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Abstract

We consider the problem of generating a colouring of the random graph Gn,p uniformly
at random using a natural Markov chain algorithm: the Glauber dynamics. We assume that
there are β∆ colours available, where ∆ is the maximum degree of the graph, and we wish to
determine the least β = β(p) such that the distribution is close to uniform in O(n log n) steps
of the chain. This problem has been previously studied for Gn,p in cases where np is relatively
small. Here we consider the “dense” cases, where np ∈ [ω lnn, n] and ω = ω(n) → ∞. Our
methods are closely tailored to the random graph setting, but we obtain considerably better
bounds on β(p) than can be achieved using more general techniques.

1 Introduction

This paper is concerned with the problem of randomly colouring a graph with a given number of

colours. The colouring should be proper in the sense that adjacent vertices get different colours

and the distribution of the colouring should be close to uniform over the set of possible colourings.

This problem has been the subject of intense study by researchers into Markov Chain Monte Carlo

Algorithms (MCMC). In spite of this, the problem is not well solved.

Jerrum [10] showed that if ∆ denotes the maximum degree of G and the number of colours q ≥ 2∆,

then a simple algorithm can be used to generate a near random colouring in polynomial time.

Vigoda [14] used a more complicated Markov Chain and improved this to q ≥ 11∆/6. In spite of

almost 10 years of effort, this is still the best bound known for the general case. Dyer and Frieze

[4] were able to improve this bound by restricting attention to graphs of large enough maximum

degree and large enough girth. There have been several improvements to this latter result and

Frieze and Vigoda [5] surveys most of the known results.

The paper of Dyer, Flaxman, Frieze and Vigoda [3] considered this question in relation to random

graphs, trying to bound the number of colours needed by something other than the maximum

degree. They considered the random graph Gn,p with edge probability p = d/n, d constant and

gave an upper bound on the number of colours needed that was o(∆) whp. Mossel and Sly [13]

have improved this result and shown that whp the number of colours needed satisfies q ≤ qd where

qd depends only on d. The random graph Gn,p is the subject of this paper, but we consider graphs
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which are denser than those discussed in [3] and [13]. We will discuss the range np ∈ [ω lnn, n]

where ω = ω(n)→∞.

2 Glauber dynamics

We consider colourings X : V → C of a graph G, with colour set C = [q]. If V ′ ⊆ V , we use the

notation X(V ′) = {X(v) : v ∈ V ′}. A colouring is proper if X(v) 6= X(w) (∀ {v,w} ∈ E), but here

colourings should not be assumed proper unless this is stated. The set of all proper colourings of

G will be denoted by ΩG, with NG = |ΩG|.
We consider the Metropolis Glauber dynamics on the set Cn of all colourings of V . For any colouring

X of a graph G, the Metropolis update is defined as follows.

1: function Update(X)
2: X′ ← X

3: choose u ∈ V and c ∈ C uar

4: if ∀w ∈ Nu: X′(w) 6= c then

5: X′(u)← c

6: return X′

We will refer to Steps 4–5 as an update of vertex u. An update will be called successful if Step 4

is executed, otherwise unsuccessful.

We analyse the following Markov chain Xt based on these dynamics, with initial colouring X:

1: function Glauber(X, t)
2: X0 ← X

3: for t← 1 to t do

4: Xt ← Update(Xt−1)

5: return Xt

We say the tth update occurs at time t, and the vertex and colour used are denoted by ut, ct.

For any initial colouring X, the equilibrium distribution πG of Glauber(X,∞) is uniform on the

set ΩG. Thus πG(X) = 1/NG (∀X ∈ ΩG), and πG is invariant under an update of any vertex.

Let τ(ε) = mint {dTV(Xt,πG) ≤ ε}. Here dTV is the total variation distance between distributions

(see [11, p. 26]), and τ(ε) is called the mixing time. Our chain will be said to be rapidly mixing if

for any initial colouring X and any fixed ε, τ(ε) is bounded by a polynomial in n. Our aim is to

find sufficient conditions for the chain to be rapidly mixing.

2.1 Random graphs and colourings

Let V (2) denote the set of all pairs {v,w} (v,w ∈ V, v 6= w). Then Gn,p will denote the Erdős-Rényi

probability space on Gn. A random graph G = (V,E) from this distribution is defined by

Pr({v,w} ∈ E) = p, independently for all pairs {v,w} ∈ V (2).

See, for example, [9] for further information.

We consider p(n) ≥ ω(n) ln n/n, where ω(n) → ∞ slowly, so that (say) ω = o(log log n). We also

assume 1− p(n) = Ω(1) as n→∞.

We say that an event E occurs with high probability (whp) if Pr(E) ≥ 1 − n−k for all k ≥ 0. If
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events Ej (j ∈ J) occur whp, it follows that the event
⋃

j∈J Ej also occurs whp, whenever |J | is

bounded by any polynomial in n. We will call this the union bound.

We now define some constants that are used in our main theorem. First let β0 = 1.48909 . . . be the

solution to

βe−1/β + (1− e−1/β
)2

= 1.

Now define β1 ≈ 1.63457 to be the solution to

κ1(β) + βe−1/β = 1

where

κ1(β) =
2

β

∫ 1

0
(1− e−x/β) exp

(

− x

β
−

∫ x

0

dy

e(1−y)/β − y
)

dx. (1)

In the next definition η represents an arbitrarily small positive constant. Let

β(p) = (1 + η)×











β0 ω lnn/n ≤ p = o(1/ ln n)

β1 Ω(1/ ln n) ≤ p = o(1)

β2(p) p = Ω(1)

.

The definition of β2(p) is complex and Figure 3 below provides a numerical plot.

The number of colours available will be parameterised as β∆ ≈ βnp1 , since whp every vertex of

Gn,p will have vertex degree ≈ np.
Theorem 1. If G = Gn,p then Glauber Dynamics mixes in O(n lnn) time whp provided β ≥
β(p).

Some comments are in order. The value β0 appears in Molloy [12] where q > β0∆ is shown to be

sufficient for rapid mixing when ∆ = Ω(lnn) and the girth is Ω(log ∆). The important point to

note is that for our range of values for p and for almost all choices of Gn,p, nothing better than

Vigoda’s bound of 11np/6 can be inferred by previous results. It is perhaps of interest to point out

here that whp χ(Gn,p) ≈ np
2 lognp .

3 Proof of Theorem 1

3.1 Proof Strategy

We make use of a particular choice of random initial distribution.

1: function Random

2: for v ∈ V do

3: choose X(v) ∈ C uar

4: return X

This initial colouring is unlikely to be a proper colouring of G, but it is independent of E. We will

analyse Glauber(Random, t0), t0 = ⌈λn lnn⌉ (the value of λ is given in Section 3.3). We will show

in Lemmas 1, 2 below that this chain has nice properties. We couple the chains Glauber(Y, t0),

where Y ∼ πG
2, and Glauber(Random, t0). Using the aforementioned properties we show that

these two chains will tend to coincide rapidly. We deduce that the equilibrium distribution also has

the same nice properties. We can then use these properties to show convergence of Glauber(X0, t0)

1
An ≈ Bn iff An = (1 + o(1))Bn as n → ∞.

2We use ∼ to denote has the same distribution as
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for an arbitrary initial colouring X0. This is achieved by coupling the chains Glauber(Y, t0) and

Glauber(X0, t0).

