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Abstract

Consider a connected r-regular n-vertex graph G with random independent edge
lengths, each uniformly distributed on [0, 1]. Let mst(G) be the expected length of a
minimum spanning tree. We show in this paper that if G is sufficiently highly edge
connected then the expected length of a minimum spanning tree is ~ 2((3). If we
omit the edge connectivity condition, then it is at most ~ ({(3) + 1).

1 Introduction

Given a connected simple graph G = (V| E) with edge lengths x = (z. : e € E), let
mst(G,x) denote the minimum length of a spanning tree. When X = (X, : e € E) is a
family of independent random variables, each uniformly distributed on the interval [0, 1],
denote the expected value E(mst(G,X)) by mst(G). Consider the complete graph K,,. It
is known (see [2]) that, as n — oo, mst(K,) — ((3) . Here ((3) = Y72, 7~ ~ 1.202.
Beveridge, Frieze and McDiarmid [1] proved two theorems that together generalise the
previous results of [2], [3], [5].

Theorem 1 For any n-vertex connected graph G,

n

mst(G) > 7(¢(3) - &)

where A = A(G) denotes the mazimum degree in G and €, = €;(A) — 0 as A — oo.
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For an upper bound we need expansion properties of G.

Theorem 2 Let a = a(r) = O(r~/3) and let p = p(r) and w = w(r) tend to infinity with
r. Suppose that the graph G = (V, E) is connected and satisfies

r<§<A<(1+a) (1)
where d = 6(G) denotes the minimum degree in G. Suppose also that
I(S: 8)|/|S| > wr¥3logr for all S CV with r/2 < |S| < min{pr, |V|/2}, (2)
where (S : S) ={(z,y) € E: z€ S,y S=FE\S}. Then
n n
— = < €o—
mst(QG) rC(3) < €

where the €3 = €a(r) — 0 as 7 — 0.

For regular graphs we of course take a = 0.

The expansion condition in the above theorem is probably not the “right one” for
obtaining mst(G) ~ 2({(3). We conjecture that high edge connectivity is sufficient: Let
A = A(G) denote the edge connectivity of G.

Conjecture 1

Suppose that (1) holds. Then,

mst(G) — 24(3) < 632

where €3 = €3(A) = 0 as A — oo.

Note that A — oo implies r — oc.
Along these lines, we prove the following theorem.

Theorem 3 Assume o = a(r) = O(r~/3) and (1) is satisfied. Suppose that r > \(G) >
wr?/®logn where w = w(r) tends to infinity with r. Then

mst(G) — gg(?,) < 642

where the €4 = €4(r) — 0 as 7 — oo.

Remark: It is worth pointing out that it is not enough to have » — oo in order to have the
result of Theorem 2, that is, we need some extra condition such as high edge connectivity.
For consider the graph I'(n,r) obtained from n/r r-cliques Cy,Cy, ... ,C,/, by deleting an
edge (z;,y;) from C;, 1 <14 < n/r then joining the cliques into a cycle of cliques by adding
edges (i, ;1) for 1 <i < n/r. It is not hard to see that

mst(T(n,r)) ~ = (C(3) + %)

if r — oo with 7 = o(n). We repeat the conjecture from [1] that this is the worst-case, i.e.
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Conjecture 2 Assuming only the conditions of Theorem 1,

mst(C) < 5 <C(3) + % + es)

where €5 = €5(0) — 0 as 6 — 0.
We prove instead

Theorem 4 If G is a connected graph then
n

mst(G) < 5

(€(3) +1+¢€)

where the eg = €g(6) — 0 as § — oo.

We finally note that high connectivity is not necessary to obtain the result of Theorem 2.
Since if r = o(n) then one can tolerate a few small cuts. For example, let G be a graph
which satisfies the conditions of Theorem 2 and suppose r = o(n). Then taking 2 disjoint
copies of G and adding a single edge joining them we obtain a graph G’ for which mst(G’) ~
14+ ™{(3) ~ ®((3) where n' = 2n is the number of vertices of G

2 Proof of Theorem 3

Given a connected graph G = (V, E) with |V| =n and 0 < p < 1, let G, be the random
subgraph of G with the same vertex set which contains those edges e with X, < p. Let
k(G) denote the number of components of G. We shall first give a rather precise description

of mst(QG).

Lemma 1 [1/
For any connected graph G,

mst(G) = /:0 E(k(Gp))dp — 1. (3)

We substitute p = z/r in (3) to obtain

mst(G) = — / ;0 E(x(Gajr))da — 1.

r

Now let C , denote the total number of components in G/, with k vertices. Thus



Proof of Theorem 3

In order to use (4) we need to consider three separate ranges for  and k, two of which
are satisfactorily dealt with in [1]. Let A = (r/w)Y3, B = |(Ar)Y*| so that each of Ba,
AB?/r and A/B — 0 as r — oco. These latter conditions are needed for the analysis of the
first two ranges.
Range 1: 0 <z < Aand 1<k < B —see [1].

E / Y E(Cua)de = ofn/r)

Range 3: z > A.

We use a result of Karger [4]. A cut (S :5) = {(u,v) € E: ue S,v¢S}of G is
y-minimal if |(S : §)| < y\. Karger proved that the number of y-minimal cuts is O(n??).
We can associate each component of G, with a cut of G. Thus

iE(Ck,z) <O <i n2s/A (1 — §>s> -0 (i(nw*e—m)s/r>

s=A

fes} —zA/r
=0 / (n*/*e™)*"ds ) = O 77%26 /
s=A T — 5 logn

and
1 T T 2 —z\/r 2 ,—AN/r
—/ ZE (Crz)dz =0 (/ 77“2 dm)zo(ine ):O(n/r).
r A AT — = logn r
We complete the proof by applying Lemma 1. O

3 Proof of Theorem 4

We keep the definitions of A, B and Ranges 1,2, but we split Range 3 and let § = r.
Range 3a: z > A and k£ < (1 —¢)r, 0 < € < 1, arbitrary — see [1] (here e = 1/2 but the
argument works for arbitrary ¢).

(1 e)r

/ E(Cy.)dz = o(n/r).

A k=1

Range 3b: z > A and k > (1 — ¢)r.



Clearly

and hence
/ Z E(Cy,)de < —
Ap— (1—e)r (1 N 6)7'
We again complete the proof by applying Lemma 1. O
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