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Abstract

We consider a randomized version of the greedy algorithm for find-
ing a large matching in a graph. We assume that the next edge is
always randomly chosen from those remaining. We analyse the per-
formance of this algorithm when the input graph is fixed. We show
that there are graphs for which this Randomized Greedy Algorithm
(RGA) usually only obtains a matching close in size to that guaran-
teed by worst-case analysis (i.e. half the size of the maximum). For
some classes of sparse graphs (e.g. planar graphs and forests) we show
that the RGA performs significantly better than the worst-case. Our
main theorem concerns forests. We prove that the ratio to maximum
here is at least 0.7690- - -, and that this bound is tight.
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1 Introduction

Perhaps the simplest heuristic for finding a large cardinality matching in a
graph G = (V, E) is the “Greedy Heuristic”.

GREEDY MATCHING

begin
M « 0;
while E(G) # 0 do
begin
A: Choose e = {u,v} € E
G + G\ {u,v};
M +— M U {e}
end;
Output M
end

The choice of e in statement A is unspecified. It is known [3] that, if the
worst possible choices are made in A, the size of the matching M produced is
at least one half of the size of the largest matching, and one half is attainable.

(Consider choosing the middle edge of a path of length three.)

Now randomization sometimes improves the performance of algorithms (per-
haps the most important example being primality testing). The question we
pose here is what effect does randomizing statement A have ? In particular
if e is chosen uniformly at random from the remaining edges, what is the
expected ratio of the size of M to that of the maximum matching ? We

prove that there are graphs for which the average-case is hardly better than
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the worst-case, but also that there are classes of graphs (e.g. planar graphs)

for which it is significantly better.

2 Notation

Let G = (V,E) be a (simple) graph with |V| = n. For any v € V, I'(v)
denotes its neighbours in G. For any S C V|, G \ S denotes the subgraph
induced by the vertex set V'\S. Let m(G) be the maximum size of a matching
in G and p(G) be the expected size of the randomized greedy matching. Let
r(G) = p(G)/m(G) if m(G)>0
=1 if m(G) = 0.
If K is any class of graphs p(K) = infgex 7(G). Unless otherwise stated, G

will denote any class of graphs closed under vertex deletions and (to avoid

trivialities) we suppose |E| > 0 for some G € G.
k(9) = mElVI/|E| : G = (V, E), |E| > 0}

Note that since some G € G has an edge, and G is closed under deletions, the
graph containing a single edge lies in G. Thus 0 < k(G) < 2 for any G. In
particular K(GRAPHS) = 0, K(PLANAR GRAPHS) = i, K(FORESTS) = 1. The
abbreviation RGA is used for “Randomized Greedy Algorithm”.

3 A monotonicity property

Many of our results depend on the following

Lemma 1 Forallv eV, u(G) > p(G\ {v}) > p(G) — 1
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induction on |V|.
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Corollary 1 Let v € V be exposed in some mazimum matching of G, then
r(G\{v}) <7(G).

Proof Clearly m(G \ {v}) = m(G), so the result follows from Lemma 1.
O

Corollary 2 Let H C G be the set of G € G which are connected and contain
a perfect matching. Then p(G) = p(H).

Proof Clearly p(H) > p(G). By Corollary 1 (applied repeatedly if nec-
essary), any G € G can be reduced to a G’ which contains a perfect matching
and has 7(G') < r(G). If G’ has components G} (i = 1,...,c), let H = G
where r(G’;) = mini<;<.r(G;). Clearly H € H and r(H) < r(G') < r(G).
Thus p(H) < p(G). O

In particular we have the following, which we use below,
p(FORESTS) = p(TREES WITH A PERFECT MATCHING).

We note in passing that monotonicity under edge deletions does not hold. As
a simple example, let G be a path of three edges. Then u = %, but, when
the middle edge is deleted, u = 2.

4 A lower bound

We give a weak, but easily proved, lower bound and examine its consequences.