3.2 Coupling Argument

Let Gn = {G = (V,E) : V = [n]} be the set of n-vertex graphs. If G ∈ Gn, the set of neighbours

of a vertex v ∈ V will be denoted by Nv = {w ∈ V : {v,w} ∈ E}, and its degree dv = |Nv|. The

maximum degree of G is ∆(G) = maxv∈V dv .

If X is a colouring of G and v ∈ V , let

Av(X) = {c ∈ C : X(w) 6= c,∀w ∈ Nv}
be the set of colours which are available for a successful update of v. Also, let Av(X) = |Av(X)|.
Clearly we always have Av(X) ≥ q −∆ = (β − 1)∆.

We prove convergence of Glauber using a coupling due to Jerrum [10] and an idea of Hayes and

Vigoda [7]. In [7] an arbitrary chain is coupled with one started in an equilibrium distribution whose

properties are known. We use the following coupling, which is essentially that used by Jerrum [10].

Let uX , cX and uY , cY be the choices in Step 3 of Update(Xt) and Update(Yt) respectively.

1: procedure Couple(X,Y )

2: Choose u ∈ V uar

3: uX ← u, uY ← u

4: AX ← Au(X), AY ← Au(Y )

5: AX ← |AX |, AY ← |AY |
6: Construct a bijection f : C → C such that

7: f(c)← c (∀c ∈ AX ∩ AY )

8: if AX ≤ AY then f(AX) ⊆ AY else f(AY ) ⊆ AX
9: Choose c ∈ C uar

10: cX ← c, cY ← f(c)

Note that Couple ensures that cY will be sampled uar from C, as required. For brevity, we will

make use of the notation defined in Couple below.

Let X ′, Y ′ be the colourings after updating X and Y with u, cX = c, cY = f(c) chosen by Couple.

Let W = {w ∈ V : X(w) 6= Y (w)} and W = |W| = d(X,Y ), where d(·, ·) is the Hamming distance.

For any v ∈ V , let Wv =W ∩Nv and Wv = |Wv|. Note that
∑

v∈V Wv ≤
∑

w∈W dw ≤ ∆W.

Note that c ∈ AX \ AY implies there is a w ∈ Nu such that X(w) 6= c and Y (w) = c. Hence

|AX \ AY | ≤Wu, and similarly |AY \ AX | ≤Wu. Let

Au = max {AX , AY }
so that we have

Au − |AX ∩ AY | = max {|AX \ AY |, |AY \ AX |} ≤ Wu. (2)

Also, from Step 8 of Couple, there are q − Au pairs c, f(c) such that c /∈ AX , f(c) /∈ AY .

Hence there are at most Au − |AX ∩ AY | ≤ Wu pairs which result in X ′(u) 6= Y ′(u). Letting

W ′ = d(X ′, Y ′), and assuming that we have a bound

Au ≥ α∆ (3)

4



for some α > 1 that holds whp for all t ≤ n2 say, then we have

E[W ′−W ] ≤ −
∑

u∈W

Au −Wu

nq
+

∑

u/∈W

Wu

nq
≤ −α∆W

nq
+

∑

u∈V

Wu

nq
≤ −α∆W

nq
+

∆W

nq
= −(α− 1)W

nβ
,

(4)

since q = β∆.

Therefore,

E[W ′] ≤
(

1− α− 1

nβ

)

W. (5)

Using the Coupling Lemma (see [11, Lemma 4.7]),

dTV(Xt,Yt) ≤ Pr(Xt 6= Yt) ≤ E[d(Xt,Yt)] ≤ n
(

1− α− 1

nβ

)t
≤ ne−(α−1)t/nβ ≤ ε,

for t ≥ βn ln(n/ε)/(α − 1).

Thus one part of the analysis involves finding a lower bound as in (3).

A further improvement is possible using a modification of a method of Molloy [12]. Now, for any

v ∈ V , let us define

W∗
v = {w ∈ Nv : X(w) /∈ Y (Nv) ∨ Y (w) /∈ X(Nv)} , and W ∗

v = |W∗
v |.

Note that W∗
v ⊆ Wv, so W ∗

v ≤ Wv, since X(w) = Y (w) clearly implies X(w) ∈ Y (Nv) and

Y (w) ∈ X(Nv). Also, we will define

N ∗
v = {w ∈ Nv : X(v) /∈ Y (Nw) ∨ Y (v) /∈ X(Nw)} and d∗v = |N ∗

v |. (6)

We obviously have N ∗
v ⊆ Nv, and hence d∗v ≤ dv. Note also that w ∈ N ∗

v iff v ∈ W∗
w. Furthermore,

N ∗
v = ∅ if X(v) = Y (v), since this implies X(v) ∈ Y (Nw) and Y (v) ∈ X(Nw) for all w ∈ Nv. Thus

d∗v = 0 for all v /∈ W. Hence,
∑

v∈V W
∗
v =

∑

w∈W d∗w.

Note that c ∈ AX \ AY implies there is a w ∈ Nu such that Y (w) = c and c /∈ X(Nu). Hence

|AX \ AY | ≤W ∗
u , and similarly |AY \ AX | ≤W ∗

u . Hence

Au − |AX ∩AY | = max {|AX \ AY |, |AY \ AX |} ≤ W ∗
u .

which is a strengthening of (2).

So,

W ′ −W ≤ −
∑

u∈W

Au −W ∗
u

nq
+

∑

u/∈W

W ∗
u

nq
≤ −αW

nq
+

∑

u∈V

W ∗
u

nq
= −αW

nq
+

∑

v∈W

d∗v
nq
.

We will prove an upper bound

E[d∗v | v ∈ W] ≤ γ∆

that holds for t ≤ n2, say and then we will have a strengthened (5) to

E[W ′] ≤
(

1− α− γ
nβ

)

W. (7)

and convergence will occur in time O(n log n) provided α > γ as opposed to α > 1.

The rest of the paper provides the following bounds for α, γ: The quantities in the next two lemmas

refer to the chain Glauber(Random, t). The lemmas describe the nice properties referred to in

Section 3.1.
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Lemma 1. Av & αp∆ whp for v ∈ V, 0 ≤ t ≤ n2 where

αp = αp(β) =























β − 1, if q ≥ n,
β − µ+ µ(1− p)1/µp(1− p)1/βp,

where µ = min
{

β(1− e−1/αp), 1/p
}

if q < n, p = Ω(1),

βe−1/β , if q < n, p = o(1).

Lemma 2. E[d∗v | v ∈ W] . γp∆ whp for v ∈ V, 0 ≤ t ≤ n2 where

γp = γp(β) =











1− (1− e−1/β
)2

ω lnn/n ≤ p = o(1/ ln n)

1− κ1(β) Ω(1/ ln n) ≤ p = o(1)

1− κ2(β) p = Ω(1)

Here κ1(β) is as defined in (1) and κ2(β) is defined in (41) and has only been computed numerically.

Putting them together with (7) yields Theorem 1.

3.3 Proof of Lemma 1

Our analysis will be split into three cases: where 1/p ≥ ω lnn, where 1/p ≤ ω lnn but p = o(1), and

where p = Θ(1). Slightly different techniques are required in each case. For notational convenience,

we write λ(n) = 3
√
ω and ǫ(n) = 1/λ, so λ → ∞ and ǫ → 0 as n → ∞. We will also use θ(n) to

denote any function such that θ = Ω(λ) as n →∞. We will use ǫ0, ε0 to indicate small constants,

where ε0 will always be a small probability.

