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Abstract

Given a graph G = (V, E) with n vertices, and m edges, and a
family of k pairs of vertices in V, we are interested in finding for each
pair (a;,b;), a path connecting a; to b;, such that the set of x paths
so found is edge-disjoint. (For arbitrary graphs the problem is N'P-
complete, although it is in P if & is fixed.)

We present a polynomial time randomized algorithm for finding
the optimal number of edge disjoint paths (up to constant factors) in
the random graph G, ,, for all edge densities above the connectivity
threshold. (The graph is chosen first, then an adversary chooses the
pairs of endpoints.) Our results give the first tight bounds for the edge
disjoint paths problem for any non-trivial class of graphs.

1 Introduction

Given a graph G = (V, E) with n vertices, and m edges, and a set of  pairs
of vertices in V', we are interested in finding for each pair (a;,b;), a path
connecting a; to b;, such that the set of x paths so found is edge-disjoint.
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For arbitrary graphs the related decision problem is NP-complete, al-
though it is in P if x is fixed — Robertson and Seymour [RS]. Nevertheless,
this negative result can be circumvented for certain classes of graphs. Peleg
and Upfal [PU] presented a polynomial time algorithm for the case where
G is a (sufficiently strong) bounded degree expander graph, and x < n¢ for
a small constant e that depends on the expansion property of the graph.
(A precise upper bound for € was not computed, but it is clearly less that
1/3). This result has recently been improved by Broder, Frieze, and Upfal
[BFU]: G still has to be a (sufficiently strong) bounded degree expander but
K can now grow as fast as n/(Inn)?, where 6 depends only on the expansion
properties of the input graph, but is at least 7.

For the vertex-disjoint paths problem Kleinberg and Tardos [KT] come
within an O(logn) factor of the maximum possible k for a class of planar
graphs. In random graphs Shamir and Upfal have shown in [SU] that any
set of up to O(y/n) pairs can be connected via vertex-disjoint paths; similar
results using efficient flow techniques were also obtained by Hochbaum [H].
These results were proved for graphs with m > Knlogn random edges,
where K is a sufficiently large constant.

Let D be the median distance between pairs of vertices in G. Clearly it is
not possible to connect more than O(m/D) pairs of vertices by edge-disjoint
paths, for all choices of pairs, since some choice would require more edges
than all the edges available. In the case of bounded degree expanders, this
absolute upper bound on k is O(n/logn). The results mentioned above use
only a vanishing fraction of the set of edges of the graph, thus are far from
reaching this upper bound. In contrast, in this work we show that for the
basic models of random graphs, G, ,, and G, p, the absolute upper bound
is achievable within a constant factor, and we present an algorithm that
constructs the required paths in polynomial time.

As usual, let G, , denote a random graph with vertex set {1,2,...,n} =
[n] in which each possible edge is included independently with probability p,
and let G, ,, denote a random graph also with vertex set [n] and exactly m
edges, all sets of m edges having equal probability. The degree of a vertex
v is denoted by dg(v).

Our main result is formulated in the following theorem.

Theorem 1 Let m = m(n) be such that d =2m/n > (14 0(1))Inn. Then,
as n — oo, with probability 1 — o(1), the graph Gpm has the following
property: there exist positive constants « and (B such that for all sets of
pairs of vertices {(a;,b;) | 1 =1,...,k} satisfying:

(i) kK = [amlnd/Inn],



(ii) for each vertez v, |{i:a; =v}| + |{i : b = v}| < min{dg(v), Bd},

there exist edge-disjoint paths in G, joining a; to b;, for each i =1,2,..., k.
Furthermore, there is an O(nm?) time randomized algorithm for construct-
ing these paths.

A similar result holds for G, ,, with d = np, and k = [an?plnd/(21nn)].

This result is the best possible up to constant factors. For (i) note
that the distance between most pairs of vertices in G is Q(logn/logd), and
thus with m edges we can connect at most O(mlogd/logn) pairs. For
(ii) note that a vertex v can be the endpoint of at most dg(v) different
paths. Furthermore suppose that d > n? for some constant v > 0 so that
k > [aynd/2]. Let € = avy/3, A = [en], and B = [n] \ A. Now with
probability 1-o(1) there are less than (1 + o(1))e(1 — €)nd edges between A
and B in Gy, ;. However almost all vertices of A have degree (1+0(1))d and
if for these vertices we ask for (1 — €¢/2)d edge-disjoint paths to vertices in
B then the number of paths required is at most (1 4 o(1))e(1 — €/2)nd < &,
but, without further restrictions, this many paths would require at least
(1—0(1))e(1 —€/2)nd > (1 +0(1))e(1 — €)nd edges between A and B which
is more than what is available. This justifies an upper bound of 1 — ¢/2 for
B of Theorem 1.

We note that we have proved similar optimal results for the vertex dis-
joint paths problem in random graphs [BFSU].

The construction of n/(Inn)? edge-disjoint paths on expander graphs
that was described in [BFU], was achieved through the use of the Lovész
Local Lemma [EL]. Sets of possible paths were constructed for each pair,
and the Local Lemma was applied to prove that there is a global choice of
one path per set such that all the choices are edge-disjoint. However, this
approach can only be used when the total number of edges in the final set
of disjoint paths is a vanishing fraction of the number of edges in the graph;
inherently, it does not lead to optimal bounds.

Here we address the problem in a different way. After a randomization
phase, similar to the one in [BFU], the disjoint paths are constructed one
after the other, and all the edges seen during the construction are deleted
from the graph. The paths connecting each pair are chosen through a “ran-
dom walk” type process. The crux of the analysis is to show that after a
number of pairs have already been connected, the remaining graph is suf-
ficiently connected to continue with this process. To prove that, we use a
good estimate on the eigenvalues of the intermediate graphs generated by
the algorithm. (Since we cannot throw logarithmic factors at our trouble



spots, the proofs are rather intricate, although the algorithm itself is quite
simple.) Eventually the number of pairs not yet connected becomes small
enough that we can use [BFU] directly.