Theorem 1 Let a(G) = 1/(2 — 3£(G)). Then p(G) > a(G).
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Proof By induction on [V|]. Since 0 < k(G) < 2 we have § < a(g) < 1.
If |V] =0, 7(G) =1 and hence r(G) > a(G).

Since (by Corollary 2) we may assume G has a perfect matching we take
V| =2m(G) > 0. Now
1
u(G) =1+ 5] > G\ {u,v}).

wveE

However
m(G \ {u,v}) = m(G)—1 if uv lies in some perfect matching,
= m(G)—2 otherwise.

Thus, where m = m(G),

> m(G\{u,v}) = m(m—1)+(E| —m)(m—2)

weE

= |E|(m—2)+m.
Hence, using the inductive hypothesis,

1
w(@G) > 1+ i ugE am(G \ {u,v})

1
1+ @a(|E|(m —2) +m)

v

= am+1-2a+ %|V|/|E|
> am+1—2a+%a/<;
= am,

completing the induction. O



Corollary 3 p(GRAPHS) > I, p(PLANAR GRAPHS) > £, p(FORESTS) >

2, p(A-GrAPHS) > A/(2A — 1), where A-GRAPHS stands for graphs with

mazimum degree at most A. So, in particular, p(CUBIC GRAPHS) > % O

5 The class GRAPHS

Theorem 2 p(GRAPHS) = 7.

Proof Let GG, be the graph obtained by adding a new vertex and edge

adjacent to each vertex of the complete graph K,,.

Clearly m(G,,) = m, and write u(G,,) = tn,. Consider the first step of the
RGA on G,,. There are (’;) + m edges. Thus, with probability

m _ 2
(5)+n

we choose an added edge. Its removal leaves G,,_1. Otherwise we choose a
K,, edge whose removal leaves G,,_» (and two isolated vertices). Thus the

final matching size will be, in expectation,

2
1+ pty 1 with probability ——
m+1
. - m—1
and 1+ p,,—2 with probability ——.
m+1
Thus,
2pm—1+ (M — 1) ftm 2
m=1 > 2
p + 1 (m = 2)
with pg =0, p; = 1. Writing this as
(m—1
m — Hm—-1) — 1- m—1 — Mm-2), 1
(w fm—1) (m+1)(ﬂ 1~ fm—2) (1)



we make the substitution u,, = py, — ttm_1 and ug = pg. Thus ug =0, u; =1,

and = Y7o u;, and from (1),

(m-1)
(m+1)

Um = 1 — Um—1 (2)

It is easy to show inductively that (2) has solution, for m > 1:

o (m odd)

(m even)

i = You; = 3m—3+ Ln (m odd)

Asymptotically L, = 3(vy +log2m ), where v is Euler’s constant. So
fim = 1(m +log2m +~ — 1) + o(1).
1

Thus 7(Gyn) = 3 + O(logm/m) and 7(G,,) — 1 as m — oc. O

6 Concentration near the mean

We now show that the value of the matching obtained by the RGA is “almost

always” near its expectation.

Theorem 3 Let G be a graph with m = m(G), p = p(G) and let X = X(G)
be the random size of the matching obtained by the RGA in G. Then

Pr(|X — p| > em) < 2e72™



Proof Let Y;, (i =0,1,...,m) be the Doob martingale induced by the
first 4 choices of the RGA on G, i.e. Y; = E(X | first i choices). Clearly
Y; = K + u(H) for some integer K < ¢ and subgraph H of G. In fact K =1
unless H = (). Also

Yiiin = K+ 1+E(u(H\{u,v}) if H contains an edge,
= K otherwise,
where the expectation is over the random choices of the edge uv. Thus,
Yiii—Y, = 1+E(u(H\{u,v}) —pu(H)) if H contains an edge,
=0 otherwise.