For any colouring X of G and c ∈ C, the colour class of c is Sc(X) = {v ∈ V : X(v) = c}, with

sc(X) = |Sc(X)|.
Lemma 3. If X0 ∼ Random then whp, for all c ∈ C, 0 ≤ t ≤ t0,

sc(Xt) ≤
{

(1 + ǫ)/(β − 1)p < ǫ2n/ lnn = o(n/ log n), if 1/p ≥ ω lnn.

λ
√

lnn/(β − 1)p < ǫ4 ln2 n = o(log2 n), if 1/p ≤ ω lnn.

Proof. Fix a value of t. For all v ∈ V and c ∈ C, we have Pr(X(v) = c) ≤ 1/(q − ∆). This is

true initially since X0 = Random, and hence Pr(X0(v) = c) = 1/q. It remains true thereafter

because, conditional on a successful update of v, Update independently selects a colour uar from

Av(X), which has size at least (q − ∆). Thus 1X(v)=c ≤ Bv, where Bv ∈ {0, 1} are iid3 with

Pr(Bv = 1) = 1/(q −∆). Therefore sc(Xt) is dominated by B =
∑

v∈V Bv ∼ Bin(n, 1/(q −∆)). We

have E[B] = n/(q −∆) = 1/(β − 1)p. If 1/p ≥ ω lnn, let k = (1 + ǫ)/(β − 1)p ≤ ǫ2n/ lnn, for large

enough n. The Chernoff bound gives

Pr(sc(Xt) ≥ k) ≤ exp
(

− ǫ2

3(β − 1)p

)

≤ n−θ.

If 1/p ≤ ω lnn, let k = ǫ4 ln2 n. Now

k ≥ 7E[sc] = 7/(β − 1)p = O(λ3 lnn),

since λ7 = o(ln n), so a variant of the Chernoff bound [9, (2.11)] gives

Pr(sc(Xt) ≥ k) ≤ exp(−ǫ4 ln2 n) < n−θ.

The conclusion now follows, using the union bound.

3independently and identically distributed
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Lemma 4. If Y0 ∼ π, sc(Yt) < ǫ2n/ lnn = o(n/ log n) (∀c ∈ C, 0 ≤ t ≤ t0) whp.

Proof. Since Yt is invariant under a successful update of any vertex, Pr(Yt(v) = c) ≤ 1/(q − ∆),

(∀v ∈ V, c ∈ C) and the proof of Lemma 3 applies.

The key fact underlying our analysis is that, for p > ω lnn/n and q = β∆ for large enough β,

Glauber(Random, t0) does not inspect many edges of G before it terminates. This allows us to

perform most of our calculations in the random graph model Gn,p. To show that this is valid, we

will analyse Update with respect to a fixed vertex v. To emphasise its dependence on v, we will

rewrite Update as follows. Note, however, that the algorithm is effectively unchanged.

1: function Update(X, v)
2: X′ ← X

3: choose u ∈ V and c ∈ C uar

4: if u = v then

5: if ∀w ∈ Sc(X′): {v,w} /∈ E then

6: X′(v)← c

7: else

8: if c 6= X′(v) then

9: if ∀w ∈ Sc(X′): {u,w} /∈ E then

10: X′(u)← c

11: else

12: if {u, v} /∈ E then

13: if ∀w ∈ Sc(X′) \ {v}: {u,w} /∈ E then

14: X′(u)← c

15: return X′

We will say that Glauber exposes the pair {v,w} ∈ V (2) if it is necessary to determine whether or

not {v,w} ∈ E during some update. We say Glauber exposes an edge e = {v,w} if the exposed

pair {v,w} ∈ E. Otherwise it exposes a non-edge {v,w}. Let Dv be the set of pairs {v,w} exposed

by Glauber(Random, t0), and let Dv = |Dv |. Note that no pairs are exposed when t = 0.

Lemma 5. Dv ≤ λ2 lnn/p ≤ ǫn = o(n) (∀v ∈ V ) whp.

Proof. Update(X, v) exposes pairs {v,w} (w ∈ V ) only in Steps 5 and 12. Step 5 is executed,

independently with probability 1/n, when u = v in Update. Let K1 be the number of times Step 5

of Update is executed in Glauber(Random, t0). Then the Chernoff bound gives

Pr(K1 > 2λ ln n) ≤ exp(−1
3λ lnn) = n−λ/3 = n−θ.

Assume first that 1/p ≥ ω lnn. When Step 5 is executed, all pairs {v,w} for w ∈ Sc(Xt) are exposed,

for some c. By Lemma 3, this is at most 2/(β−1)p whp. Thus whp at most 2λ lnn×2/(β−1)p =

4λ ln n/(β − 1)p pairs are exposed by occurrences of Step 5 of Update in Glauber(Random, t0).

If 1/p ≤ ω lnn then by Lemma 3 the number of pairs exposed is at most 2λ lnn×λ
√

lnn/(β−1)p =

2λ2 ln3/2 n/(β − 1)p.

Step 12 is executed, independently with probability less than 1/q, if u 6= v and c = Xt(v) in Update.

Let K2 be the number of times Step 12 of Update is executed in Glauber(Random, t0). The

Chernoff bound gives

Pr(K2 > 2λ lnn/βp) ≤ exp(−1
3λ lnn/βp) < n−λ/3 = n−θ.
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Each execution of Step 12 exposes one pair. Thus whp at most 2λ lnn/βp pairs are exposed by

occurrences of Step 12. Thus in total, we expose at most ǫn pairs whp. The union bound completes

the proof.

We now show that we have not exposed many edges {v,w} ∈ E.

Lemma 6. | {w ∈ Dv : {v,w} ∈ E} | ≤ 2λ2 lnn ≤ 2ǫnp = o(∆) (v ∈ V ) whp.

Proof. Let K = | {w ∈ Dv : {v,w} ∈ E} |. When any pair {v,w} is exposed, Pr({v,w} ∈ E) = p

independently. Since Dv < λ2 lnn/p by Lemma 5, the Chernoff bound gives

Pr(K > 2λ2 lnn) ≤ exp(−1
3λ

2 lnn) = n−λ
2/3 < n−θ.

We will now bound Av(Xt) below, for all Xt = Glauber(Random, t) and all v ∈ V .

Lemma 7. For all 0 ≤ t ≤ t0, whp,

Amin & 4 ∆×











β − 1, if q ≥ n,
β(1− p)1/βp, if q < n, p = Ω(1),

βe−1/β , if p = o(1).