The disjoint paths problem has numerous algorithmic applications. One
that has received increased attention in recent years is in the context of
communication networks. The only efficient way to transmit high volume
communication, such as in multimedia applications, is through disjoint paths
that are dedicated to one pair of processors for the duration of the communi-
cation. To efficiently utilize the network one needs a very simple algorithm
that with minimum overhead constructs a large number of edge disjoint
paths between a given set of requests. The algorithm we study is simple
and easy to implement (after eliminating some steps that are needed only
for the proof), and thus suggests some possibly good practical heuristics.

In Section 3 we present a very brief overview of the algorithm. The
details of the algorithm are exposed in Section 4. The remainder of the
paper gives the analysis.

2 Preliminaries

The paper contains a number of unspecified constants of which « and
above are the first. Exact values could be given but it is easier for us and
the reader if we simply give the relations between them. New constants
will be introduced as Cy, C1,... without further comment. Furthermore,
specific constants have been chosen for convenience, we made no attempt to
optimize them, and, in general, we only claim that inequalities dependent
on n hold for n sufficiently large.

For a graph G = (V, E) we use 6(G) and A(G) to denote the smallest
and largest degrees respectively. For a set S C V we define its neighbour
set, N(S,G), as

N(S,G) ={veV\S: Jwe S such that {v,w} € E}.

For S CV, we use G[S] to denote the subgraph of G induced by S.
The Chernoff bounds on the tails of the Binomial Bin(n, ) that we use
are

6—62n0/2’ (1)
efe2n0/3’ (2)
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valid for 0 < e < 1.



3 Overview of the algorithm

Our algorithm divides naturally into the five phases sketched below.

Phase 1: Partition G into five edge-disjoint graphs G; = (V;, E;), 1 <7 <5.
Phase 2 will use only the graph G1; Phase 3 will use only the graph Go; Phase
4 will use only the graph G3 and Phase 5 will use only the graphs G4 and
G5. The partition is such that Vi = V but Vo, = V3 =V, = V5 C V with
V2| = n—o(n).

Phase 2: Choose a random multiset Z = {z1,..., 29} of 2k points in V5.
Connect the endpoints {(a;,b;) | i = 1,..., k} to the newly chosen points in an
arbitrary manner via edge-disjoint paths in G; using a flow algorithm. Let
d; (resp. b;) be the vertex connected to a; (resp. b;). The original problem
is now reduced to finding edge-disjoint paths from a; to b; for each i. (This
randomization was used in [BFU] and has its roots in Valiant’s routing
algorithm [VB].)

Phase 3: For each z € Z in turn, we do a random walk of length 7 =
[Colnn/Ind] in G, starting at z. We remove the edges of the j’th walk
before embarking on the j + 1’st. This keeps the paths constructed edge-
disjoint. The terminating endpoint of the walk starting at @; (resp. b;) will
be denoted by a; (resp. IA)Z) for 1 <+ < k. The analysis below shows that in
almost every Gy, p, the (multi)-set of vertices a1, .. G, b1, . .., by is mot too
far from being independently, uniformly distributed.

Phase 4: For each 7 in turn, we repeatedly do a certain type of random
walk in (3 starting from a; until one of these walks ends at b;. We keep
the last walk as our path from a; to I;Z and remove from G3 all edges seen
in these walks. (The analysis below promises that this process will succeed
whp! for most i.) Not every pair (;,b;) will be successfully connected in
this phase but the final path for each pair that succeeds is the concatenation
of the paths from a; to @;, and from b; to b; found in Phase 2, the paths
from @; to @; and b; to b; found in Phase 3, and the path from a; to b; found
here.

Phase 5: At the end of Phase 4, whp, there will be at most n!~¢ pairs
(i, bi i), for a constant e > 0, which have not been joined by paths. We use
the algorithm of [BFU] to join them by edge disjoint paths, using only the
edges of G4 and G5, and then construct the final paths as above.

'In this paper, an event &, is said to occur whp (with high probability) if Pr(&,) =
1 —o(n~%1) as n —» co. For reasons explained in Section 7, the usual 1-0(1) does not
suffice here.



To prove Theorem 1 it suffices to show that for almost every G, p:

e Phases 1 and 2 will succeed for all choices of a1,...,b, and almost
every choice of z1,..., 2.

e Phases 3, 4, and 5 are successtul for almost every choice of z1, ..., 29x
and any mapping {@1,...,08x,01,...,b} <> {z1,..., 226}

Note that to prove these facts we have to consider only one experiment,

namely choose G, or Gy, at random and then zi,..., 2, at random.
From this we can deduce that almost every G, , or Gy s, is such that for
all choices of a1, ...,b; and almost every choice of z1,..., 224, we can find

edge-disjoint paths a; —a; — a; — Bi —b;—b;for 1 <i<k.

4 Description of the algorithm

The input to our algorithm is a random graph G, , and a set of pairs of
vertices {(ai,b;) | + = 1,...,x} satisfying the premises of Theorem 1. The
output is a set of x edge-disjoint paths, Py, ..., P; such that P; connects a;
to bz

4.1 Phase 1.

We start by partitioning G into five edge-disjoint graphs G; = (V;, E;), for
1 < ¢ < 5. Phase 2 will use only G1; Phase 3 will use only G5; Phase 4 will
use only (i3; Phase 5 will use only G4 and GG5. The partition is such that
Vi=Vbut Vo =V3 =V =V; CV with |Vi| =n —o(n).