Thus if H contains an edge,

Yin =Y = E(+ u(H \{u,v}) — u(H))

IA

1, since p(H \ {u,v}) < u(H)
Furthermore,

Yinn —Yi = E(u(H \{u}) — u(H)),
since u(H \ {u,v}) > u(H \ {u}) -1

> _1a since IU‘(H \ {U}) > M(H) - 17
where all inequalities follow from Lemma 1.

Thus |Y;11 — Y;| < 1 whether or not H has an edge. Hence {Y;} is a bounded
difference martingale sequence, and it follows from the Hoeffding-Azuma
inequality (see Bollobés [1], McDiarmid [4]) that

Pr(|X — p| > em) < 2e 2(m/m — 9¢=2m



Corollary 4 If {G,,} is a graph sequence such that m(G,,)(=m) — oo,

and wy, — oo (arbitrarily slowly), then

Pr(u(Gm) — wmvm < X(Gp) < (Gm) + wmv/m) — 1
Proof Put € = w,,/v/m in Theorem 3. O

Corollary 5 If {G,,} is the graph sequence defined in the proof of Theo-
rem 2, let X (G) be the best solution obtained from any polynomial number

p(m) of repetitions of the RGA on G,,. Then

Pr(im < X(Gn) < Im+logm/v/m) — 1 as m — .

Proof X(Gp) > im follows from the worst-case result (Korte and
Haussman [3]). Putting ¢ = logm/v/m in Lemma 3, the probability of
X(G,,) not falling in the required interval is at most 2p(m)e 21°8™)® — ( as

m — Q. O

7 A monotone transformation

Deletion of exposed vertices does not increase r(G). We consider another
transformation with this property. Let {u,v} be an edge in a maximum
matching of G which does lie in any triangle. Let G’ be the graph obtained
by substituting all edges vw (w € I'(v) \ {u}) with vw.

Note the restriction that uv does not lie in a triangle ensures that G’ is a

simple graph.

Lemma 2 r(G") < r(G).
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Proof Clearly m(G') = m(G) so we only need show u(G') < u(G). We
proceed by induction on the number of vertices of G. The base case is when
G is a single edge. Then G' = G and the result is trivial. For the induction,
let A= {zy: {z,y} N {u,v} =0} and for w = u,v let T'(w) = T(w) \ {u,v}.
Note that I'(u), I'(v) are fixed sets here, defined in G and unaltered in G'.

Moreover, they are disjoint by assumption. Thus,

WG) = 1+ﬁ(2u(G\{x,y})wLﬂ(G\{u,v})

+ Z w(G\ {u,z}) + Z w(G\ {v,z})
z€T'(u) zel(v)
> 14 (3 WO {o) + (@ {u0))
£ W@\ fwrh+ X G\ fuz}).
z€l'(u) zel(v)
= w(@).

where we have used the following:
(i) (G\{z,y}) = G'\{=z,y} if zy € A and so (by induction) u(G\{z,y}) >
p((G\{z,y})") = W(G"\ {z,y});
(i) G\ {uw,v} =G\ {u,v};

(iii) G'\{u,z} = G\{u,v,z} for z € T'(u)UT(v) (after removing the isolated
vertex v in G’). So u(G'\ {u,z}) < w(G\ {u,z}) and u(G'\{u,z}) <

w(G \ {v, z} follow from Lemma 1 for these values of x. O

Let us denote this transformation by o : GRAPHS — GRAPHS, i.e. G' = o(G).
Let G* be any graph-family which is also closed under o. Let H* be the sub-
family of G* such that any G € H* is connected, has a perfect matching,
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and such that every edge in any perfect matching either contains a vertex of

degree 1 or lies in a triangle. Then,
Corollary 6 p(H*) = p(G*). O
This Corollary is useful for FORESTS, since it implies we may assume

(i) The graph is a tree.
(ii) All edges in the maximum matching are leaves.

(iii) Every internal vertex is adjacent to exactly one leaf.

