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Abstract

We consider the following randomized algorithm for finding a match-
ing M in an arbitrary graph G = (V, E). Repeatedly, choose a random
vertex u, then a random neighbour v of u. Add edge {u,v} to M and
delete vertices u,v from G along with any vertices that become iso-
lated. Our main result is that there exists a positive constant € such
that the expected ratio of the size of the matching produced to the size
of largest matching in G is at least .5 + €. We obtain stronger results
for sparse graphs and trees and consider extensions to hypergraphs.
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1 Introduction

Heuristic algorithms in Combinatorial Optimization often allow opportuni-
ties for randomization. An important question therefore is whether this can
give measurable improvement. In this paper we continue a discussion of
Greedy Matching algorithms initiated by Dyer and Frieze [2]. Consider the

following heuristic for finding a large matching in a graph G:



GREEDY MATCHING

begin
M « 0; T « G;
while E(T') # 0 do
begin
A: Choose e = {u,v} € E(T)
I+ T'\A{u,v};
M «+ M U {e}
end;
Output M
end

The choice of e in statement A is unspecified. It is known [4] that, if the
worst possible choices are made in A, the size of the matching M produced is
at least one half of the size of the largest matching, and one half is attainable.

(Consider choosing the middle edge of a path of length three.)

The choice rule in [2] was that e was to be chosen randomly from E(T"). Let
us denote this algorithm by Randomized Greedy (RG). The main results of

that paper can be summarised as follows:
NOTATION

Let G = (V, E) be a (simple) graph with |[V| = n. For any v € V, Ng(v)
denotes its neighbours in G. For any S C V, G \ S denotes the subgraph
induced by the vertex set V'\ S. Let m(G) be the maximum size of a matching
in G and let po(G) be the expected size of the matching produced by RG.



Let |
ro(G) = { #o(G)/m(G) if m(G) > 0

1 if m(G) = 0.
If IC is any class of graphs po(K) = infgex 70(G). Unless otherwise stated, G
will denote any class of graphs closed under vertex deletions and (to avoid

trivialities) we suppose |E| > 0 for some G € G.

_ VI A
Ho(@)—é%fg{m-(;—(VaE), |E| >0

Note that since some G € G has an edge, and G is closed under deletions,

the graph containing a single edge lies in G. Thus 0 < k¢(G) < 1 for any G.

In particular ko(GRAPHS) = 0, ko(PLANAR GRAPHS) = g, Ko(FORESTS) = 3.

Theorem 1 (a) po(G) > (2 — Ko(G)) 7.
(b) po(GRAPHS) = 1.

[es) __9\k
(¢) plromess) = 3 423 ﬁ
(where n!! = n(n —2)(n—4)---3-1 for n odd).

= 0.7690397 - - -

There are obvious ways to improve RG without significantly increasing its
complexity. We consider one such way here. We will change the choice rule
to the following:
Choose u randomly from V' (T"). If Nr(u) # 0 then pick v
randomly from Nr(u) and remove u,v from I'; otherwise, (1)
simply remove u from T'.
We will call this algorithm Modified Randomized Greedy (MRG). (Its per-
formance on random graphs and trees was determined in Dyer, Frieze and

Pittel [3].)



MRG generally seems to have a better worst-case performance than RG.
We have several results that support this statement. Examination of bad
examples for RG gives some idea why. Let G,, be the graph obtained by
adding a new vertex and edge adjacent to each vertex of the complete graph
K. It was shown in [2] that ro(Gm) = 1 4+ o(1). This is because whp i.e.
with probability 1-o(1), most edge choices are from the K,, instead of from
the pendant edges. MRG will do better because it has a 50-50 chance of

choosing a vertex of degree one.

Now let 1 (G) be the expected size of the matching produced by MRG when
run on a graph G. Let 71, p; be defined for MRG analogously to the definition
of rg, po for RG. Let vertex v have degree d, and assume that d, > 0 for all
ve V. Let

k1 (G) = % > di.

veV v

Extend the definition of k; to x1(G), analogously to ko(G). Theorem 1(a) is

mirrored by

Theorem 2

pL(G) = (2 - k()

This lower bound is generally stronger than that of Theorem 1(a) since
k1(G) > ko(G) always. But it is a disappointment in some ways (when
compard with Theorem 1(b)) as it does not show that randomization via
MRG always gives a significant improvement over the worst-case of Greedy.

