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We describe a simple heuristic for determining the p-centre of a finite set. of weighted points in an arbitrary metric space. The

computational effort is O(np) for an n-point set. We show that the ratio of the objective function value of the heuristic solution .

- to that of the optimum is bounded by min(3, 1+ &), where a is the maximum weight divided by the minimum weight of points

in the set.

p-centre problem # heuristic solution

N 1 Introduction

- Location probiems of-the type we consider here
have been discussed by various authors. See, for
exampie, [1,7]. To define the problem formally, let
X be any (complete) metric space, with metric
d(-, -). Let V be any subset of X of (finite) size n,
with positive weights w(v) for each v € V. Then
the p-centre problem may be cast as:

Determine ¢, ¢;,...,¢, to

_F(x], ng---sxp)! :
Whel‘e o .F(-xla x21"‘3xp) (1.1)

-minimize
=max min w(v)d(v, x,).
veEV l<igp

We will write = F(cy, ¢5,..2,¢,).
The most usual setting for this type of problem

is in a finite-dimensional Euclidean space. In par-

ticular the planar case is of prdctical interest.

" However, it has been shown that the problem (1.1)
is. NP-hard even in the planar Fuclidean case.

[3,8,9). Thus heuristics are more likely to be of
practical use in the general case. In Section 2 we
describe an extremely simple,_ heuristic,-and prove

that it guarantees min(3, 1 + «) times the mini-

mum value of F in the worst case, where a is the

maximum ratio between the weights of points in

. V. Note that in the case where all the weights w{v)-

are equal, which is often called the wnweighted - -
- case, this reduces to only twice the optimum, since
then a=1. This heuristic requires only O(np):

distance evaluations, arithmetic operations -and
comparisons. The idea behind the heuristic is fairly
intuitive. We select any point of largest weight for
the first centre. Then we successively choose new
centres so that the next centre chosen is the point
which has the largest weighted distance from its
nearest centre. We repeat this until we have the
required number of centres. This has the useful
property that the ( p + 1)-centre solution is a su-
perset of the p-centre solution,

2. A p-centre heuristic

Consider the following heuristic for generating

p points vy, vy,..., v, of V.

Heuristic H A

(0) Choose v; € ¥V so .that w(p,)=" '
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max,, o ,w(r). (If there are ties for the maxi-
~mum, choose arbitrarily amongst these.): Set
D(v).«— w(v)d(v, v;) for each v V
(1) While i < p do
Determine v;_; by
D(v; ) =max, ., D(v).

St D(v) < min{D(), w(v)d(v, 0,,1)}

for all ve V.

It is easy to verify that H, requires O(np)-

distance evaluations, arithmetic operations and
comparisons. We take vy, v;,...,0, as the p
centres. Note that all v; = V. The quahty of the
heuristic solution is then measured by F
F(vy, 03,...,0,). Let v, denote the point chosen
in.a hypothetlcal pth repetition of the while-loop
in H,. (Thus v,, vy,...,v,,, are the points which
would be selected by H,_,.) Let 1, be the point
such that, when y; 1s chosen during the (i — 1)th
repetition of the loop, D(uv;)=w(v,)d(v;5 U,y)-
Then it follows easily that these D(v,) values form
a nonincreasing sequence, and that F =D(y, ).
Let

a=maxw(v)/minw(v)
) veV ) vEV

and
8 =min(3, 1 + ).

We may now prove the foliowmg results relating
the values of the heuristic and optimal solutions.

Theorem 1. -FHp <6F,.

Proof. The optimal -centres are ¢, ¢,,..., c,. Let

V= {v: d(v, ¢,) = mind(v, cj)}.

w()d(v, ¢) < Fy.

Now, by the pigeonhole pnnmple some V; in-
cludes at least two of v,, v,,...,0,+ 1. Thus sup-
pose that V; contains v, and o, w1th lgi<jx
p+l.LetB= w(u )/w(u ). Note that 8 < a. Con-
sider the foIlowmg two cases.

(a) B <2 Thus 8 < min(e, 2), and hence 1 + 8

< 8. Note also that this case 1nc1udes.: =1, since
then, by choice of vy, B
observations,

F, < w(v,)d (o, v ;))
<w(v)d(v;, v;)

Clearly V, partitions V and, for all »e ¥,
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- 2w(y)d(v;,

< 1. Then, by the above |
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by the minimality of v, ;,,

< W(Uj){d(uj: ) +d(v;, Ck)'}'
by the triangle inequality,

and i <7,

=w(y)d(v;, ;) +Bwlor)d(v;, ck)
<(1+B8)F _
< 6F,. ' N i .
(b) B=2. Then, clearly, >2 a.nd hence8 3
Observe that we have 8> 2(1+ 8~'). We may &

also assume i>1. Let v, (/<i) be the closest
point to v; at the stage when v, is chosen. Then

Fﬂpgw(uj)d(t)j’ Zsy) S : o i

<w(v;)d(v;, v))

by the mimmahty of v
<w(v)d(v,, ”r(i))

otherwise u; would have been chosen
rather than Ui,

<w(v f)d(vi? )
by the minimality of v,;,,
<wlv){d(v;, v;) +d(v;, 0,)}
by the triangle inequality.