To see this let T' be a tree for which (ii) or (iii) does not hold. If vertex v is
adjacent to leaves wy, ws, ..., wq, d > 2 then deleting ws, ..., wq yields a tree T”
for which m(T") = m(T) and u(T") < p(T) (Lemma 1.) If v is a vertex not
adjacent to any leaf then we can assume that it lies on an edge uv of some
perfect matching. We can then apply o and if necessary reduce the number
of leaf neighbours of u in ¢(7") to one. After a finite number of iterations of

the above procedure we satisfy (i),(ii),(iii) without increasing r.

A tree satisfying (ii) and (iii) will be called an L-tree.

8 The class FORESTS

For FORESTS, Corollary 3 gives p > %, but this is not tight. In this section

we prove

Th 4 Ca—2403 " 600307
eorem p(FORESTS) = @ = % + I;J @Ersm %

(where n!! = n(n —2)(n—4)---3-1 for n odd). O
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We first establish the upper bound.

Lemma 3 p(FORESTS) < «

Proof Let T}, be the graph obtained by adding a leaf to each vertex of
an m-vertex path. Let t,, = u(T;,). Thus to =0, t; = 1. Clearly, for m > 2,

1 m m—1
tm = 1 ti— tm—i) ti— trn—ie
+2m_1(12( 1+ + z:zl( 1+ 1))

9 m—1 m—2
=1 t; t; 3
+2m_1<z:0 +z:0 ) ()
m—1 m—2
From (3), form >3, (2m— 1ty = 2m—1)+2(>_t:+ > t),
1=0 =0
m—2 m—3
and also (2m —=3)tm—1 = 2m—=3)+2() ti+ ) t).
i=0 i=0

Subtracting, (2m — 1)t,, — (2m — 3)t;_1= 2+ 2t;_1 + 2t1m_2,

or, (2m — 1) (tm — tm1) = 2(1 + t_s). (4)

In fact, (4) holds also for m = 2 since ¢, = 3 from (3).

Let Um = tm —tm_l, Ug = t(], SO tm = Zui, and Uy = 0, Uy = 1, Ug = %
i=0

m—2

So, from (4), (2m — 1)u 214+ > w) (m > 2).
=0
m—3

Thus, 2m —3)um-1 =2(1+ ) u;) (m > 3).
i=0

Subtracting, (2m — 1)ty — (2m — 3)tum_1 = 2Um_2, (m >3)
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or,

Let v,,, = u,,

So, from (5), v, =

Thus,

Therefore,

with

— Umpm—1, Vo = Up, SO Uy =

(2m — 1) (Um — Um—1) = —2(Um-1 — Um—2) (5)

1=0
-2
om—1""
_(_9\ym—2
)
(2m — 1)
Um =0+1—3—>(=2)"/(2i — )N
i=3
m—3 X
=2+23 (-2)%/(2k+5)!
k=0
UO—O,U1—1 U9 %
m J
ZW—ZZl
§=04=0
=> (m+1-—j);
7=0
= m+1)Zvj Z]’UJ

szandvo—o v =1, v9 =

Ool’—‘



m—1
= (m+ %)um + Z vj, from (6),
=2

= (M + 3)Um + Um — Uy — 1

i.e. tm :mum—i-(%um—vm—l), (m > 2).

For large m, u,, is close to a and v,, is very small. Therefore let us define

€m by

tm =ma+ [+ € (m>1), (7)
where B=3a—1=0.1535563- - - (8)
and, for m > 2, em = (M =+ 2)(Up — @) — V.

It follows from Lemma 4 below that €, = O(m), and thus
H(T) = &+ B/ + Oy,
so, in particular, r(Tm) — a as m — oo. O

Numerically, the first two terms in (7) are an excellent approximation to t,,.

When m = 10, for example, the error term eq is less than 1078.