On the other hand, we have

Theorem 3 There is an absolute constant € > .0000025 such that

p1(GRAPHS) > .5+ €.



This theorem shows that randomization can strictly improve the worst-case
performance of a greedy matching algorithm. In some ways, a small triumph
for randomization. We do not of course believe that the lower bound of

Theorem 3 is tight.

Our next result shows that the size of the matching produced by MRG is

concentrated round its mean p;(G).

Theorem 4 Let G be a graph with m = m(G), p1 = pi1(G) and let X =
X (Q) be the random size of the matching obtained by MRG in G. Then

Pr(|X — | > em) < 2¢72™

We next consider the performance of MRG on trees (and forests). We man-
aged in [2] to establish po(FORESTS) by proving that Caterpillars have the
worst RG performance. The situation here is more complicated and we have

not established p; (FORESTS) exactly. We have however managed to prove

Theorem 5

18
p1(FORESTS) > 93 = .782608. ...

Thus the lower bound of MRG on FORESTS is strictly better than that of
RG.

We finally consider the case of matching in uniform hypergraphs. Let ‘H =
(V,€) be an r-uniform hypergraph with n = |V| and N = |£|, i.e. for each
edge E; € £ (j =1,...,N) we have E; C V and |E;| = r. For each vertezx
v € V, the degree of d(v) of v is the number of E; € £ which contain v. The
average degree d = ¥ ,cy d(v)/N. A matching M in H is a subset of £ such



that all E; € M are mutually disjoint. We seek the maximum cardinality
matching in H. Maximum matching in graphs is the case r = 2 of this
problem. Consider the following greedy algorithm for obtaining a “large”

matching:

HYPERGREEDY
begin
X«0
while € # () do
begin
A: Choose E € £
X + X U{E};
for all E; € £ such that ENE; # 0 do &€ « £\ {E;}
end
Output X

end

If m(H) is the size of the maximum matching it follows [4] that in the worst
case, HYPERGREEDY gives a matching of size [m/r]. We will assume
that E is chosen uniformly at random in £ in Step A. Let u(#H) denote the
expected size of the matching obtained by HYPERGREEDY and p(H) =
w(H)/m(H). For any matching M (including the empty matching) in a
hypergraph H, let us now define the remainder hypergraph # \ M having
vertex set V \ M =V \ Ug,cp Ej and edge set £\ M = {E; : E; CV \ M}.
Clearly H \ M is r-uniform if # is. Let us now define k(%) by

k(H) ' = max {d(H\ M) : M a matching in H}.



Theorem 6 For r-uniform hypergraph H,

1
r—(r—1)x(H)

p(H) >

Thus Theorem 1(a) is the special case where r = 2.

2 Probability space for MRG

We now define a probability space over which we make our statements about
MRG. Given G = (V,E),|V| = n, let S(v) denote the set of orderings of
N(v) = Ng(v) so that |S(v)] = |N(v)|! and let S(V) denote the set of
orderings of V. Let

Q=QG) = {(v1,m1,v9, T2, ..., U, Tp) : (V1,02,...,0,) € S(V)
and m; € S(v;) fori =1,2,...,n}.

Thus to specify w € 2 we order the vertices and then independently order
the neighbourhood sets N(v),v € V. We turn  into a probability space
by making each w € Q equally likely. Given w € Q let M = M(w) be the

(greedy) matching obtained as follows:

LIST-GREEDY

begin
M+ 0,R«+V,
fori=1,2,...ndo
begin
if v; € Rand N(v;) "R # 0 do



begin
let w be the first vertex of N(v;) N R (in the order ;)
M — M U {(v;,w)};

R — R\ {v;, w}
end;
end;
Output M

end

We claim that
M (w) has the same distribution as the matching chosen by MRG.  (2)

We prove this by induction on |V|. Some notation is helpful. For w € Q
and S C V let wg be obtained from w by deleting v, 7(v) for v € S and
all references to S in the lists 7(z),z ¢ S. This may of course empty the
adjacency list of a vertex v € S. It is convenient for the proof of Theorem 3

that such vertices remain on the list wg.
Lemma 1 If w is uniform over Q(G) then wg is uniform over Q(G \ S).