Proof. Fix v ∈ V and t ≤ t0. By Lemma 5, Glauber(Random, t0) exposes at most ǫn pairs

and at most 2ǫnp edges adjacent to v. Thus n′ ≥ (1 − ǫ)n pairs {v,w} are not exposed. Thus

we can write Pr(c ∈ Av) = pc independently for all c ∈ C. Here pc = 0 for c ∈ C ′ =

{Xt(w) : {v,w} exposed, {v,w} ∈ E} and pc ≥ (1 − p)sc otherwise. Let M = {c ∈ C : sc > 0}
be the set of m = |M | colours appearing in Xt. Note that

∑

c∈M sc = n. Let Ut = (C \ C ′) \
{Xt(w) : {v,w} unexposed, {v,w} ∈ E}, and Ut = |Ut| ≤ Av(Xt). Then, using the arithmetic-

geometric mean inequality (see, for example, [6]), and |C ′| ≤ 2ǫnp whp,

E[Ut] ≥
∑

c∈C\C′

(1− p)sc ≥ q − |C ′| −m+
∑

c∈M\C′

(1− p)sc & q −m+m(1− p)n/m. (8)

Thus E[Ut] & min{q −m + m(1 − p)n/m : 0 ≤ m ≤ min {q, n}}. We also always have the bound

Ut ≥ (β − 1)∆. Thus, since ∆ ≈ np and q = β∆,

E[Ut] & Â =







q −∆ = (β − 1)∆, if q ≥ n,

q(1− p)n/q ≈ β(1− p)1/βp∆, if q < n, p = Ω(1),

qe−∆/q = βe−1/β∆, if p = o(1).

Now Ut is a sum of q independent binary random variables, since G ∼ Gn,p. Therefore, since

E[Ut] ≥ (β − 1)∆ = (β − 1)λ3 lnn, Hoeffding’s inequality [9, Thm. 2.8] gives

Pr(Ut ≤ (1− ǫ)E[Ut]) ≤ exp(−1
3ǫ

2
E[Ut]) ≤ exp(−1

3ǫ
2λ3 lnn) = n−λ/3 = n−θ.

Finally, we use the union bound over all v ∈ V , and 0 ≤ t ≤ t0.

This proves Lemma 1 except for the case p = Ω(1). When p = Ω(1), we can marginally improve

Lemma 7 by observing that some colours will not appear. Let M and m be as defined in the proof

of Lemma 7. Let Ā be a uniform lower bound on the right hand side of (8) which holds whp.

Clearly we may take Ā ≥ Â, so Ā = Θ(n). Let α = Ā/∆ ≈ Ā/np and µ = m/∆ ≈ m/np.
Lemma 8. For all v ∈ V and 0 ≤ t ≤ t0, Av(Xt) & α∆ whp, where α = β − µ+ µ(1− p)1/µp and

µ = min
{

β(1− e−1/αp), 1/p
}

.

4
An & Bn if An ≥ 1 − o(1))Bn as n → ∞.

8



Proof. Let m̄ = q −m denote the number of colours which do not appear anywhere in the graph.

Sort V in increasing order of the epochs at which vertices were last successfully recoloured before

t. Vertices that have not been successfully recoloured are put before those that have, in arbitrary

order. Then relabel V so that this order is 1, 2, . . . , n. Let m̄k be the number of colours not present

in {Xt(1),Xt(2), . . . ,Xt(k)}, so m̄0 = q. Now, since each Xt(i) (i ∈ [n]) is chosen uar from a set of

size at least Ā, we have

E[m̄k+1] ≥ m̄k − m̄k/Ā = (1− 1/Ā)m̄k,

and hence E[m̄k] ≥ q(1− 1/Ā)k. In particular,

E[m̄] = E[m̄n] ≥ q(1− 1/Ā)n ≈ qe−n/Ā ≈ qe−1/αp = Θ(n),

since q, Ā = Ω(n). Let us define Zk = (1− 1/Ā)n−km̄k, so Zn = m̄n. Then

E[Zk+1] = (1− 1/Ā)n−k−1
E[m̄k+1] ≥ (1− 1/Ā)n−km̄k = Zk,

and hence Zk is a submartingale. Also, |m̄k+1 − m̄k| ≤ 1, m̄k ≤ q and Ā ≥ q −∆ and so

|Zk+1 − Zk| = (1− 1/Ā)n−k−1|m̄k+1 − m̄k + m̄k/Ā|
≤ 1 + q/(q −∆)

= (2q −∆)/(q −∆)

= (2β − 1)/(β − 1),

and hence Zk is a bounded-difference submartingale. Thus, by the martingale inequality [9, p. 37],

Pr(m̄ < (1− ǫ)qe−1/αp) ≈ Pr(Zn < (1− ǫ)E[Zn)) ≤ exp(−ǫ2Θ(n)) ≤ exp(−Θ(n1/3)). (9)

Now, from (8) we have α = β − µ + µ(1 − p)1/µp, and from (9) we have µ . β(1 − e−1/αp). The

bound µ ≤ 1/p, which is equivalent to m ≤ n, is trivial.

The proof of Lemma 1 is now complete. The resulting values of β(p) for p = Θ(1) are plotted in

Figure 1.
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Figure 1: Bound on β for convergence of Glauber, using Lemmas 7 and 8.

3.4 Proof of Lemma 2

We split the proof of Lemma 2 into the three ranges that we have indicated.

9



3.4.1 The case p = o(1/ log n)

We will first analyse in more detail the number of occurrences of each colour after sufficiently many

Glauber updates. We show that the size of all colour sets is highly concentrated after sufficiently

many rounds of Glauber.

Lemma 9. Let 0 < ǫ0 ≤ 1 be a constant and δ0 = n−K for some constant K > 0. Then, with

probability at least 1− δ0, we have sc ≥ (1− ǫ0)n/q (∀c ∈ C) for all t1 ≤ t ≤ t0, where

t1 = e1/β ln(β/ǫ0)n ln
(

ln(β/ǫ0)n/δ0
)

.

Proof. Let ν = ⌊n/q⌋ ≈ 1/βp. If sc(Xt) ≤ ν, the probability that Glauber updates a known

neighbour v of Sc(Xt) is at most 3ǫnpsc/n . 3ǫ/β, from Lemma 6. Therefore

Pr
(

Xt+1(ut+1) = c
)

& (1− p)sc/q ≈ e−psc/q & e−1/β/q,

since the pairs {v,w} (w ∈ Sc) are exposed. Thus

Pr
(

sc(Xt+1) = s+ 1 | sc(Xt) = s
)

& e−1/β/q (s = 0, 1, 2, . . . , ν − 1). (10)

If sc(Xt) > ν, we will assume only that Pr
(

sc(Xt+1) = s + 1 | sc(Xt) = s
)

≥ 0. We may ignore

(1 ± o(1)) factors in the probability estimates since we will state our lower bounds on β for rapid

mixing only as strict inequalities. We do not seek to analyse the equality cases, which are rather

more problematic. See, for example, [1].

Suppose ϕ is such that whp sc(Xt) ≥ (1 − ϕ)ν (∀c ∈ C, 0 ≤ t ≤ t0). Note that 0 ≤ ϕ ≤ 1. It

follows, as in the proof of Lemma 7 (in particular (8)) that whp

Av(Xt) .
∑

c∈C

(1− p)(1−ϕ)ν ≈ qe−(1−ϕ)/β . (11)

Then we have

Pr
(

sc(Xt+1) = s− 1 | sc(Xt) = s
)

.
s

n

qe−(1−ϕ)/β

q
=

se−(1−ϕ)/β

n
(s = 1, 2, . . . , ν) (12)

Putting σt+1 = sc(Xt) and ρ = ne−ϕ/β
∗
/q ≈ νe−ϕ/β

∗ ≤ ν where β∗ = (1 − o(1))β for a suitable

choice of o(1) we see that sc(Xt) dominates the process σt with state space {0, 1, . . . , ν} such that

σ0 = 0 and

Pr
(

σt+1 = σ + 1 | σt = σ
)

=
e−1/β∗

q
, (σ = 0, 1, . . . , ν − 1)

Pr
(

σt+1 = σ − 1 | σt = σ
)

=
σe−(1−ϕ)/β∗

n
, (σ = 0, 1, . . . , ν)

Pr
(

σt+1 = σ | σt = σ
)

= 1− e−1/β∗

q
− σe−(1−ϕ)/β∗

n
, (σ = 0, 1, . . . , ν − 1)

Pr
(

σt+1 = ν | σt = ν
)

= 1− νe−(1−ϕ)/β∗

n
.