Our lower bound argument requires knowledge of the behaviour of the se-

quence {€y,}. Its first few terms are (approximately)

1 = +0.0774006, €, = —0.0249725, €3 = +0.0059878, ©
€2 = —0.0011472, €5 = +0.0001834.

Lemma 4 €m = (M + 2) (U2 — @).

Proof For m = 1, this may be verified directly.

For m > 2, em = (m+3)(um — @) — vy,
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and the lemma amounts to the claim that

U, = —(m + %)(’UHH—I + Umy2).

But, from (6), this is the obvious identity

1=—(m+§)< —2 : ) O

2m+1  (2m+1)(2m + 3)

Corollary 7
(a) €ar 1 >0 and eg < 0 (k=1,2,...)
(b) lems1] < 2|em|/(2m +3) (m = 1,2,...), and hence {(2m — 1)|en|} is a

decreasing sequence.

Proof
(a) These inequalities follow from Lemma 4, since €, = —(m+32) 2 s v;,

the v; alternate in sign and decrease strictly in absolute value.

(b) The case m =1 can be verified by direct calculation. For m > 2,

(m+ 3)(|vmsl = [vmra]) < lem| < (M + 3)[vmysl,

and so, using (6),

lem| o (2m+3) <|vm+3| _1> _2m+3 _ 2m+1

> .
lems1] — (2m +5) \ |vm4] 2 2m — 1

O

We now prove the lower bound for FORESTS. We prove that the worst-case
examples for forests are the trees T, of the previous lemma. Let T = {T,, :

m=1,2...}.

Lemma 5 Let T be an L-tree with 2m vertices. Then

w(T) > tm
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Proof We establish by induction a bound
w(T) > ma+ B +en”

provided T # T, (€m™ = max{0, € }.)
This will, of course, prove the lemma.

We next define

€& = ¢ if1=1o0rz7iseven
= 0 otherwise.
1
w(T) =1+ = >, wT\{u,0}) (10)
| | uveE

Thus suppose e = uv and T\ {u,v} has components {C; : 1 < i < k.} which
contain at least one edge. Now define §(C;) (i = 1,2,...,ke) by

=0 otherwise

where m' = m(C;), and let 7, = Y%, 6(C;) for e € E. (The precise form
of this definition may seem curious, but will be justified later in our proof.)

Now, by induction
w(T \ {u,v}) = Zl u(C) = Y(am(Cy) + B +8(Ch)

=1

= am(T \ {u,v}) + Bk + 7e-

Hence

2 w(T\A{u,v}) 2 a 3 m(T\{u,v}) + B ke+ > 7%

weE wveE ecE ecE
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=a(mm—1)+m—-1)m-2))+83 ke + > 7,

ecE eeE

using the fact that 7" is an L-tree.

So
> T\ {w,v}) >2(m —1)’a+ B8 ke+ D e (11)

weE eck eckE

Now let
o(T) = (W(T) - (ma + B + en*))(2m — 1).

We must show that Ag(7") > 0. But (10) and (11) imply

Ao(T) > 2m—1+2(m—12a+B> ke+ > 7 (12)

ecE eck
—2m—-1)(ma+ B+ en")

= 2a+B-1-02m—1De," —4mB+ B ke + D e

ecE ecF
> 20+B-1—9—4mB+ ) ke + D e (13)
ecE eckE

by Corollary 7. Now let A;(T') denote the right hand side of (13). We show
that A;(T") > 0. We prove this by induction on m. Note that, if m < 4
there is nothing to prove. Now our base cases will be, for each m > 4,
the trees S(a, b, c) where a,b,c are positive integers and a + b+ c+ 1 = m.
The tree S(a,b,c) consists of a central vertex v, paths v,zq, 4 1,--.,21,

/

/ / /
Uy Yy Yo1,---,Y1 and v, 2, Ze—1,...,21 plus leaves w, x7,...,Z,, Yi,---Yp,

21, ... 2, where v is adjacent to w, z} is adjacent to z; and so on.
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We first evaluate > .cp k.. This is the sum of terms

CONTRIBUTION EDGES
2((a=1)+(b—=1)+(c—1)) zizh (1>2),...
Na-2+(b-2)+(—-2)  zai (22)...