Proof This follows from the fact that each o’ € Q(G \ S) arises from
the same number of w € Q(G) in this way. O

Returning to the comparison of M(w) and the matching produced by MRG
we observe that clearly the first edge (v, w) of M (w) has the same distribution
as the first edge chosen by MRG. Putting e = {v, w} we see, using Lemma 1,
that by induction, the rest of the matching M (w.) has the same distribution
as the rest of the matching produced by MRG.

9



Now let X = X (w) = |M(w)| and write w, for wg,}.

Lemma 2 Ifv € V then

X(w)—1< X(wy) < X(w).

Proof Let K be the graph induced by the edges in the symmetric dif-
ference M(w)AM (w,). If M(w) # M(w,) then one of the components of K
is an alternating path P with v as an endpoint. The lemma will follow from
the fact that there can be no other component. To see this let w be the first
vertex of V' \ P, in the ordering of V defined by w which has degree d > 1
in K. Let C be the component of K that contains w and let No(w) be the
neighbour set of w in C'. Suppose that LIST-GREEDY is applied to w and
wy. Because of the definition of w, no vertex in N¢(w) is matched before
w is matched in both w and w,. Hence all vertices in Ng(w) are available
when LIST-GREEDY tries to match w in either cases. This implies that w is
matched to the same vertex in both w and w,, contradicting the assumption

that w is in K.

O
Corollary 1 (a) u1(G) — 1 < u1(G\ {v}) < i (G), forveV.
(b) If v is left isolated by some mazimum matching of G then
p1(G\ {v}) < p(G).
Proof (a) This is a direct corollary of (2) and Lemmas 1 and 2.
(b) This follows from (a) and m(G \ {v}) = m(G). O

10



3 Proof of Theorem 2

This is by induction on |V|. Let a(G) = (2 — k1(G))™" and a(G) = (2 —
k1(G)) L. If [V| < 2 then r(G) = 1 = a(G). In general it follows from
Corollary 1(b) that we may assume G has a perfect matching. So assume
|V| = n = 2m where m = m(G). Then

,ul(G_l'*'iZ > G\ {u,v}).

uEV u vENg(u)

Explanation: u denotes the randomly chosen vertex and v its random neigh-
bour. 1/2m is the probability we choose u and then 1/d,, is the probability
that we choose v. We add one edge to our matching and then u(G \ {u,v})

is the expected size of the matching produced after deleting u and v.

However

| m—1 if (u,v) lies in some perfect matching
G\ {u,u}) = { m — 2 otherwise

Hence, using the inductive hypothesis and putting o = a(G),

1 «
m(@) = 1453, —((m—1)+(du—1)(m - 2))
uey U
« 2d, — 1
= l4+am— —
2m ueV du
1
= am+1—-a < Z —)
o d
> am,
completing the induction. O

11



4 Proof of Theorem 3

We show that there exists € > .0000025 such that for all graphs G
r(G) > +e (3)

Given e suppose that there exists a graph G = (V, E) which does not satisfy
(3). We can assume by Corollary 1(b) that G contains a perfect matching
M*, say, where |M*| = m and |V| =n = 2m. G must also contain a mazimal
matching M of size less than (34+€)m. Let P = {P, Py, ..., P;} be a maximal
set of vertex-disjoint alternating paths where each path P; contains two edges
in M* and one edge in M. Now there is a set E C M* of m — 2¢ edges not
contained in any path P € P. Since P is maximal, no two edges in E are
connected by an edge in M. Also, since M is maximal, at least one end-point
of every edge in E is also an end point of an edge in M. This shows that

|M| > (m — 20) + £ = m — £. Tt follows that

£> (1—2€)n/4. (4)

It will be helpful now to keep the nomenclature “choose” and “pick” as used in
(1) i.e. MRG chooses a vertex at random and then picks a random neighbour.
Let uy, v; be the t’th vertices chosen and picked by MRG respectively, which
happens at time t. If u, is an isolated vertex of I' at this time then we write

vy = x where % is a convenient symbol indicating this event.

Consider applying MRG to G knowing that G has the above structure. At
any stage of such an execution a path P € P is complete if none of its vertices
has been chosen or picked up to now and incomplete otherwise. We introduce

an indicator random variable 6(s),1 < s < n for the event

12



E(s) = {(i) u, is the endpoint of a complete path P = (u; = z,y, z, w),
(ii) vs = y or vs & {y, 2},
(iii) if vy # y then y € {us, v;} for some t > s,
(iv) if vy Zy then 2 ¢ Uy 1 UV, 1 }

where U; = U;(s) = {us, Usy1,.-.,u;} and V; = Vi(s) = {vs,Vs11,...,v;} for
1> 8.