In this construction, we use the notion of a k-core. The k-core of a graph
H is the largest S C V(H) which induces a subgraph of minimum degree
at least k. It is unique and can be found by repeatedly removing vertices of
degree less than k until what remains is empty or has minimum degree k.

The algorithm below starts by constructing preliminary versions of these
graphs, denoted G for 1 < i < 5. Then edges and vertices are deleted from

by ...,G% in order to achieve certain minimum degree properties.



algorithm SPLIT
begin
Divide E into E], 1 <14 < 5 by placing each edge of
E independently with probability 5/6 in E}, and
with probability 1/24 into each of E] for
2<3<5.

4. For 1 <i <5 set G} + (V,E})
5. K <+ |d/2]-core of G}
6. For 2<i<5set G; + (K,E.N (K x K))
7. while Jv € K such that
min{dg; (v) : 2 <i <5} <d/30 do
8. For 2 <4 < 5 remove v and its adjacent edges
from G;.
9. K+ K\ {v}
10. od
11. For 2 <i <5 set V; + V(G;) and set E; < E(G;)
12. G1+ (V,E\ (E2 UE3UE4UE3))

13. end SpLIT

We will show later (Lemma 1) that whp this algorithm terminates with
|K| =n — o(n). Note that SPLIT ensures that

e The final graphs G;, 2 < ¢ < 5 have the same vertex set K.

e Every v € K has degree at least |d/2] in G; and at least |d/30] in
each of G;, 2 <1 < 5.

o If v € V\ K then dg, (v) = dg(v).

4.2 Phase 2.

Choose z1,23,...,29 € Vo uniformly and randomly with replacement. Let
Z denote the multiset {z1,22,...,22:}. We are going to replace the prob-
lem of finding paths from a; to b; by that of finding paths from a; to 51',
where {a1, b1, dg, by, ..., dx, I;n} = Z as multisets. Let A denote the multiset
{al, bl, ag, b2, ey Qg bn}

We connect A to Z via edge-disjoint paths in the graph G using network
flow techniques. We construct a network as follows

e Each undirected edge of G gets capacity 1.



e Each member of A becomes a source and each member of Z becomes
a sink.

e If a vertex occurs r times in A then it becomes a source with supply
r, and if a vertex occurs s times in Z, then it becomes a sink with
demand s.

Then we find a flow from A to Z that satisfies all demands. Since the
maximum flow has integer values, it decomposes naturally into |A| edge-
disjoint paths (together perhaps with some cycles). If a path joins a; to
z € Z, then we let a; = z. Similarly, if a path joins b; to z € Z, then we let
Bi =Z.

Thus Phase 2 finds edge-disjoint paths Pi(l) from a; to a; and PZ-(S) from
b to b;, 1 < ¢ < K, where the vertices &1,51,&2,52,---,%,5;@ € Vs are
chosen uniformly at random with replacement. (Some of these paths may
of course be single vertices.) On the other hand there may be some difficult
conditioning involved in the pairing of a; with b;, 1 < i < k. We deal with
this in Phase 3.

4.3 Phase 3.

We construct paths PZ-(Q), PZ-(4) in G with start vertices a;, b; respectively for
1 < i < k. Each path is constructed by simulating a random walk of length
7 = [Cplnn/Ind] from each start point. The endpoints of Pz-(z), PZ-(4) are
a;, l;z respectively. The edges of a walk are deleted from G5 before the next
one starts. This keeps the paths edge-disjoint. We construct these walks
with start points Z in the random order z1, 29,. .., z9, (This random order
is helpful in the proof of (21) below). W; denotes the walk started at z; it
ends at Z;. I'; denotes the state of G2 after the edges of W1, Wo, ..., W; 4
have been deleted.

A random walk on an undirected graph (or multigraph) G = (V, E) is a
Markov chain {X;} on V associated with a particle that moves from vertex
to vertex according to the following rule: The probability of a transition
from vertex v, of degree d, to a vertex w is 1/d, if {v,w} € E and 0
otherwise. (For multigraphs, each edge out of a vertex is an equally likely
exit; loops are counted as two exits.) Its stationary distribution, denoted
by © or n(G), is given by m, = d,/(2|E|). A trajectory W of length 7 is a
sequence of vertices [wg, w1, ..., w;]| such that {w;, w1} € Efor 1 <t <.
The Markov chain induces a probability distribution on trajectories in the
usual way. We use Pg) (a,b) to denote the probability that a random walk
in G of length 7 starting at a terminates at b.



4.4 Phase 4.
The problem now is to find edge-disjoint paths PO joining a; to b;, for

3
1 <7 < k. We use only the edges of G3 to avoid conflict with paths already
chosen in G; U Go. Thus eventually we can take P; to be the path (after
removing cycles if necessary) that joins a; to @; via Pz-(l), a; to a; via Pl-(Q),
a; to b; via PZ-(?’), b; to b; via Pi(4) and b; to b; via PZ-(5). (Actually, this will
only be true for most i. If d = O(Inn) then a fifth phase may be necessary
to find paths for some indices 3.)

The paths PZ-(S) are again found by simulating a random walk. The
reader might expect us to choose a random walk from those with endpoints
az,b-. The main problem with this is that the distribution of bi may be
significantly different from the steady state distribution of a walk from @, in
G3. If we choose a walk in this manner then deleting it will condition the
graph in a way which is complex to analyse, especially as we have to repeat
the procedure k times.

We overcome this by choosing a set of random walks and use rejection
sampling to make the final walk have the correct distribution. There is still
the complication that the b; are chosen before we do the walks. This leads
to the subroutine WALK described next. WALK(d;, bz, FZ, L', 2j) generates a
series of random walks of length 7 in I; starting from &;. The graph I is
such that T'; C G5 with V(I;) = V(G3) = V( I';), and j is defined by z; = b;.
The last walk generated ends at b; which, by the construction used in the
previous phase, has the distribution

pv—P( )(zja )

The somewhat strange method used to generate these walks will be further
explained in Section 7.