6 12} and 129, . ..
9 Vg, - -
3 VW

which sum to 4(a + b+ ¢) = 4(m — 1).

The above analysis only applies if a,b,c > 2. On the other hand, if say a = 1,
then the path vz, contributes 1 +2 = 2(a — 1) + 2(a — 2) + 2 + 3 and so

> eci ke = 4(m — 1) in this case also.

We must now compute > .cz V.. This comprises terms

CONTRIBUTION EDGES

S+ e+ e ziti1 (2<i<a-—2),...

e+ Yita+ T rir; (2<i<a-—1),...
€a—2 F €preq1 T €p—2 + €qqet1 + €c—2 + Eaybta Ta-1Zaqy - - -
€a—1+ €ptet1 T €1+ €aqer1 + €c—1 + €atprt Tale,- - -
€a1 + €p+ €c+ Ep_1 + €q + €c + €1 + €4+ € Tal, ...
€qa + €p + €. vw

which sum to

a b c
2> &G +2) 642> &+ eE+ e+ Ec+ 260p11 + 2€ater1 + 26pet1
=1 =1 =1

Now, for any p > 1, by Corollary 7,

zp:é>e+6+e<1+4+ 10 +>
o= e 11-13 " 11-13-15-17 '

19



> e +e+ 1+4+(4)2+
€1 €9 €4 143 143

= €1+ €+ 14364/139

> 0.05, by direct calculation. (14)
Thus
S ve > 03+6+ 6+ €+ 2601041 + 260t ct1 + 26p1ct1
ecE
Z 362 + 664 +.3
> 0.2,
and hence
A(T) > 2a+8—1—9e5 —4mB +4(m —1)8 + 3(ea + €4) + .3
> 0, by direct calculation.

(See Theorem 4, (8) and (9) for numerical estimates of the relevant quanti-

ties.)

We now have a basis for our induction. So suppose that T # T,,, and T is not
of the form S(a,b,c). Let T' be obtained from T by deleting all leaves. Let
z be a leaf of T'. Consider the path from z in T, P = {z1(= ), 22, ... 2k, Yy},
where the degree of z; (in T) is 2, (i = 2,3,...,k) and the degree of y is
d+1(d>2). Now, in T, let z},i = 1,2,...,k be the leaf neighbours of z;,
Y’ be the leaf neighbour of y, 21,29, ..., 24 be the non-leaf neighbours of y
and finally, let z{,7 = 1,2,...,d be the leaf neighbours of z;. Let 7" =T\ P
(after deleting all isolated vertices). Then T" # T,,_ as T is not of the form
S(a,b,c). Let now D = Ay(T) — Ay(T"). Then

D = (Dy — 4k)B + D, (15)
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where

D= k- K

eclF ecE'

and

Dy=3% Y= 7%

ecE ecE’

and where F' is the edge set of 7" and k., . stand for k.,~. in T".

We will now justify our definition of 7.. For each component C; associated
with edge e in T', there is a (possibly edgeless) component C! = C;NE" in T".
Now (7.—7.) is the sum of terms (6(C;)—0(C})) for C; # C.. Now we certainly
have (6(C;) — 0(C})) > 6(C;) unless C; = Ty. But clearly C; = T; implies
C; = T so the inequality holds regardless. Therefore we may justifiably use
the bound

The consequence is that we do not need to consider the effect of the “de-
struction” of members of 7 in 7", only their “creation” in 7. This allows
combination of what might otherwise be distinct cases in the induction. We

use these ideas below without further comment.
Now, when k > 2,

Dy = 1+1+2(k-1)+2(k—-2)+(d+1)+1+d
= 4k +2d—2

The successive terms in the expression for D; are the contributions due,
respectively, to z12), x12o, izl (2 < i< k), zizi1 2<i<k-1), zpy, yy
and yz; (1 <i < d). The last two terms are increases (k. — k). For all other
edges e € E', it is clear that k. = k..
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The expression 4k + 2d — 2 is also valid for £ = 1, as the reader can easily

check.