Let .
X =) 4s).
s=1
Let M be the matching chosen by MRG. We prove next that

n X
M| > -+ —.
M) >+ 2 )

To see this let M}, j = 0, 1,2 denote the set of e € M such that when MRG
chooses e, the size of E(T') N M* decreases by j. Thus

M| = [Mo| + M| + [Ms],
|M*| = |Mi| + 2| My,
and so
M| = §|M*|+ | M|+ | M|
o n Mo+ |
- 4 2

We prove (5) by showing

X
|M0| + |M1| > o

(6)

So let P, s,t,z,y, z,w be as in the definition of £(s), and let £(s) take place.
If v, = y then {z,y} € M,. Otherwise either {y,v;} or {u;,y} is in My U M;.

13



Since P is complete at the start of iteration s it can only contribute once to
X. At most two distinct values of s can contribute to the same value of .

This proves (6).

Note that condition (iv) of the definition of £(s) was not used. Its use comes
later when we have to lower bound the probability that y has not become an

isolated vertex before time t.

We must now bound Pr(€(s)) from below. So fix s and condition on the

graph I' at the end of iteration s — 1. We write
A; = {us =z where z is the endpoint of a complete path z,y, z, w}
A2,1 = {Us = y}a
Az = {vs €{y,2}}
B = {wyy=yand z¢U;_1UV;  for some t > s}.
Since A7 and Aj - are disjoint events, we have
Pr(€(s)) > Pr(A;1NAyq1)+Pr(A4; N AN B)
= Pr(A;)[Pr(As1]| A1) + Pr(B|A22 N A1) Pr(Azs] A1) (7)

Let n; denote the number of vertices of I' at the start of iteration 7. Then

since each iteration removes one or two vertices, it follows that

n—20i—-1)<n; <n-—(i-1). (8)

Suppose that in the first s — 1 iterations there are s; iterations in which j

vertices are deleted, 7 = 1,2. Then,

20— 4
Pr(Al) T on—8 _8;82
20 —4(s—1)
n—2(s—1) ()

14



Next, let d denote the current degree of the endpoint z chosen by MRG,

assuming A;. Then

1

PI‘(Az’l .A1) = E, (10)

and

Pr(Aszz | A1) > (1 —2/d)7, (11)

where £ = max{0,£}. Hence (7) implies

Pr(&(s)) > Pr(Ay) [Pr(BlAss N A1) + % (% — Pr(BlAss 0 A ).

Since MRG chooses a vertex randomly, we have

Pr(B|A22 N A1) < Pr(u; =y and z ¢ U;_; for some ¢ > s|Az5 N A;)
< 1/2.

It follows that
Pr(8(s)) Z PI‘(Al) PI‘(Bl.AQ,z N Al) (12)

Unless stated otherwise, we use Pr to denote the probability conditional on
A; N A;, for the rest of this section. Our main task is to find a lower bound

for Pr(B), the probability of B conditional on A; N Aj .

Assume the occurrence of A; N A, 2, and for ¢ satisfying s +1 < ¢ < n, define

the events,

C(t) = {y, 2 ¢ Upy UVis}, B(t) = C(t) N {u; = y}.

Note that B(t), s + 1 < t < n, are disjoint events and that

Pr(B)= 3 Pr(B(t)). (13)

t=s+1

15



Now u; is a random choice from the n; available vertices and y is available

when C(t) occurs. Thus we have

Pr(B(t)) = E (nit Pr(C(t))) > %Pr(C(t)). (14)

It thus follows from (12) that

E(3(s) > Pr(4) (% > (U= Pr({y, 5} N U #0) = Pr({y, 2} N Vis # @))) .
(15)

We next estimate Pr(C(t)). Now

Pr{y, 2} NU;-1 #0) < E ( § 2 ) < 2(t = 5) (16)

2 )
i=st+1 Thi—1 n—as

but Pr({y, 2} NV,_; # 0) is more difficult to estimate since it depends on the
structure of I'. We will explicitly compute an upper bound for Pr(z € V; ;)
and then we can double this to obtain an upper bound for Pr({y, 2} NV;_; #

0).