We maintain an array of counters, S[v], for v € V3, initially all 0. The
counter S[v] shows how many times v was used as a start point of a walk.
No vertex is allowed to be the start of more than d/120 walks, thus there
is a chance (in fact, only when d = O(lnn)) that for some pairs of vertices
Phase 4 will not connect them. The indices of these pairs are kept in a set
L and considered in the last phase.
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The distributions p, and p, can be computed in O(nm7) time by computing
powers of the transition matrix, after which a random walk can be found
in O(n7) time. (For details see [BFU].) The analysis will show that in the
range of interest, whp, s is bounded away from zero by a constant, hence

subroutine WALK(&i, IA),‘, fi, Fj, Zj)
begin
/* By construction, z; = b;. */

Dy Pf@ (a;,v) for v € V3

Py PF(]T,) (2,v) for v € V, (the distribution of b;.)
Pmin < min{p, : v € V3}
Pmax < max{p, : v € Vo}

Choose r from the geometric distribution with probability
of success $ = Pmin/Pmax

if S[a;] +r > d/120 then
L+ LU{i}
exit WALK

else
Sla;] < Sla;] +r

fi

for k from 1 to r—1 do
Choose zj, according to

Pr(z; =v) = (py — ﬁvpmin/ﬁmaX)/(l —3)

od

Ty i)z

for k£ from 1 to r do

Pick a walk W}, of length 7 in I'; according to the
distribution on trajectories, conditioned on
start point = a; and end point = xy,

od
output Wl,Wg, .. ,VV,«
end WALK

the expected total running time of WALK is O(nmr).

We can now describe the complete algorithm for Phase 4.

10



1. algorithm GENPATHS

2. begin

3. Let E(W) denote the edge set of a walk W.
4. I + G3

5. for i =1to x do

6. Define j such that z; = bi.

7. Execute WALK(é;, b;, I, I
8. if i ¢ L then

9. P® W,

10. Tigr  Da\ (U BOW;))
11. fi

12. od

13. end GENPATHS

The expected running time of GENPATHS is O(knm7) = O(nm?).

4.5 Phase 5.

Use (a slight modification of) the algorithm of [BFU] to find edge disjoint
paths in G4 U G5 from a; to b;, for ¢ € L.

5 Analysis of Phase 1

In Lemmas 1,2,3 we calculate with G, , and deduce the result for Gy, ;, via
Pr(Gpm € P) < O(nl/Q) Pr(Gnp € P)

for any graph property P, assuming m = (g) p>n.
Our immediate task regarding this phase is to prove

Lemma 1 With high probability, the vertex set K = V;, 2 <1 <5 satisfies
|K| =n—o(n).

Proof: Let Ky denote the value of K immediately prior to the execution of
the while loop of SPLIT, that is, Ky is the [d/2| core of G. The final K is
the largest subset S of K for which §(G}[S]) > d/30, 2 <13 <5.

Let Ay = {v € V : dg(v) < 2d/3} and 4; = {v € V; : dg(v) <
d/27,2 <i<5}. Let A=J2_; A;. We show that whp

11



(i) [A] = o(n).
(ii) v € V'\ A implies that v has at most 50000 G-neighbors in A.

It follows from (ii) and the definition of A that for d sufficiently large
K DV \ A and then (i) implies the lemma.
We start from the fact that for any £ > 1

Pr(|A;| > k) < <Z) Pr(Bin(n — k, 5p/6) < 2d/3)F.
Putting k = k; = [n1/62] and using (1) with ¢ = 1/5, we obtain

k1 1-d/61\ k1

Pr(|Ai| > k1) < (%) e k1d/61 — (neT> = o(n™?). (3)
1 1

Also, for any fixed k& > 300,

Pr(3v € V : [N(v,Gnp) N A1| > k)

k

< ndkefkd/(il _ 0(’)172).

<n <”>pk Pr(Bin(n — k — 1,5p/6) < 2d/3)*

(4)

Similarly for any £ > 1 and 7 > 2
Pr(|A;| > k) < (Z) Pr(Bin(n — k,p/24) < d/27)F.

n3999/4000'|

Now, putting k = ke = | and using (1) with e = 1/9, we obtain

ks 1—d/3900 \ *2
Pr(|4i| > k) < (o) e om0 (”T) =o(n?), (5)
2 2
and for any fixed k > 12000,
Pr(3v € V : |N(v,Gpp) N A;| > k)

< n(Z)pk Pr(Bin(n — k — 1,p/24) < d/27)*

< ndke—kd/3900 — 0(,”—2)'
(6)
From (3) and (5) we conclude that whp A = o(n), and from (4) and (6) we
conclude that whp, no vertex in G has more than 50000 neighbors in A.
a

12



6 Analysis of Phase 2

In this section we show that if our input graph G = (V, E) is G, then
whp, after we run SPLIT, we can find in G; edge-disjoint paths from a; to
a;, and b; to b;, for 1 < i < K, for any choice for ai,...,b, consistent with
the premises of Theorem 1, and almost every choice for @i, ..., by.

Let A and Z be as defined in section 4.2. For v € V, let a(v) be the
multiplicity of v € A and &(v) be the multiplicity of v € Z. For S C V, let
a(S) = Y esa(v) and £(S) = X ,cg&(v). For sets S, T CV, let e, (S,T)
denote the number of edges of G; with an endpoint in S and the other
endpoint in T'. It suffices to prove that

e, (S,5) > a(S) — £(S), VS CV. (7)

We can then apply a theorem of Gale [G] (or see Bondy and Murty [BM],
Theorem 11.8) to deduce the existence of the required flow in G for the
successful run of Phase 2b. (We must of course demonstrate (7) for all A
satisfying the premises of Theorem 1 and almost all Z.)