We now turn to D,. If y is deleted from 7" then 7' breaks up into 7} plus
d subtrees Hy, Hs,... Hy, say. Let us assume, without loss, that H; € T for
1 <11 < s, for some 0 < s < d. Note that, if d = 2, then s < 2 since T is not
an S(a,b,c).

We consider two cases.
Case 1: d>3ord=2,s=0.
For k > 2,
Dy =261+ 26+ ...+ 26,90+ €1+ (€p1+ €y + ...+ &,) + € + dég.

The terms here arise as follows. The terms 2¢;, (1 < i < k — 2) come from
Tip12;,y and T;y1%549; €p—1 comes from z,x}; (€x—1 + &, + -+ + &,) comes

from zy;; € comes from yy' and, finally, dé; comes from yz;, (1 < i < d).

So .
Dy=2) &+ (d—1é&+é&, +...+6,.
i=1

The same expression is also valid for k£ = 1.

Thus, from (15),

k
D > (2d—2)B+2) &+ (d—1é+é& +...+&,
=1

0.1+ (d— 1)(2_5+é,c +dey/(d — 1))

>

> 0.1+ (d—1)(26 + 3¢2)
> (d—1)/5

> 0.
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Now, by the induction hypothesis, A;(T") > 0 and so A;(T") > 0 is immedi-

ate.
Case 2: d=2,s=1.

Let the degree of z; be d' + 2, where d > 1 (since T is not of the form
S(a,b,c)). Let wy,...,wy be the neighbours of z; other than y and 2.
Assume first that d’ > 2. Now the only difference from Case 1 is that Yzl

and Y,uw,;, (1 =1,2,...,d) contain new contributions €x,+1 > €4, and so
D >0.1+428+3e+ (d+1)e. (16)

If d < 10 then D > 0, by direct calculation, and so Ay(T) > A(T") > 0

as in the previous case. For d' > 10 we could have D < 0 and so we let

T" =T'\ (H1U{y}), the tree obtained by deleting vertex y and H; from 7".

By the analysis of the previous case A(7") > A(T")+(d'—1)/5 > (d'—1)/5,

since T" is clearly not in 7 and is not an S(a,b, c). Hence, from (16),
Ay(T) > 01428+ 33+ 2e4+ (d —1)(0.2 + €4)

> 0.14 208+ 3€ex+2e4 4+ 10(0.2 + €4)

> 0 by direct calculation.

This completes the induction, and the proof of the lemma. O

9 Concluding remarks

We have established the worst case examples for FORESTS, but we have
little idea for PLANAR GRAPHS. The lower bound & is almost certainly
not tight, but currently our best upper bound is G4 from Theorem 2 which

gives p(PLANAR GRAPHS) < 11. This leaves a large gap.
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A randomised greedy algorithm could also be applied to the problem of find-
ing a large H-matching in a graph G. We consider H to be some fixed graph
like a triangle, and an H-matching of G is a collection of vertex-disjoint
copies of H in GG. Finding the largest H-matching is NP-hard for all graphs
H with at least three vertices, Kirkpatrick and Hell [2]. One difficulty with
extending our analysis to this case is that the analogue of Lemma 1 fails to
hold in general. Consider, for example, H to be a path of length two, and
compare the performance of the RGA on two paths of length two with its

performance on a path of length six.

Another possible generalisation is to weighted problems. For example, in the
weighted matching problem, we might consider choosing the next edge with

probability proportional to its edge weight.
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