Suppose now that (us,vs) = (z,2') where z' ¢ {y,z}. We have to estimate
Pr(z € V;_1) when MRG is run on the graph I'\ {z, 2}, or equivalently when
LIST-GREEDY is run on we, e = {z,2'} and w is chosen randomly from
Q(T). We will find it useful to couple the process with LIST-GREEDY run

on w itself. (Here z is not necessarily the first vertex in w’s list.)

Let Ty 1 = T'\ {z,2'}, Tsi2, [y, ...denote the sequence of subgraphs
produced by vertex deletion as LIST-GREEDY runs on w,. Similarly, let
' =T1%.,, I, Il 3, ... denote the corresponding sequence of subgraphs

as LIST-GREEDY runs on w. Suppose also that the unconditioned process

16



1 T T T 3 s T T
(input w) chooses uj,, u} 5, ¥}, 3, ...and picks v} ;, v} 5, Vi, 3, .... Let

Utr = {U:+1,ug+2, cee au:}a V;:T = {U:+1,U:+2, . ,’U:} (With U.: = Vvsr = (D) and
A= (U, UV,) A(UFUV).

When the following event F;_; occurs, the relationship between Pr(z € V;_;)

and Pr(z € V") is relatively simple to analyze. Let
Fi=A{uj, ¢ Aj:s <5<}, s<i<t-—1,

and note that F; decreases with 1.
Lemma 3 Suppose F;_1 occurs. Then for i satisfying s <i<t—1

(i) 1Al <2,

(i) T'it1 is an induced subgraph of I';,,,

Proof We use induction on i. The base case ¢ = s is clearly trivial. So
assume (i) and (ii) are true for some i > s and that u;;; = u},; € V(['ij4)
(using F;_1). Note that induction hypothesis (ii) implies that V('] ;) =
V([;) UA;. Now if v],; = x, then it follows from the induction hypothesis
Iy € I, that vi1 = v],; = *, in which case both I';;; and I}, lose the
same vertex uj, ; = u;;1 and the induction goes through. On the other hand,
if vj,; # * then there are two cases:

(A) If v}, € A;, then A; loses v}, ; (but may gain v;;; depending on whether
vip1 = %), and induction goes through;

(B) If v], ¢ A;, then v;41; = v}, (using induction hypothesis (ii)), and

induction goes through in this case too. g

17



We next bound Pr(z € V;_;) from above.

Pr(zeVi1) < Pr({z €V, 1}NF, 1) +Pr(F )
- ._ilPr({z = 0} N Fi 1)+ Pr(F )
< tzl Pr({z = v;} N F;) + Pr(F;1)
= Y Pr(z=u | {z € VIT)}NF)Pr({z € V(T)} N F).

i=s+1

+Pr(Fi1) (17)

To estimate the right hand side of (17), we prove

Lemma 4 (i) Pr(F,_1) < YiL, #M’

(ii) Pr({z € V([)} N F) < Pr({z € V(ID)} N F)), s<i<t—1,

(iii) Pr(z = v; | {z € V(T)}NF) < (3+ ;&) Pr(z = of | {z € V(I])} N

Fi), s<i<t-—1.
Proof (i)
_ t—1
PI‘(.’F't_l) S Z PI'(U/: € Az | .7:;'_1)
i=s+1
t—1 9
< =
- Z.;rl n—2i+2

since |A;| < 2,n; > n —2(i — 1) and u] is chosen randomly from V(I).

(ii) This follows immediately from the fact that the occurrence of F; implies
that I'; C I} (Lemma 3(ii)).

18



(iii) Conditional on the additional events that I'; = K and I'/ = L where
z € V(K) C V(L) and |V(L) \ V(K)| < 2, and writing h = |V(K)| = n;_1

and Pr for the new conditional probability, we have

- 1 1
Pr(z=v) = =
hvENK(z) K(v)
1 3
< - X
h vENK(2) dL(U
3 1
< =
~— h NZ()dL(U)
< 3(hh+ )Pr( v;).
O
Applying the lemma to the RHS of (17) we get
2
_ < Pr({z =
Pr(z € Viy) < < ns)zgﬂ r({z =1} NF) +Z§1n_22+2
< Pr(
B < ns)l;+1 iz +l§1n 2z+2
< <3+6)Pr(zeVT +Z# (18)
- 1) m—2i+2