We next prove three lemmas instrumental in proving Lemma 5 below:

Lemma 2 Whp, for any v € V5

§(v) < Bdg, (v)- (8)

Proof: Observe that £(v) has the distribution Bin(2k,|V3| ). Thus

Pr(é(v) > Bdg, (v)) < ( 2k >|V2|—ﬁd/2 < (46H - Ldl))ﬁd/?

Bd/2 Bd n
12a Ind\ P4/? _
< (o) o,
provided that
a < Be 8812, (9)

O

Lemma 3 (a) Gy has the following property whp: If S C V and nyg =
ne~ 410 < |S| < n/2 then e, (S,S) > d|S|/5;

(b) Gy p has the following property whp: If S C V and |S| < ng then
e (8,5) < 28],

13



Proof: (a) Note that G is distributed as G}, 5,/6 and G| C G1. But

Pr(Gh, 5p/6 does not satisfy the property (a))
n/2

<> ( )Pr (Bin(k(n — k), 5p/6) < kd/5)
k=no
n/2

n 1
< Pr(Bin(k 5p/6 —k(n— k)=
‘k%(k) (Bin(k(n — K),5p/6) < 5k(n — k) op)
n/2

< Z ( )kexp (—%k(n - k)p) = o(n™?).

k=ng

(b) Note that property (b) holds trivially for |S| < 5 or d > 10Inmn,
which implies ng < 1. Assume d < 10Ilnn and |S| > 6. Thus,

Pr(G,,, does not satisfy the property in (b))

L) < ()

O

Lemma 4 Let I = {v € V : dg,(v) < 26d}. Then whp, no two (distinct)
vertices in I are within distance of two or less in G1.

Proof:  Observe first that I = () if d > Clnn for C sufficiently large. We
can thus assume that d = O(logn) for the rest of the proof of this lemma.
If v € I then either dg(v) < 28d or dg, (v) # dg(v). The latter cannot be
true, since it implies that v € V5, and then dg, (v) > |d/2]. Thus,

2
28d
-2
Pr(I contains an edge) < n’p (Z (n 1 )pk(l —p)"_k) .

k=0

But



provided that
26(1 —1In2p3) < 1/100. (10)

Thus
Pr(I contains an edge) = o(n~/10).

A similar calculation deals with the case of a path of length two joining two
vertices of 1.

The rather tedious calculation for Gy, 4, is left to the interested reader —
see [BFF] for details of a similar calculation. O

Now inequality (7) will follow easily from
Lemma 5 Define for everyv € V
0(v) = min{dg, (v), Bd}
Then whp for every S CV satisfying 1 < |S| <n/2,
ec, (5,5) > 0(5) (11)
where S =V \ S and 6(S) = ¥ ,c50(v).
Proof:  Since f < 1/5, Lemma 3(a) implies that for S C V satisfying

ng < |S| < n/2,
e, (S,8) > d|S|/5 > 0(S).

Suppose next that |S| < ng. Let

L ={veV:dg (v) <20d}
IL={veV:28d<dg (v)}

Let S; =SNI;, for i =1,2. Then
eG, (5,9) = e, (51, 51) + eg, (S2, S2) — 2eq, (S2, S1).
But by Lemma 4 G1[S1] has no edges, so that
ec, (S1,51) > 0(S1), whp,
and using Lemma 3(b),

e, (S2,52) > (28d — 4)|S,], whp,
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and since Lemma 4 implies that whp, no vertex in Ss is adjacent to two or
more vertices in S, we have also

G, (52,51) < |S2|,  whp,
It thus follows that whp,
e, (S,8) > 0(51) + (28d — 6) |S2| > 6(5),

where the last inequality holds for sufficiently large n so that 8d > 6. This
shows (11). O

We now show that the Lemma above implies equation (7). First note
that condition (ii) in Theorem 1 implies a(v) < 8(v), for all v € V.

Second observe that SPLIT guarantees that for v € Z, 8(v) = 3d, assum-
ing that 8 < 1/2, since Z C V5 and every v € V5 has degree at least |d/2]
in G1. Thus,

Pr(3v € V such that £(v) > 0(v) | [V2|)

- 1+4o(1 Ind\ "
§|V2\2<;d>|v2| ﬁdSQn(( +2(ﬁzi)lena:1 n ) :o(n—Z)’

provided that « is sufficiently small. We can thus assume that whp &(v) <
O(v) for allv € V.

To complete the proof of equation (7), note first that for [S| < n/2, by
Lemma 5,

e, (8,8) > 0(S) > a(S) > a(S) — £(S);
and for |S| > n/2
e, (8,8) = ec, (5, 8) 2 0(8)= £(5) = &(S) — a(S) = a(S) — &(9).

7 Analysis of Phase 3

If a vertex v € V5 has degree dq(,i) in I'; then the steady state probability of

a random walk in I'; being at v is

(i
i) — di()
ZwEV2 dw

The main thrust of our analysis is to show that the joint distribution of the
Z; is close to that of independent samples from W(Z), for 1 <14 < 2k, that is
whp, for v € V5 and 1 <1 < 2k,

Pr(z =v| T, 25, 5 # 1) = (1 +0(1))7{). (12)
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In this case, when we come to join a; to I;, then we can argue that I;Z is
(essentially) independent of a;. It is difficult to argue this for d;, b; since
they have been “chosen” as pairs by a flow algorithm. This is why we need
Phase 3.