This is a reversible Markov chain with equilibrium distribution,

Pr
(

σ∞ = σ
)

=
ρσe−ρ

ψσ!
(σ = 0, 1, . . . , ν), ψ =

ν
∑

σ=0

ρσe−ρ

σ!
.

as may be verified using the detailed balance equations

e−1/β∗

q

ρσ−1 e−ρ

ψ (σ − 1)!
=

σe−(1−ϕ)/β∗

n

ρσe−ρ

ψσ!
(σ = 1, 2, . . . , ν).

10



The equilibrium distribution is clearly Poiss(ρ) conditional on σ ≤ ν. If x ∼ Poiss(ρ) and ϕ = Ω(ǫ),

the Chernoff bound gives

Pr
(

x < (1− ǫ)ρ ∨ x > (1 + ǫ)ρ
)

≤ 2 exp(−1
3ǫ

2ρ) = exp(−Ω(ǫ2ω log n)) ≤ n−θ. (13)

Thus whp we have

σ∞ ≥ (1− ǫ)ρ ≈ ne−ϕ/β
∗

q
≥

(

1− ϕ

β∗

)n

q
. (14)

We may bound the mixing time of the process σt using path coupling [2]. We consider two copies xt,

yt of the process σt, where y0 is sampled from the equilibrium distribution. We will use the metric

d(xt, yt) = |xt − yt|. We define the coupling on adjacent states xt = σ − 1, yt = σ (1 ≤ σ ≤ ν), so

d(xt, yt) = 1. Conditionally on xt = σ−1, yt = σ, for 0 < σ ≤ ν, we couple the processes as follows

Pr(xt+1 = x, yt+1 = y) =



























































(σ − 1)e−(1−ϕ)/β∗

n
, if x = σ − 2, y = σ − 1,

1− σe−(1−ϕ)/β∗

n
− e−1/β∗

q
, if x = σ − 1, y = σ,

e−1/β∗

q
, if x = σ, y = min {σ + 1, ν} ,

e−(1−ϕ)/β∗

n
, if x = σ − 1, y = σ − 1.

It is now easy to see that

E[d(xt+1, yt+1) | d(xt, yt) = 1] ≤ 1− e−(1−ϕ)/β∗

n
,

and hence

Pr(xt 6= yt) ≤ E[d(xt, yt)] ≤ d(x0, y0)
(

1− e−(1−ϕ)/β∗

n

)t
≤ n

q

(

1− e−1/β∗

n

)t
,

from which it follows, using the Coupling Lemma, that for any δ0 we will have

dTV(σt,σ∞) ≤ n

q

(

1− e−1/β∗

n

)t
≤ n

q
exp

(

− te−1/β∗

n

)

≤ δ0
q
,

when t ≥ e1/β
∗
n ln(n/δ0). Thus, when t ≥ e1/β

∗
n ln(n/δ0), we will have sc ≥ (1 − ϕ/β∗)n/q

(∀c ∈ C) with probability at least 1− δ0.

We will run this process in k stages. We take ϕ0 = 1, assuming only sc ≥ 0 (∀c ∈ C). For

t ≥ e1/β∗
n ln(kn/δ0) we will have sc ≥ (1−ϕ0/β

∗)n/q with probability 1− δ0/k. Thus we can take

ϕ1 = ϕ0/β
∗ and repeat the process. After time t ≥ ke1/β∗

n ln(kn/δ0) we will have

sc ≥
(

1− ϕ0

(β∗)k

)n

q
=

(

1− 1

(β∗)k

)n

q
(∀c ∈ C)

with probability 1 − k(δ0/k) = 1 − δ0. So, in time t ≥ e1/β
∗

ln(β∗/ǫ0)n ln
(

ln(β∗/ǫ0)n/δ0
)

≈
e1/β ln(β/ǫ0)n ln

(

ln(β/ǫ0)n/δ0
)

we will have sc ≥ (1 − ǫ0)n/q (∀c ∈ C) with probability at least

1− δ0.

Corollary 1. For all t1 ≤ t ≤ t0 and v ∈ V , we have

βe−1/β∆ . Av(Xt) . βe−(1−ǫ0)/β∆, (15)

with probability at least 1− δ0.

11



Proof. The left hand inequality follows from Lemma 7. The right hand inequality follows from the

proof of Lemma 9, in particular (11).

We note here that the better bound on the number of available colours Av(Xt) from Corollary 1

can be used to improve the bound on β(p) for p = Θ(1) using (3)–(5). The results are plotted in

Figure 2.
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Figure 2: Bound on β for convergence of Glauber using Corollary 1,
also showing the bound from Lemma 8 for comparison.

We can now verify the upper bound on d∗v in this lemma (see (6) for the definition).

Let v ∈ V , cX = Xt(v) and cY = Yt(v). Also, let SX = ScY (Xt), SY = ScX (Yt) with sX = |SX |,
sY = |SY |. From Lemma 3 and Lemma 9 with δ0 = n−10, we know that whp (1−ǫ0)n/q ≤ sX , sY ≤
ǫ2n/ lnn when t ≥ t1. ¿From Lemma 5, we have exposed at most ǫnsX pairs adjacent to vertices

in SX , ǫnsY pairs adjacent to vertices in SY , and ǫn pairs adjacent to v. Let V ′ = V \ (SX ∪ {v}).
Then, by simple counting, there can be at most ǫn +

√
ǫn +

√
ǫn = o(n) vertices w ∈ V ′ such

that either the pair {v,w} is exposed, or there are more than
√
ǫsX = o(n/q) exposed pairs {u,w}

(u ∈ SX) or more than
√
ǫsY = o(n/q) exposed pairs {u,w} (u ∈ SY ). Thus there is a set V ′′ ⊆ V ′,

of size ≈ n, such that for w ∈ V ′′, {v,w} is unexposed and there are ≈ sX unexposed pairs {u,w}
(u ∈ SX) and ≈ sY unexposed pairs {u,w} (u ∈ SY ). Hence, for w ∈ V ′′,

Pr(w ∈ N ∗
v ) . p

(

(1− p)sX + (1− p)sY − (1− p)sX+sY −|SX∩SY |
)

(16)

≤ p
(

(1− p)sX + (1− p)sY − (1− p)sX+sY
)

= p
(

1− (1− (1− p)sX )(1 − (1− p)sY )
)

(17)

≤ p
(

1− (1− (1− p)(1−ǫ0)n/q)2
)

. p
(

1− (1− e−(1−ǫ0)/β)2
)

.

Moreover, these bounding events are independent for all w ∈ V ′′. Let γ = 1 − (1 − e−(1−ǫ0)/β)2.