Now Pr(z € V) is easy to estimate, since the given w is coupled with w
where z, y, z,w is a random path. (This is most easily seen if we consider that
we run LIST-GREEDY on w, choose a random path z,y, z, w and then run
LIST-GREEDY on w,). Thus z is chosen randomly from at least 2/ —4(s—1)

vertices and
t—s

Priz € Vo) < op 4G — 1y

19



Combining this with (18) gives

6 t— ¢t 2
PI‘(ZEVt_l) < <3+ >—8+ Z -

ng) 20 —4(s—1) 5t n—2i+2

6 t—s 2(t —s)
< (3+— : 19
- ( +ns>2£—4(s—1)+ n—2t (19)

We can now finish the proof of Theorem 3 by using (5) and (15) together
with (4), (9), (16) and (19). We will not try for the best possible value of €
obtainable from these inequalities (suffice it to say that careful estimations
and computer computation can give a slightly larger bound). Instead we

plump for something smaller but simpler.

So let us consider only s < an,t < Gn,a < 3 for some small values of «, (3.

Then we obtain for n large,

1—2¢—-8a
) 2 T
20
Pr({y, 2} MUt # 0| AN Asp) < = ™ (20)
168 48

Pr({y, 2} NVi1 #0 | AN Azp) <

21
- 1—26—8a+1—2ﬁ’ (21)

where Pr here denotes the unconditioned probability law. Now increasing 3
only increases the RHS’s of (20) and (21) and so we take o = (3. Hence from

(15) (with the summation only taken to an),

21— 2 — 1
1— 2 8a<1 (116} 6 ) (22)

T 1-2a 1—2—8a
The theorem is now proved by choosing a, € so that the RHS of (22) is at

least €, since this contradicts r1(G) < ; + €. A simple calculation shows that

this holds for & = .01 and € = .00001. O

20



5 Concentration near the mean

We now prove Theorem 4. The proof is essentially identical to the proof of
Theorem 3 of [2]. We give it here for completeness. Let Y;, (¢ = 0,1,...,m)
be the Doob martingale induced by the first 7 selections (choice plus pick)
of MRG on G, i.e. Y; = E(X | first ¢ choices). Clearly Y; = K + py(H) for
some integer K < 7 and subgraph H of G. In fact K =7 unless H = (). Also

Yiin = K+ 1+ w(H\{u,v} if H contains an edge,

= K otherwise,
where uv is the ¢ + 1’th choice of edge. Thus,

Yiii—-Y, = 1+ wm(H\ {u,v} —pui(H)) if H contains an edge,

=0 otherwise.

Thus if H contains an edge,
Yiii—Y: = 1+m(H\ {u,v} — i (H))
< 1, since uy(H \ {u,v}) < pa (H)

Furthermore,
Yinn =Y > m(H\A{u} —m(H)),
since py (H \ {u,v}) 2 pa(H \ {u}) -1
> -1, since p1(H \ {u}) > wm(H) — 1,
where all inequalities follow from Lemma 2.

Thus |Y;11 — Y;| < 1 whether or not H has an edge. Hence {Y;} is a bounded

difference martingale sequence, and it follows from the Hoeffding-Azuma

21



inequality (see Bollobés [1], McDiarmid [5]) that

Pr(|X — p| > em) < 2e~2(m/m — 9¢-2¢m

Corollary 2 If {G,,} is a graph sequence such that m(G,,)(=m) — oo,

and w,, — oo (arbitrarily slowly), then

Pr(u1(Gm) — wmvm < X(Gr) < (G + wmvm) — 1

Proof Put € = w,,/v/m in Theorem 4. O

6 Trees

We prove that for any tree 7T,

(1) > By + L (23)
It is only necessary to prove this for trees with a perfect matching. Let
T = (V, E) be a tree that has a perfect matching of size m. The proof of (23)
will be by induction on m. Assume inductively that the theorem holds for
all trees with maximum matchings of size m — 1 or less. For the moment let
us be general and try to prove that u;(T) > am + 3 for m > 1. In the proof
we will have to place various restrictions on o and 3. o = é—g and 3 = % will

turn out to be the values that maximize .

All trees with a perfect matching and m < 6 have been checked (by computer)
and have been found to satisfy (23). Also one can easily derive a recurrence

relation for o,,, = p1(P,,) where P,, is a path of length m. From the solution
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to this equation we can deduce that o,, ~ .876681m and that (23) is satisfied
for paths. We can therefore assume from now on that 7' is a tree with at

least 14 vertices and is not a path.