Let & denote the intersection of the events previously shown to hold
whp. Let P(®) denote the transition probability matrix of a random walk
on T;. Let A be the second largest eigenvalue of P(®). We will prove later

Theorem 2 For 1 <3 <k let & be the event that
(a) the mazimum degree AW in T; satisfies

AW < ¢1d; (13)

and
(b) the minimum degree 6 in T'; satisfies

60 > d/C,. (14)

If d < n'/10 then there exists a constant v = v(Cy,Ca) > 0 such that if F;
denotes the event that

A0 < y/Vd. (15)
and Uy =F;N&EN---NF1NENEy, then

Pr(F; | &, Ui 1) =Pr(F; | &) =1—-0(n73). (16)

Proof: See Section 10. O

The reader will notice the bound d < n'/'? in the theorem above. If
d > n'/™ we can randomly split the edge set of G into r = [2d/n'/10]
subsets Ey, Es, ..., E,, each of size roughly m' = m/r. We can similarly
split the set of k pairs into r roughly equal sets K;. We can then use the
graph G; = (V, E;) to find paths for the pairs in K;. Every vertex of every
G; will have degree roughly d/r whp. Hence, since

Jnn

Ind

K
— < am
T

we can apply Theorem 1 to each G;, which implies that we succeed whp

on each K;, and thus we will succeed overall> with probability 1 — o(1).

Therefore, without loss of generality, we can assume from now on that d <
1/10
n/.

2This is the reason for our definition of whp. The number r of subgraphs G; is O(n®/1°)
and we succeed with probability 1 — o(n=%/'°) on each.
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We now return to the analysis of Phase 3. We start by assuming that
&; and F; hold for every 1. (17)

It is well known that the second eigenvalue determines the rate of con-
vergence of a Markov chain to its steady state. An explicit form of this
result was obtained by Jerrum and Sinclair [SJ]: if Pr(? (u,v) denotes the
probability that a random walk of length ¢ in I'; which starts at u will end
at v, then assuming &;, we have

(4) t
i N\t | T D¢ Y C ’C
PO ) < ()" T < () VoG < MG,

T

(18)
Since in the algorithm we take t = 7 = [CyInn/Ind], this implies (12).
We now proceed to show that the assumption (17) is indeed correct whp.
We take C; = 5 and Cy = 60. Since I'; is a subgraph of Gy, p, inequality (13)
holds for all  whp, and since I';y = G2 and by construction §(G2) > d/30,
inequality (14) holds for T'y, thus & holds. Applying Theorem 2, we see
that 71 holds whp. We continue by showing inductively that for ¢ > 0,

Pr(l; | &) =1 — O(in3).

Since

Pr(Ui1)

PI‘(UH_l |Z/{Z) = W

= Pr(Fit1 | Eir1,Us) Pr(Eipr | Us),
and
PrUiy1 | &) = Pr(Uip1 | Us) Pr(U; | &),

and given Theorem 2, we only need to prove that
Pr(€i1 |U) =1-0(n™), (19)

which reduces to proving that given U;, the removal of the walks W1,..., W;
from G2 does not reduce the degree of any vertex to less than d/60.

Now assume ;. Consider the walk W; on I';. For v € V», let Z;,, denote
the number of edges incident with v that are covered by W;, and let N; , be
the number of visits to v during W;. Let ¢ = Pr(N;, =k | U;) for k > 1.
We claim that independently of Wi, Ws, ..., W,_1, there exist constants Cj
and C4 so that
C’40§€ “llnn

dénlnd ° (20)

qr <

18



To prove (20) for k = 1, fix [';, and let h,(¢) be the probability that the
walk is at v at time ¢. Then

hy(0) = 1/|Va| < C1CanV) (21)

since the walk starts from z; which is a vertex chosen uniformly at random
in |V5]. (The last inequality follows assuming that U; occurs, and thus &;
occurs.)

We next show inductively that for all v € Vo, we have h,(t) < C1 0yl
This follows from stationarity equations and

hu (%)

ho(t+1)= > < 10y, (22)

weN (v:T;) dT(lZJ)
Hence, since 7 = [Cylnn/Ind] and m(,i) < C1C2/n, there is a constant
Cy so that

T Cylnn
< < .
= Zhv(t) ~ nlnd

We next prove (20) for £ > 2. Fix I'; and for vertex v let p, be the
probability that a random walk of length 7 from v ever returns to v. Since
a return to v requires at least two steps, we obtain from equation (18), that
there exists a constant C5 such that

(C1,Co)t _ Ch
po <7l /10y S T2 e (23)

t>2

This gives (20) since

T

G < (po)* 1) hu(2).

t=1
We now show that (20) implies (19). First (20) implies that for any constant
c

C,CE lnn
2¢N; ) V<1 2ck4~3 T
E(”Nor | Uy, Wi, Wint) < +kz>:16 FTrlnd

2c
<1+ 2C4e““Inn
nlilnd
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Clearly Z;, < 2N;,. Thus for any constant ¢ > 0 and any ¢ > 0,

“

< e ct E (exp (26 i Njﬂ,)

7
Pr (sz,v >t

j=1

“)

j=1
B 20,€*Inn s
ct X .
<1+ 500 E(exp(%]gl]"”) “)

_ 2C e*Inn s Pr(U;_)
< ct 9 N . >7l
=° eXp( nlnd )E(exp( ngl J’U) ‘ Uit Pr(U;)
< (_ ‘ot 20,e3% lnn) 1
= explma e nlnd Pr(U;)

< exp(—ct+2/ﬁ Ind

< 2exp(—ct + 4aCye*d)

2C,e*Inn

)(1 +0(in?)