Now suppose that d(u;, 'v )< d(v;, ), then the
above inequalities would yleld w(v Yd(y;, v) <
v;). Thus we would have w(v )<
2w(v,), whmh contradicts 8 > 2. Thus we must, in
fact, have d(v;, v;)>d(v,, v;), and hence

F <2w(v,)d(v;, v;)
< 2w(1){d(v;, ) +d(v, ¢))
by the triangle inequality, o
—Z{W(v)d(v,,ck)w W(v)a’( s

<2(1+87")F
<8F,.
This completes the proof.

r(j)’

To show that the above bound is tight, consider
the four points on the line R, with the usual
distance measure, shown in Figure 1, Here we

have 1<w<2 It may be verified that ‘we: can
k.
weight: w w 1 1 s
a . . b c d }
b

.(—-M—.1+w—_x—-'-1,—x—_-w———>

Fig. 1.
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. have, in the case p=12, -

F;=Fla, dy=w(l+ w)

and Fy< F(a,c)=w. Thus Fy; /Fyz1+w=28,
where 8 is as defined above. Tﬁe replication of
this configuration, with a large separation between
each replication, can be used to show that the
bounds are tight for all p. ~

3. Comments and conclusions

We have shown that the heuristic H, gives

- solutions which are never more than 8 times the

optimum. This bound is obviously tightest when
8§=2, ie. a=1, the unweighted case. Now it is
known [4,6] that it is NP-hard to produce solutions
to the general unweighted p-centre problem which
are within 7 times the optimum for any =< 2.
Thus, In a certain sense, the heuristic H, is best

possible, A 2 times optimal heuristic for the p- -

centre problem on graphs with the triangle in-
equality on their edge distances has been given by
Hochbaum and Shmoys [4], for the vertex un-
weighted case. This is a special case of our un-
weighted problem. Their heuristic, which differs
from ours, runs in time O(|E|log|E]) on a com-
plete graph, which is O(n’ log n) time on an n-
vertex graph. Our heuristic tunes in time O(np)=
O(n?) time in this case since, in adjacency matrix
form, distance calculations on the graph can be
done in constant time (in view of the triangle
inequality). Actually Hochbaum and' Shmoys use
an adjacency list form, but an adjacency matrix
can be prepared from such an input in O(#?) time.
Hochbaom and Shmoys have also generalised their
methods to certain types of weighted problems on
graphs in [5].

The quality of solutions given by our heuristic
can be improved if we can optimally solve, say, the
1-centre problem in X. For each v; we determine
the set N, of its closest points, ie. vEN, if

d(v, v;}=min d(v, v;). If we now solve the 1-

centre problem on N to give a centre h,, say, then

clearly
- maxw(v)d(v, k) <maxw(v)d(v, v,)
veN, BEN, :

and strict inequality is possible, Thus F(h,
hy,...,h,) may be smaller than F,, (and is cer-

.-tam]y no 1arger) This 1mprovement appears par-
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ticularly- attractive in the. Euclidean. space RY,
where it is known that, for fixed d, there is an
O(n) time algorithm for the 1-centre problem. (See
[2]) Similarly, if we could efficiently solve the
k-centre problem for any higher k& <p, we might
be able to obtain further improvements in quality.

Another possible source of improvement in
solution quality would be to consider more than
one choice of v; in Step (0) of the heuristic, since
this choice may contain some arbitrariness, par-
ticularly in the unweighted case. Differént choices
may lead to better solutions. Here it may be noted
also that the proof of Theorem 1 does not actually
require that o, has the largest weight, but merely
that no other point has more than double its
weight. '

In spite of the possibility of improvements in
quality from these modifications, we can give no
proof that we will do better than the worst-case
bound. The NP-hardness results referred to above
would, in fact, seem to imply that no such
guarantee of improvement could be achieved ex-
cept in special cases.

It may be observed that the generality of our
heuristic allows it to be applied in spaces where
the distance does not arise from a norm. For
example, arbitrary geographical regions of the
plane or sphere fall within its scope. As long as we
can compute distances between the points of V,
we can apply the heuristic. This generality has
some interesting consequences. The heuristic selects
only points of ¥, and only uses distance calcula-

tions between points of ¥. Thus the same set of -

points {v;} is & times optimal, whether or not the
centres are resiricted to lie within 7 or not. In one
case the appropriate matrix space is X, in the
other it is ¥ equipped with the metric of X. In fact,
V equipped with this metric may be viewed as a
complete graph with edge weights satisfying the
triangle inequality. Thus, by using our heuristic to
determine the § times optimal solution on such a
graph, we get the same performance guarantee in
any metric space within which the graph can be
embedded using a distance-preserving mapping.

Finally, the proof of Theorem 1 may be easily
modified so that a« is replaced by & =
MaxXy ;. ;o peW(0;)/w(v;). In some cases this
may provide a tighter posteriori bound on ‘the
optimum than the priori bound given by Theorem
1.
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