Let M be the set of edges in the perfect matching. Note that the perfect
matching of any tree is unique (indeed the edge set of two distinct perfect
matchings would contain an alternating cycle). Let v* be the unique match-
ing neighbour of v. Let L be the set of vertices of degree one, L' be the set
of vertices neighboring L and K =V \ (LU L'). Let £ = |L| = |L'| (since T
has a perfect matching) and k = |K|. Then let F(F) denote the set of trees

in a forest F'.

Let
o={1 e
Then
T) = ! ! T
m(T) = %vevmwg\;(v)#l( \ {v,w})
1 1
= %vevm (1 (T \ {w,v*}) +(MUZ)¢MM1T\{U ,w}))
1 1 -
> 1+ Y ¥ (am@®+pH+ Y X (em
2m [ d(v) TEF(T\{v,v*}) (vw)¢EM TeF(T\{v,w})
1 1 *
= 45 X gy (@m = 1) + () + d07) - 2)+

> (a(m=2)+B(d) + d(w) + f(v) + f(w) - 4))) )-

(vw)gM
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Let us collect terms. First of all those involving o are

1
2m

2. d

veV

b
(v)

m—1+ > (m—2))

(vw)gM

For 8 we have the terms

1 1

1
2m
1
2m

= m-—2+

) ﬁ(m— 1+ (m - 2)(d(v) - 1))

veV

) ﬁ(l + (m — 2)d(v))

1 1
24

2m veV (U) -

veV

dv) +d(v") =2+ > (d(v) +d(w)+ f(v) + f(w) - 4))

(vyw)gM
d(w)  d(v) 1
( aw) d(w)) Y2 ) 2
1 1
om > m (d(v) -
dw) | d(v) 1
(d(v) " d(“’)) i vev A(v) (v,w) M
1 1
+% veV m
d(w) | d(v) 1
(d(v) " d(w)) "5 A0 W
1 1
+E veV M - <2 i

(f(v) + f(w))> +



since 3, ey d(v) = 4m — 2.

Employing these expressions we obtain

m(T) 2 1+a(m—2)- (“%)“a;ﬁ%d(ﬁ’) "
veE

o ( > (Z((“’))+%)+Zd(l) > (f(v)+f(w))>

2m \ (vwyer vev AY) (o uyem

Now as T is not an isolated edge we have

2 ifvéglL
div)  dw) = | 2} ifvel

\%

and so

Then observe that

M _ d(v) —1
veZV(v,wZ)gM d(v) veZK d(v)
and
) _ g d) =1 T
P R T o )
Hence

m(T) > 1+a(m—2)—<2+;)ﬂ+;nzd(1v)+

g : 1 5@
+2_<4m_2+§+2+IKIZ@* 2 (M_m»

m vgZK (vyw)eL' xK
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= am+ﬁ+(1—2a+ﬂ—%

) 1
m 2m vevd

B 3¢ 2 ( 1 )
— |-+
2m 2 v;, d(v (o, w)eL,XK d(v)  d(w)
We prove next that
2 1 1 14
o+ - ) >4l (25)
vé, d(v) (mw)EZL,X]{ (d(v) d(w)) 2

If v € L' we let a(v) denote the number of neighbours of v in L' and b(v)
denote the number of neighbours of v in K. Since d(w) > 2 for w € K we
may prove (25) by showing

b(v) + 2
2 ()+b()+1_§zb =g+l (26)

verr WV crL

This will be shown to be true for all trees with the Property P: no two vertices
of degree one share a common neighbour (a tree with a perfect matching
certainly has property P). We proceed by induction on ¢. Let A denote the
LHS of (26).

Base Cases: { =2,T is a path of length m # 2 and L' = {z, y}.

(i) m=1: a(z) =a(y) = 1,b(z) = b(y) =0 and A = 2.

(ii) m > 2: a(z) = a(y) = 0,b(z)

bly) =1and A =2.

Now consider the general case and ¢ > 3. P implies that L’ contains a vertex
z of degree 2 with one neighbour z € L and one neighbour w ¢ L. (Root
T and let z € L be at maximum depth. Its neighbour x has the required
property). Suppose first that w € L. Remove z, z to obtain 7" and let A’ be
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the associated value of A. Note that this and all subsequent deletions that
we consider preserve Property P, as required for the induction. Then

b(w) + 2 b(w) + 2

A = 1+ — + A
a(w) +b(w) +1 a(w) + b(w)
1
> —+ A
2 2+
1 1
> 4 (0—1)+1
> 2—1-2(€ )+ 1,

by induction. The second inequality uses a(w) > 1 and a(w) +b(w) > 2 from
¢>3.

