The worst-case running time of the random simplex
algorithm is exponential in the height
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Abstract

The random simplex algorithm for linear programming proceeds as follows: at each
step, it moves from a vertex v of the polytope to a randomly chosen neighbor of v,
the random choice being made from those neighbors of v that improve the objective
function. We exhibit a polytope defined by m constraints in three dimensions with
height O(logn), for which the expected running time of the random simplex algorithm
is Q(n/logn).
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We consider linear programming problems defined by n constraints involving d variables.
The constraints define a polytope in d dimensions; we seek a point of the polytope that
maximizes an objective function that is linear in the variables. It is known that the optimum,
if bounded, occurs at a vertex of this polytope. The classic stmplez algorithm begins at a
vertex of the polytope and, at each step proceeds to a neighboring vertex that improves the
objective function. The simplex algorithm uses a deterministic rule to choose among the
neighbors with improving objective function at each step. For virtually all such known rules,
there are polytopes for which the simplex algorithm requires time exponential in d [5].

The random simplez algorithm [1, 2] is the following: at each step, go to a neighbor chosen
uniformly at random from all neighbors that improve the objective function. It is not known
whether the expected number of steps for the random simplex algorithm is sub-exponential
in d.
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Figure 1: Graph of polytope

Without loss of generality, we restrict our attention to polytopes for which the optimum
occurs at a unique vertex. We may associate a directed graph with the polytope, in which
there is one node for each vertex of the polytope. There is an arc directed from each node to
each neighbor that improves the objective function. The distance from a node in this graph
to the optimal vertex is called the hetght of the node.

One route to establishing a polynomial bound might be to show that for every instance
the expected number of steps is polynomial in the maximum height of any node. Currently
the best-known upper bound on the height is n!'°¢22¢ [3], but a variant of the celebrated
Hirsch conjecture states that in fact the height is n — d (Todd [6] in fact shows that it cannot
be exactly n — d, but the height could still be very close to n — d). If it were possible to show
that the expected number of steps for the random simplex algorithm is polynomial in the
height, one could then focus on improving the upper bound on height. We show here that
this particular approach is doomed, by exhibiting a polytope in three dimensions with height
O(log n) on which the expected number of vertices visited by the random simplex algorithm
is Q(n/logn). However, it should be stressed that this does not preclude the possibility that
the expected number of steps is polynomial in the number of variables and constraints in
the instance. Our result only shows that an upper bound polynomial in the height alone will
not suffice.

Consider the planar graph shown in Figure 1. This is the edge-vertex graph of a three-



Figure 2: Pulling apart degenerate vertices

dimensional polytope. Imagine an arrow on each arc pointing downwards in the figure; the
arrow denotes the direction in which the objective function improves. The reader may think
of the direction of improving objective function as “vertically downwards”. Optimality is
attained at the vertex denoted v. For a constant ¢ > 1, the polytope is composed of a
cascade of n/log, n “traps”, each resembling a parallelogram, one triangle of which contains
a “fan”. Each fan has clog, n vertices; thus the length of the path running down the right
edge of the figure is Q(n/log, n).

It may not be immediately apparent that the graph of Figure 1 can be realized as a
three-dimensional polytope with an objective function which induces the required ordering.
There is a single plane “bottom” face containing v and the bounding polygon in Figure 1.
The remainder of the polytope is above this plane. To construct it we first build the polytope
which results from deleting the fans in Figure 1. It is easy to do this inductively by adding
pairs of points, starting with a tetrahedron P, having vertices vA; ByB; with v far below
By B in the bottom plane and A; above the plane near By and B;. Then, to construct Py
from Py for & > 0, we add two vertices. We put Byys in the bottom plane near Byy; so
that it forms a convex polygon with the other B’s, then we place Agy1 near Byys so that
it forms new edges with Ay, B, Brio and v, and the edge AxBgy1 disappears. It is clear
that this can be done by placing the new vertices appropriately with respect to the existing
faces. Now the fans are created by “slightly pulling” the edge B;A;41 for e = 1,2,... so that
it forms a convex polygon in the plane A;B;A;,1 whose vertices “see” only B;y;. For : =0
we do the same but with Ag = v. This completes the construction.

The role of the fans is to repeatedly foil the algorithm from getting to the bottom-most
vertex of any fan (where it would have a constant probability of proceeding to v). Instead,
the fans repeatedly deflect the algorithm to the path running down the right edge of the
figure.

The algorithm is started at the highest neighbor of Ag. With probability (1 — n~¢) it
fails to reach the bottom of the first fan and proceeds to the next, and so on. There is a
probability (1 — n~°!) that the algorithm never reaches the bottom-most vertex of any of
the fans, and thus visits all the Q(n/logn) vertices of the path running down the right edge
of the figure.

The reader may object that the polytope of Figure 1 is highly degenerate, particularly
at the vertex v. However, it is easy to transform each high degree vertex into a balanced
tree with all interior vertices of degree 3. The construction consists of repeatedly “pulling
apart” the faces meeting at the vertex. It is illustrated in Figure 2. This modification will
at most double the path lengths in the example.



Figure 3: Example for Kalai’s algorithm

An even simpler example shows that a similar dependence holds for Kalai’s algorithm [4].
It is the tilted cone with an n-sided polygon as base as shown in Figure 3. The algorithm
is started at u. It chooses a random facet incident on u and recursively optimizes over this
facet, and then repeats. There is a constant probability that the algorithm first chooses to
traverse the polygon, and hence takes ((n) steps, when the height of any vertex is O(log n)
(it is not a constant, but rather O(logn) because we break up the point of the cone as in

Figure 2.)
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