Taking ¢ = d/60, ¢ = 240, and « < (4C4e*9)~1 we obtain that

1
Pr (Z Zjw >
j=1

d
—U;) <2n73
60‘1/1,)_ n°,

and since the minimum degree in G5 is at least d/30, this proves (19). (Recall

that Cy = 60.)

8 Analysis of Phase 4

We start by discussing the subroutine WALK. Consider a modification of

WALK defined as follows:
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1 subroutine WALK1 (&i, f‘i, Pj, Zj)
2 begin

3. /* By construction, z; = b;. */

4 Dy PIET (a;,v) for v € V(Ty)

5 Py Pg) (2,v) for v € V(T;) (the distribution of b;.)
6.  Pmin < min{p, : v € V(I})}

7. Pmax — max{p, : v € V([})}
8

9

7+ 0

. forever do
10. rT7+1
11. Sla;] « Sla;] +1
12. if S[a;] > d/120 then
13. L+ LU{i}
14. exit WALK]1
15. fi
16. Pick a walk W of length 7 according to the

distribution on trajectories, conditioned on
start point = a;

17. Let Z; be the terminal vertex of Wi

18. With probability pz,pmin/(Pz,Pmax) accept Wy and
exitloop

19. od

20. output Wy, Wo,..., Ws
21. end WALK1

Lemma 6 In WALKL, Z; is chosen according to the distribution p.

Proof: The probability s that a walk is accepted at the last step in the
loop is given by

s — Z Do pv{)min _ ijin . (24)
veV(G) PyPmax Pmax
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(Observe that pmax > 1/|V(G)| > pmin.) Thus if Sp is the value of S[a;] at
the start of WALK1 and ky = d/120 — Sy then

Pr(zz = v | Step 14 is not executed)

ko—1
1 k p'upmln ~ (25)
. E 1—3)%p, = Py.
1- (1 - S)ko k:O( ) PyPmax

Also, Pr(Step 14 is executed) is equal to (1 — s)*° in both procedures. O

Hence Wy is a random walk to a vertex chosen with distribution p. Fur-
thermore, since the minimum degree of any graph in which a walk is con-
structed is at least d/60 and the maximum degree is at most 5d, we find

L def
> 26
=300 ¢ (26)
and therefore the expected number of generated walks is constant.

There is a minor problem in that we want to choose the endpoints before
we do the walks. This leads to the algorithm WALK described before. We
now turn to its analysis.

Lemma 7 Suppose that b; is chosen from V(G) with distribution p. Then
the walks W1, ..., W; in WALK1(a;,G,T,2;), and the walks Wy,..., W, in
WALK (d;, bi, G,I‘],zj) have the same distribution.

Proof: Note first from the proof of Lemma 6 that ¥ and r have the same
truncated geometric distribution. Also, we have from Lemma 6 that z; and

z, = b; have the same distribution. Consider next that for V1,09, ...,0; €
V(G),
Pr(z; =wv1,...,Z; =v; and 7 > 1)
_ ﬁ 1— ﬁvjpmin ﬁ ( pvjpm1n>
j=1 p'ujﬁmax j=1 Pmax
Duv; _pv-pmin/pmax
1 _ j j
o I ()

=Pr(zy =v1,...,2; =v; and r > i).

Thus z1,Z9,...,Z7 and x1,Z2,...,%, have the same distribution. Finally,

the lemma follows from the fact that the distribution of V_Vj conditional on
Z; = v is clearly equal to that of W) conditional on z; =v. O
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The net effect of GENPATHS is to run WALK « times. In the light of
Theorem 2 we only need show that the minimum degree in (G5 is not made
too small by the deletion of paths generated by WALK. This requires a
slightly more complicated analysis than for Phase 3. The main problem in
extending the analysis of Phase 3 is that we cannot argue now that (21) holds
independently of previous walks. Each execution of WALK (or equivalently
WALK1) involves a set of walks with the same starting point. The initial
vertex of each set is chosen nearly randomly, but it is the same for each
walk.

For the purpose of the analysis we relate to WALK1. Fix v € V3 and
1 <i <k and let Wy, Ws,..., W, denote the walks made while trying to
connect a; to 132 We shall refer to these walks as the i’th bundle, B;. We
shall follow closely the line of proof used in the analysis of Phase 3, with all
the events now referring to I'; rather than T';. As before, the proof reduces
to showing that given U;, the removal of the bundles By,..., B; from Gj
does not reduce the degree of any vertex in G3 to less than d/60.

The stationary distribution on I; is denoted #°.

Lemma 8 Assuming U;, the probability that a fizxed vertex v is visited by

bundle 1 is less than
Cs1lnn

nind

Proof: Assume for a moment that the probability of a walk being accepted
is decreased to exactly o (See (26)). This can only increase the number of
visits to v but the number of walks is now independent of the start point.
For every walk in the bundle we can show via (20) and (21) applied to I';
that the expected number of visits to v is less than C’ngTfn(,Z , thus the
expected total number of visits is less than

ClCQ Tﬁ'(z) _ 05 lnn

o v nlnd
O

Lemma 9 AssumelU; and consider a random walk of length T in I starting
from vertex v. Then

(a) The probability that the walk returns k times to v is less than (Cs/d)*.
(b) For any vertex u # v, the probability that u is visited k times is less than

(Cs/d)*.
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Proof: As before let p, be the probability that a random walk of length 7
from v ever returns to v. From (23) applied to I';,

For part (a) notice that the probability of k returns to v is bounded by

- ~ (4 ’Y(ClaCZ)t k—1 Cs k
Z(ﬂq(,)—l—idtﬂ )p <(d) .

t=2

For part (b) the probability of k visits to u is bounded by
02 Pt Y(C1,Co)*\ 1 Cs\*
F 3 (502G < (2)

(The first term deals with the case when u is a neighbour of v.) O

We are ready now to evaluate the number of visits to a fixed vertex v.
To this goal we will distinguish between free visits and start visits. If v = a;,
then v undergoes |B;| visits, as the start point of all the walks in the bundle.
All other visits to v are free visits. In particular a return visit to a; is a free
visit.