Then, using the Chernoff bound,

Pr
(

d∗v > (1 + ǫ)γ∆
)

≤ exp(−Ω(ǫ2∆)) = n−θ. (18)

This completes the proof of Lemma 2 and Theorem 1 for this case.
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3.4.2 The case p = o(1), p = Ω(1/ log n)

Lemma 10. Let 0 < ǫ0, δ0 ≤ 1 be constants. Then, with probability at least 1 − δ0, we have that

for all t1 ≤ t ≤ t0, sc ≥ (1− ǫ0)n/q for almost all c ∈ C, where

t1 = e1/β ln(β/ǫ0)n ln
(

ln(β/ǫ0)n/δ0
)

.

Proof. When p = Ω(1/ log n), the analysis of Section 3.4.1 fails, even for p = o(1). The equilibrium

distributions of individual sc(Xt) are not sufficiently concentrated even to prove Corollary 1 directly.

However, conditional on the sc (c ∈ C), we may still prove concentration of Av(Xt) as in Lemma 7.

We may then prove Corollary 1 as follows.

We combine the q = Ω(n/ log n) colours into ℓ ≈ q/r groups, C1, C2, . . . , Cℓ, each of size r = ⌈ω lnn⌉
or r+ 1. Consider a particular group Cj . For c ∈ Cj, we may bound sc by a random process σt, as

in Section 3.4.1. Moreover, the processes are close to being independent for all c ∈ Cj . This follows

from the facts that q = Ω(n/ log n), and sc ≤ ǫ4 ln2 n, from Lemma 3, so
∑

c∈Cj
sc = o(log3 n) whp.

Using this, we can bound the transition probabilities of each sc (c ∈ Cj) conditionally on the rest,

and show independence to a sufficiently close approximation. More precisely we can replace (10)

and (12) by

Pr
(

sc(Xt+1) = s+ 1 | sc(Xt) = s, sc′, c
′ ∈ Cj \ {c}

)

& e−1/β/q (0 ≤ s < ν). (19)

Pr
(

sc(Xt+1) = s− 1 | sc(Xt) = s, sc′, c
′ ∈ Cj \ {c}

)

.
se−(1−ϕ)/β

n
(1 ≤ s ≤ ν) (20)

Then the argument for a given sc follows the proof of Lemma 9, using the process defined there, so

we will simply indicate the differences.

The value of ρ is not large enough to get the RHS of (13). Instead, all we can say is that for

x ∼ Poiss(ρ),

Pr
(

x < (1− ϕ)ρ
)

≤ ǫϕ = exp(−1
2ϕ

2ρ) = o(1).

So we weaken the hypothesis sc(Xt) ≥ (1− ϕ)ν to

Pr
(

sc(Xt) < (1− ϕ)ν
)

< ǫϕ (∀c ∈ C, 0 ≤ t ≤ t0).

(This is enough to prove the lemma. The value of ϕ tends to zero as we iterate.)

Note that then

E
[

(1− p)sc(Xt)
]

≤ (1− p)(1−ϕ)ν + ǫϕ ≤ e−(1−ϕ)/β + ǫϕ ≈ e−(1−ϕ)/β ,

and hence

E[Av(Xt)] . qe−(1−ϕ)/β ≈ ℓre−(1−ϕ)/β .

However, to show that (11) remains true, we must prove concentration. Now 0 ≤ (1 − p)sc ≤ 1,

and E[(1− p)sc] . e−(1−ϕ)/β , so we may use Hoeffding’s inequality [8] to show that

Pr
(

∑

c∈Cj
(1− p)sc ≥ (1 + ǫ)re−(1−ϕ)/β

)

. exp
(

− Ω(ǫ2ω log n)
)

= n−θ,

and hence

Pr
(

∑

c∈C(1− p)sc ≥ (1 + ǫ)qe−(1−ϕ)/β
)

≤ n−θ.

This shows that the required upper bound (11) for Av(Xt) holds whp. The remainder of the
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proof now follows that of Lemma 9, except that (14) can be proved to hold only with probability

1 − ǫϕ. However, this is the inductive hypothesis, so we may conclude that Corollary 1 holds for

all p = o(1).

When p = Ω(1/ log n), the bound (18) is not valid. However, observe that we only require the

bound on d∗v to hold in expectation. We must deal with conditioning on d∗v , but only by the event

v ∈ W, not by the whole ofW. Therefore, we need to estimate E[d∗v | v ∈ W] at a given time t∗. To

do this, we must bound the random variable sc(Xt∗) conditional on Xt∗(v) = c and v ∈ W. Since

we cannot ignore the conditioning here, the approach must be different from that of Section 3.4.1.

If v ∈ W, then at time tv < t∗, the last successful update of v occurred either in Xtv or Ytv . Thus

u = v, cX = Xtv (v), cY = Ytv (v) and cX 6= cY . We have Xt(v) = cX , Yt(v) = cY for all tv < t ≤ t∗.

We wish to bound sX = scY (X) and sY = scX (Y) from below (see (16)). But the evolution of sX
during (tv, t

∗) is independent of Xt(v), since Xt(v) = cX throughout. Similarly the evolution of sY
during (tv, t) is independent of Yt(v).

We assume that t ≥ t1, so the process has been running long enough that the inequality in Corol-

lary 1 is true, with the claimed probability. Consequently Av(Xt) and Av(Yt) are both close to

βe−1/β∆ for all v and t ≤ t0. The construction of Couple implies that the probability that an

update of v is successful in X but unsuccessful in Y is at most 3ǫ0 say. For a given v ∈ W, let tv be

the last epoch before t∗ at which a successful update of v occurred in X, and let T = t∗ − tv. Let

AL, AR denote the quantities on LHS and RHS of (15). Let ρL = n/AL and ρR = n/AR. Then the

(conditional) probability of a successful update at v is at least AL

nq = 1
ρLq

and so the distribution of

T satisfies

Pr(T ≥ t) ≤
(

1− 1

ρLq

)t
(t = 0, 1, . . . , t∗) (21)

Let b = β/(β − 1) and assume t∗ ≥ t2 = t1 + 4bn lnn. Now AL ≥ (q −∆) and so 1/ρLq ≥ 1/bn. So

Pr(T > 4bn lnn) ≤ (1− 1/bn)4bn lnn < n−4. Thus we can take tv ≥ t1 for all v ∈ V and t2 ≤ T ≤ t0

with probability 1− o(1/n).

Analysis of a bounding process

We now consider two copies of a bounding process that will be dominated by the processes sX , sY .

The processes can be assumed independent, as discussed in (19), (20).

We consider the process

Pr(σt+1 = σ + 1 | σt = σ) =
(1− p)σ

q
(σ = 0, 1, 2, . . .) (22)

Pr(σt+1 = σ − 1 | σt = σ) =
σ

n

Ã

q
=

σ

qρ
(σ = 0, 1, 2, . . .), (23)

where Ã is a uniform upper bound on Av(Xt) (v ∈ V, t1 ≤ t ≤ t0), and ρ = n/Ã. From Lemma 7,

we know that Ã & βnp(1− p)1/βp, so ρ = O(1) when p = Θ(1).

Thus, if we assume sX = sY = 0 at time tv, we can bound sX and sY at time t∗ by two independent

processes of the form (22)–(23) during (tv, t
∗). In particular we wish to examine the transient

behaviour of σt, with this distribution and ρ = ne1/β/q.