If we K let x1,z9,...24 denote w’s other neighbours. If d > 2 then we

obtain 7" by removing z, z. Then

If d = 1 then there is a path (yo = 2,y1 = ¢,%2 = w,ys = 21,...,Y,) Where
y; € K for ¢ > 2 and ¥»,¥s, ..., Yp 1 have degree 2 and y, has degree at least
3. We obtain 7" by deleting yo,¥1,...,Yp-1- fy, € L'’ then A =1+ A" asin

the previous case. If y, € L' then

b(yp) +2 b(yp) +1 /
A = 1+ — + A
a(yp) + b(yp) +1 a(yp) + b(yp)
> 1+ A
/
— 4+ 1.
> 9 +

This completes the proof of (26) and hence (25). Substituting (25) into (24)
gives

/,Ll(G’)zam+ﬂ+(1—2a+ﬂ)+%Zﬁ—%(ﬁ—i—& (27)
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Now by convexity

NJID
OJIQ'

1
Z_
gd

where
a+b 2m — /¢
20+3b = Y, dv) = 4m—-2-L

The solution to this set of equations is a = 2m + 2 — 2¢ and b = £ — 2. This

gives

v

1
£+2@m+2—2©+ w 2)

1
2 )

L.
= m+ -+ .
33

Substituting into (27) gives

ul(G)Zam+ﬂ+<1—3—a+ﬂ)+6Lm(a—3ﬁ)+6im(a—9ﬂ).

2

Since T is not a path we have £ > 3. We also have m > 7. Assume that

a—33>0,20—93<0and 1— %44 > 0. Then

wi(G) > am+ﬂ+<1—3—a+ﬂ>+i(2a—9[3)

2 3Im
59a 40

> 1——+ =

> am+ﬂ+< 42+7)

> am+ .

Three restrictions have been placed on a and 3. These are

59 4
3ﬂ§a§95/2andﬁa——ﬂ<1
Maximizing « over this set of inequalities yields a = % = .782608 - - -

6= % = .1739- - -. This proves Theorem 5.

28

and



We have not been able to compute p;(Forests) exactly, in contradistinction
to Theorem 1(c). At one stage we thought that paths would be the worst-
case trees. However, a path with 12 vertices does not minimise r; over trees
with 12 vertices, instead one takes a path with 10 vertices and then adds
two new leaves attached to the two middle vertices. This graph has a value
of p; = .832844 - ... This seems to make the exact computation of p; harder

than that for p,.

7 Hypergraphs

We now prove Theorem 6. We use induction on m(#H). Note that a remainder
hypergraph of any H \ M is also a remainder hypergraph of #. As basis, if
m(H) = 1 it is clear that p(#) = 1 and k(H) < 1, so the Theorem holds.
Otherwise, let us fix a maximum matching M* of cardinality m > 2. This
will cover rm vertices and thus n — rm will lie outside the matching edges.
Let N; denote the set of edges in H which have 7 vertices outside M* and
N; = |Nj|, for i = 0,1,...,7 — 1. Clearly N = m + Y7_0 N;. Let us denote
the right side in the inequality of the Theorem by a. Now, by induction,

pw(H) > 1+%(ma(m—1)+§]\]ia(m—7’+i))

=0

r—1
= am+1—% <m+(N—m)r—ZiNi>.
=0

Explanation: the randomly chosen edge is either (i) in M* (with probability
m/N) and we can expect to get at least a(m — 1) from the remaining edges,
or (i) in NV; (probability N;/N) and we can expect at least a(m —r+1) from

the remaining edges.
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Thus the induction will succeed if

-1 T3 il
N
Now each vertex outside M is in at least one Ej, so 30_g iN; > n — rm.

Thus it suffices to have

1 m(r — 1)+ (n —rm)

> —

a > r N

n—m
= r— N ,
which is true if
1 n(r—1)

> N S

«a > r N

since m < n/r. But d(#) = rN/n, so it suffices that

which follows from o™ =7 — (r — 1)x. O

Acknowledgement: we thank Boris Pittel for a careful reading of the paper

which found several subtle errors.
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