chosen literal has this property is at most α. Since each clause contains three literals, the
expected number of clauses that contain a literal l such that σ(l) 6= χ(l) is at most 3α(n3p3 + 3n3p1 + 3n3p2). As
the number of such clauses is binomially distributed, with probability at least 1 − 4−n there are at most 6α(n3p3 +
3n3p1 + 3n3p2) of them. Hence, the assertion follows from the union bound. 2

Finally, Lemma 9 is an immediate consequence of Lemma 12 and Facts 15 and 16. 2

6.3.3 Proof of Lemma 10.

We shall establish the following fact via a first moment argument. Let α = 0.01.

Fact 17 W.h.p. any assignment τ : V → {0, 1} that is at Hamming distance ∆ ≤ αn from σ satisfies the following.

1. The number of literals λ such that τ(λ) = 1− σ(λ) = 0 and νλ ≤ m/(8n) is less than ∆/10.

2. The number of literals λ such that τ(λ) = σ(λ) = 0 and νλ > m/(8n) is less than ∆/10.
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Since the initial assignment τ has Hamming distance at most αn from σ by Lemma 9, Fact 17 shows that the Hamming
distance of τ and σ decreases by a factor of 5 in each iteration. Hence, after at most lnn iterations we have σ = τ , as
desired.

Thus, the remaining task is to establish Fact 17. Let 0 < ∆ ≤ αn and let τ : V → {0, 1} be any assignment
such that τ and σ have Hamming distance ∆. With respect to the first item, suppose that τ(λ) = 0 and σ(λ) = 1.
There are at least (1 − α)2n2 pairs (l, l′) of literals such that σ(l) = σ(l′) = τ(l) = τ(l′) = 1, and for each such
pair the clause λ ∨ l ∨ l′ is present in the random formula F = F (n, ~p) with probability p3 independently. Hence,
letting ν′λ signify the number of such clauses, we have νλ ≥ ν′λ and ν′λ is binomially distributed with mean at least
(1− α)2n2p3 ≥

√
n ln9 n. Hence, by Chernoff bounds

P
[
νλ < 0.99 · (1− α)2n2p3

]
≤ P

[
ν′z < 0.99 · (1− α)2n2p3

]
≤ exp(−

√
n).

Since the random variables νλ are mutually independent for all λ, the number of literals λ ∈ τ−1(0)∩σ−1(1) such that
νλ < 0.99 · (1− α)2n2p3 is dominated by a binomially distributed random variable with mean exp(−

√
n)∆. Hence,

with probability at least 1− n−3∆ the number of λ with τ(λ) = 1− σ(λ) = 0 and νλ < 0.99 · (1− α)2n2p3 is less
than ∆/10. Since there are

(
n
∆

)
assignments τ at Hamming distance ∆ from σ, we thus conclude that with probability

at least 1 −
(
n
∆

)
n−3∆ ≥ 1 − n−2 all of them have the property that there are at most ∆/10 such λ. Finally, as m is

binomially distributed with mean n3p3 + 3n3p2 + 3n3p1, Chernoff bounds yield that m ∼ n3p3 + 3n3p2 + 3n3p1

whp. If this is so, then any literal λ with τ(λ)) = 1− σ(λ) = 0 that satisfies νλ ≥ 0.99 · (1− α)2n2p3 also satisfies
νλ ≥ m/(8n), because we are assuming that p2 ≤ δ(p1 + p2) and p1 ≤ (1 + δ)p3. This complete the proof of the
first item.

Regarding the second item, we consider a literal λ such that τ(λ) = σ(λ) = 0. If l, l′ ∈ τ−1(1) are literals such
that λ ∨ l ∨ l′ occurs as a clause in F = F (n, ~p), then either σ(l) = σ(l′) = 1 and λ ∨ l ∨ l′ has exactly two satisfied
literals under σ, or σ and τ differ on exactly one of l, l′. Hence, the expected number of such clauses is at most

E(νλ) ≤ n2p2 + 2αn2p1 ≤ 3αn2p1,

because we are assuming that p2 ≤ δ(p1 + p3) and p1 ≥ (1 − δ)p3. Since 3αn2p1 ≥
√
n ln9 n and νλ is binomially

distributed, Chernoff bounds imply that

P
[
νλ > 6αn2p1

]
≤ exp(−

√
n).

Furthermore, the numbers νλ are mutually independent. Hence, the number of all λ with τ(λ) = σ(λ) = 0 such
that νλ > 6αn2p1 is binomially distributed with mean ≤ n exp(−

√
n). Therefore, Chernoff bounds entail that with

probability at least 1 − n−3∆ there are at most ∆/10 such λ. Since the total number of assignments τ at Hamming
distance ∆ from σ is

(
n
∆

)
, we conclude that with probability at least 1 − n−2 for all of them there are at most ∆/10

literals λ with τ(λ) = σ(λ) = 0 such that νλ > 6αn2p1. Finally, as m ∼ n3p3 + 3n3p2 + 3n3p1 whp and because
we are assuming that p2 ≤ δ(p1 + p3) and (1 + δ)p3 ≥ p1 ≥ (1 − δ)p3, we have m/(8n) > 6αn2p1 whp. Hence,
there are at most ∆/10 literals λ with τ(λ) = σ(λ) = 0 and νλ > m/(8n) whp. 2
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