(Of course, we can only assume a ρ which fluctuates close to this value, but simple bounding

arguments justify the use of this particular value). In particular, we wish to determine certain
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properties of σT at a random time T such that

Pr(T ≥ t) =
(

1− 1

ρq

)t
(t = 0, 1, 2, . . .).

Now

E[σt+1] = σt +
(1− p)σt

q
− σt
qρ
.

Putting ψt = pσt we may re-write this as

E[ψt+1 − ψt]
p

=
e−γψt

βnp
− ψte

−1/β

βnp
.

Here e−γ ≈ (1− p)1/p ≈ 1/e and the error in putting q = np will be absorbed into γ which is close

to 1.

Let x = βψt and z = e−1/βt/n so that

E[x(z + e−1/β/n)− x(z)]

βp
=

e−γx(z)/β

βnp
− x(z)e−1/β

βnp
. (24)

Using the proof idea of Theorem 5.1 of Wormald [15] we see that (24) is closely approximated by

the differential equation

dx

dz
= e(1−x)/β − x, so z(x) =

∫ x

0

dy

e(1−y)/β − y (0 ≤ x < 1).

The upper bound x < 1 is due to the fact that dx/dz = 0 when x = 1, the lower bound x ≥ 0 to

the assumption σ0 = 0.

Let σt, σ
′
t be iid processes with the distribution (22)–(23). We wish to determine (see (17))

E
[(

1− (1− p)σt
)(

1− (1− p)σ
′
t
)]

≈ E
[

1− e−pσt
]

E
[

1− e−pσ′
t
]

= E
[

1− e−pσt
]2 ≈ (1− e−x(z)/β)2

at the random epoch t = T , where T has the distribution Pr(T ≥ t) ≈ (1−e−1/β/n)t ≈ e−z. Hence,

using parts integration,

E
[

(1− (1− p)σT)2
]

=

∫ ∞

0
(1− e−x(z)/β)2e−z dz

=

∫ 1

0
(1− e−x/β)2e−z(x)

dz

dx
dx

=
[

−(1− e−x/β)2e−z(x)
]1

0
+

2

β

∫ 1

0
(1− e−x/β)e−z(x) dx

=
2

β

∫ 1

0
(1− e−x/β) exp

(

− x

β
−

∫ x

0

dy

e(1−y)/β − y
)

dx. (25)

Thus we can write

Pr(w ∈ N ∗
v | v ∈ W) ≤ κ1(β) + δ0 + 3ǫ0.

This completes our upper estimate E[d∗v | v ∈ W] required for Lemma 2 and so completes the proof

of Theorem 1 for this case.

3.4.3 The case p = Θ(1)

By detailed balance, the equilibrium distribution σ∞ of (22)–(23) is given by

Pr(σ∞ = σ) =
ρσ(1− p)σ(σ−1)/2

G(ρ)σ!
(σ = 0, 1, 2, . . .), (26)
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where G(ρ) =
∑∞

σ=0 ρ
σ(1− p)σ(σ−1)/2/σ!, since

(1− p)σ−1

q

ρσ−1(1− p)(σ−1)(σ−2)/2

(σ − 1)!
=

σ

ρq

ρσ(1− p)σ(σ−1)/2

σ!
(σ = 1, 2, . . .).

We will denote a random variable with the distribution given in (26) by σ∞(ρ).

We can bound the mixing time of the process σt using path coupling. We define the coupling on

adjacent states xt = σ − 1, yt = σ (σ > 0) as follows

Pr(xt+1 = x, yt+1 = y) =















































































σ − 1

ρq
, if x = σ − 2, y = σ − 1,

(1− p)σ
q

, if x = σ, y = σ + 1,

1

ρq
, if x = σ − 1, y = σ − 1,

p(1− p)σ−1

q
, if x = σ, y = σ,

1− σ

ρq
− (1− p)σ−1

q
if x = σ − 1, y = σ.

It is now easy to see that

E[d(xt+1, yt+1) | d(xt, yt) = 1] ≤ 1− 1

ρq
− p(1− p)xt

q
< 1− 1

ρq
. (27)

Since ρ = O(1) and q = O(n) in (27), convergence occurs in O(n log n) time.

We may now use the proof method from Section 3.4.2 to show that, for all t1 ≤ t ≤ t0 and v ∈ V ,

whp we have

Av(Xt) .
∑

c∈C

E
[

(1− p)sc(Xt)
]

≈ qE
[

(1− p)sc(Xt)
]

,

by symmetry. Hence we may take Ã0 = n/ρ0, ρ0 = n/q, corresponding to Av(Xt) ≤ q, and then we

will obtain whp

Av(Xt) . Ã1 ≈ qE
[

(1− p)σ∞(ρ0)
]

.

As in Section 3.4.1, we may run this process iteratively. The iteration is analysed below in Section ??

and is shown to converge in O(1) steps so that whp

Av(Xt) . A∗ = qE
[

(1− p)σ∞(ρ∗)
]

=
qE[σ∞(ρ∗)]

ρ∗
=

n

ρ∗
≈ ∆

pρ∗
,

where ρ∗ is the solution to

E[σ∞(ρ∗)] =
n

q
≈ 1

βp
or β ≈ 1

pE[σ∞(ρ∗)
]. (28)

The remaining analysis to get an upper bound on E[d∗v | v ∈ W] is similar to Section 3.4.2, except

that we cannot use concentration of measure to approximate as we did there. We let

κ2 = E
[

(1− (1− p)σT )2
]

, (29)

where T has the geometric distribution with mean ρq (see (21)), and the process σt is governed by

(22)–(23), with ρ and the initial condition σ0 = 0. This distribution depends on p and ρ. We look
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for a solution to

(1− κ2)∆ ≈ (1− κ2)np ≈ Â ≈ n

ρ
, i.e. 1− κ2 =

1

ρp
. (30)

To determine the expectation in (29), we set τ = t/n. Then, for large n, (21) becomes

Pr(τ ≥ z) = e−τ/βpρ,

an exponential distribution with mean βpρ. Thus κ2 is a function of β, p and ρ. However, we may

use (28) to substitute for β in (29), giving κ2 as a function of ρ and p. We may then substitute

for κ2 in (30), giving ρ only as a function of p. Hence we can determine β as a function of p. The

analysis is given in Section 3.4.4 and the results are shown in Figure 3.

Mysteriously, the exact value obtained for p = 1 (i.e. the complete graph Kn) is β = 11/6, the

same value obtained in Vigoda’s analysis [14]. We do not know if this is mere coincidence, but

we note that for Kn a better analysis is is possible using path coupling. We may show O(n log n)

convergence if β = 1 + ε for any ε > 0. We will sketch the proof here.

We start, as usual in path coupling, with colourings X, Y which disagree at one vertex, which is red

in X and blue in Y , say. If coupling does not occur, we may easily create a second disagreement,

which will be coloured blue in X and red in Y . But then all other vertices have both red and

blue in their neighbourhood in both X and Y , so at subsequent steps no further disagreements are

created. With probability Ω(1/n) we will destroy a disagreement, since β = 1+ε. It is then easy to

show that the probability that coupling has not occurred in O(n log n) time is O(1/n2), say. Since

there were at most n disagreements at the outset, the result follows.

Analysis of a bounding process

Let G(ρ) =
∑∞

σ=0 ρ
σ(1 − p)σ(σ−1)/2/σ!. Note that 1 + ρ ≤ G(ρ) ≤ eρ. We consider a random

variable σ = σ∞ such that

Pr(σ = σ) =
ρσ(1− p)σ(σ−1)/2

G(ρ)σ!
(σ = 0, 1, 2, . . .).

We consider ρ to be a parameter, so we will write, for example, E[σ(ρ)] if we wish to specify the

parameter. If the parameter is not specified, its value is ρ. Thus E[σ] = E[σ(ρ)]. We will also

write ρ = ez and g(z) = G(ez). Let us write p̄ = (1− p). Then easy calculations show that

G′(ρ) = G(ρ)E[σ]/ρ = G((1 − p)ρ) = G(ρ)E[(1 − p)σ], (31)

G′′(ρ) = G(ρ)E[σ(σ − 1)]/ρ2 = (1− p)G′
(

(1− p)ρ
)

, (32)

g′(z) = g(z)E[σ], g′′(z) = g(z)E[σ2]. (33)

We first show that E[σ] is a strictly increasing function of z.

dE[σ]

dz
=

d

dz

(g′(z)

g(z)

)

=
g(z)g′′(z) − g′(z)2

g(z)2
= E[σ2]− E[σ]2 = Var[σ] > 0. (34)

We wish to analyse the iteration

ρ0 =
n

q
, ρi+1 =

n

qE[(1− p)σ(ρi)]
=

nρi
qE[σ(ρi)]

=
nezig(zi)

qg′(zi)
(i ≥ 0),

using (31). Taking logarithms, and using (33), we consider instead the equivalent iteration,

z0 = ln(n/q), zi+1 = f(zi) = zi + ln(n/q) + ln g(zi)− ln g′(zi) (i ≥ 0). (35)
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Now, using (31)–(34), we have

f ′(z) = 1 +
g′(z)

g(z)
− g′′(z)

g′(z)
= 1 + E[σ]− E[σ2]

E[σ]
= 1− Var[σ]

E[σ]
(36)

= E[σ]− E[σ(σ − 1)]

E[σ]
= ρ

G′(ρ)

G(ρ)
− (1− p)ρG

′
(

(1− p)ρ
)

G
(

(1− p)ρ
)

= E
[

σ(ρ)
]

− E
[

σ

(

(1− p)ρ
)]

. (37)

From (36) and (37) we see that 0 < f ′(z) < 1 for all z ∈ R.

Consider the equation z = f(z). This is equivalent to E[σ(ρ)] = n/q from (33) and (35), so it has

at most one root because E[σ] is strictly increasing. It is also easy to show that it has a root, since

(31) and Jensen’s inequality imply

ρ(1− p)E[σ] ≤ ρE[(1− p)σ] = ρ
G′(ρ)

G(ρ)
= E[σ] ≤ ρ (using G′(ρ) ≤ G(ρ) −− (31))

From the right inequality, we have E[σ(ρ0)] ≤ ρ0 = n/q. From the left, we see that E[σ] >

(1 − p) ln ρ. Otherwise, since x ≥ −(1 − x) ln(1 − x) (0 ≤ x ≤ 1) and x > lnx (x > 0), we would

have

E[σ] ≥ ρ(1− p)(1−p) ln ρ = ρ1+(1−p) ln(1−p) ≥ ρ1−p > ln ρ1−p = (1− p) ln ρ, (38)

a contradiction. Hence E[σ(ρ)] > n/q for large enough ρ.

We may use (36) and (38) to give an explicit upper bound on f ′(z), as follows.

1− f ′(z) =
Var[σ]

E[σ]
≥ E[σ]2 Pr(σ = 0)

E[σ]
=

E[σ]

G(ρ)
≥ (1− p)e−ρ ln ρ.

Let z∗ be the root of z = f(z), and ρ∗ = ez
∗
. Now we have

z0 = ln(n/q) = ln E[σ(ρ∗)] ≤ ln ρ∗ = z∗

and

z∗ = ln ρ∗ ≤ E[σ(ρ∗)]

1− p =
n

q(1− p) ≈
1

βp(1− p)
If zi < z∗ then, for some ẑi with zi ≤ ẑi ≤ z∗,

zi+1 = f(zi) = f
(

z∗ + (zi − z∗)
)

= f(z∗) + (zi − z∗)f ′(ẑi) = z∗ − (z∗ − zi)f ′(ẑi) < z∗,

Thus {zi} is a bounded increasing sequence, so convergent. More precisely, we have

f ′(zi) . 1− (1− p)e−ρ̂ ln ρ̂ = 1− ϕ,
where ρ̂ = exp

(

1
βp(1−p)

)

and ϕ = (1− p)e−ρ̂ ln ρ̂. Therefore

z∗ − zi+1 = (z∗ − zi)f ′(ẑi) < (z∗ − zi)(1 − ϕ) ≤ (z∗ − z0)(1− ϕ)i .
e−iϕ

βp(1− p) .

Thus we have z∗ − ǫ0 < zi < z∗ when i ≥ i∗ =
⌈

ϕ ln
(

βp(1− p)ǫ0
)⌉

= O(1).
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Figure 3: Bound on β for convergence of Glauber from Section 3.4.4.

3.4.4 Final Analysis:

Let Hσ(t) = Pr(σt = σ). Note that H0(0) = δσ, where δ0 = 1 and δσ = 0 for all σ > 0. Then,

using (22)–(23),

Hσ(t+ 1) =
(1− p)σ−1

q
Hσ−1(t) +

(

1− (1− p)σ
q

− σ

ρq

)

Hσ(t) +
σ + 1

ρq
Hσ+1(t),

where ρ is the solution to E[σ(ρ)] = 1/βp, using the distribution of (26). Thus

ρq
(

Hσ(t + 1)−Hσ(t)
)

= ρ(1− p)σ−1Hσ−1(t)−
(

ρ(1− p)σ + σ
)

Hσ(t) + (σ + 1)Hσ+1(t).

Let τ = t/n. Then, as n→∞, this becomes

βpρH ′
σ(τ) = ρ(1− p)σ−1Hσ−1(τ)−

(

ρ(1− p)σ + σ
)

Hσ(τ) + (σ + 1)Hσ+1(τ), (39)

with the initial conditions H0(0) = 1, H0(τ) = 0 (τ > 0). Differentiating this gives

βpρH ′′
σ(τ) = ρ(1− p)σ−1H ′

σ−1(τ)−
(

ρ(1− p)σ + σ
)

H ′
σ(τ) + (σ + 1)H ′

σ+1(τ), (40)

with the initial conditions H ′
0(0) = −ρ, H ′

0(1) = ρ, H ′
0(τ) = 0 (τ > 0). We used (39) and (40)

as the basis of a second order method for approximating Hσ(τ) at sufficiently many values of τ .

Hence we could estimate F (τ) = E[(1− p)στ ].

Now Pr(T ≥ nτ) ≈ (1− 1/ρq)nτ ≈ e−ητ , where 1/η = βρp so we could estimate

κ2 =

∫ ∞

0
(1− F (τ))2e−ητηdτ, (41)

and hence solve (30) for ρ. Then β could be calculated from (28). This was used to obtain β(p)

to five decimal places for all values of p from 0 to 1 in steps of 0.025. The results are plotted in

Figure 3.
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