Analogously to the analysis of Phase 3, let IV; , be the number of free
visits to v during B; and let g = Pr(N;, =k | U;) for k£ > 1. We claim
that independently of By, Bs, ..., B; 1, there exists a constant Cg so that

CsCtlinn

dénlnd (27)

qk <

To simplify notation view the r walks in bundle B; as a single walk X,

that restarts from a; every 7 steps. Let hy(t) be the probability that this
walk is at v at time . Then

ar < Y hy(t)Pr(k —1 free visits to v after ¢ | a;, X; = v).
1<t<r

Now given r, the number of walks in bundle B;, the k£ — 1 free visits to v
can be distributed among the r walks in at most (1", ?) ways. So in view

of Lemma 9 we have

k+r—2\ (C5\*
Pr(k — 1 free visits to v after t | a;, X; = v,r) < ( +r ) > (73)
7"‘ J—
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From Lemma 8

Cs1lnn
<
Z u(t) < nind’

1<t<r

and using equation (26) we finally obtain that

Cs1lnn k+r—2 Cg)k_l 1 Cslnn (Cg)k_l
< =3 1—0g) 1= >3
U = nlnd Z ( r—1 ) (d o o) nlnd \od ’

1<r<oo

which proves (27). From here we can proceed exactly as in the analysis of
Phase 3 to show that the decrease in degree due to free visits is no more than
d/120 whp, provided that « is small enough. By construction the reduction
in degree due to start visits is at most d/120, so that the total reduction in
degree during Phase 4 is at most d/60 as required. It remains to show that
not too many pairs are deferred to phase 5.

9 Analysis of Phase 5

We start by bounding the number of pairs not connected in Phase 4. Recall
that a pair a;, b; is not connected iff the total number of walks started from
d; would have exceeded d/120.

Fix v € V3. From (22) and the discussion that follows it, we have that
for every 1%
< G105 ar

PI‘(&Z’ = ’U)

Thus in view of (26) the number of starts from v is dominated by a random
variable with the following probability generating function:

K i i or o opx "
Z(Z)p (1-p) 1—z(1-o0) - (1—.’13(1—0) —I—l—p) )

2

In general, given a probability generating function f(z) for the random
variable X > 0, and an integer a > 1, we have

f(z)

Pr(X >a) < )
xa

p>z>1

where p is the radius of convergence of f. So let X be the random variable
that counts starts from v. Choosing

240 o?

=279 _q14__ %
R S R L L
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we obtain that

d o\ * o2 —d/120
> )< bl 7
Pr<X—12o>—<1+ 2) <1+2+0—02>

2 d
< exp (gm— U——)

2 3 120
= ex w — @ <ex _ﬁ
- P onlnn 360 | — P\ " 100

for o small enough.

At the end of Phase 4 we will be left with a set L of indices of pairs
(&, b;) for which Phase 4 failed to find a path. The discussion above shows
that |L| is dominated in distribution by Bin(n,exp(—02d/500)), so whp
L = 0 if d > 10000 2 logn and otherwise |L| < n'~¢, for a constant € > 0.
So assume that d = O(logn).

We join the pairs in L, using a modification of the algorithm of [BFU].
That algorithm starts by splitting the edges of an expander graph to form
two disjoint expanding subgraphs. This is unnecessary here as G4 and Gj
will suffice for the two expander graphs, namely G4 can be used for the
flow phase of [BFU] and then G5 can be used for the random walks phase
of [BFU]. The algorithm is capable of joining Q(n/(Inn)¢) pairs for some
constant ¢ > 0, provided the graph in the flow phase has edge-expansion at
least one and the second eigenvalue of the graph used in the random walks
phase has second eigenvalue bounded away from 1. Here whp we have fewer
than n'~¢ pairs, the graph G4 has an edge expansion Q(Inn) and the graph
G5 has a second eigenvalue of size O(1/v/Inn). So from this point of view
there is room to spare.

On the other hand [BFU] only deals with the case where the required
path endpoints are distinct. We will replace the flow phase of [BFU] with
the following procedure. Suppose v € V3 is required to be an endpoint A(v)
times. We have

> Aw) =2|L| < 2n'.

vEV3
Furthermore A(v) is dominated in distribution by Bin(k, (14 o(1))n), hence
E(A(v)) = O(dlogd/logn) = O(loglogn) and whp

A(v) < Crlogn/loglogn for all v € V3.

We start Phase 5 by constructing for each v € V, and 1 < i < A(v)
a set of 2/e random walks of length 7 with start point v. We delete the

26



edges of previous walks before beginning the next walk. The analysis of
Phase 3 shows that we will succeed in constructing these walks whp, since
in Phase 3 the average number of walks per start point was O(dlogd/logn)
and the maximum was (d while the corresponding numbers are now o(1)
and O(d/logd).

The probability that k£ such walks all end at the endpoints already visited

is bounded by
4¢~ 1L
( ¢ k| |>O(nk) = O(n*k),

so whp for each v and 7 at least one of the 2/e¢ random walks ends up at
a previously unvisited point. Thus we can associate to each v € V3 a set of
A(v) endpoints of walks started from v, and all these sets are disjoint. From
here we can continue with the second phase of [BFU] on Gf5.

It only remains to prove Theorem 2.

10 Proof of Theorem 2

Now it is not too difficult to verify that the second eigenvalue of the walk on
I'; is not too large. There is however a technical problem in the fact that we
are deleting the edges of a random graph by a process that conditions the
distribution. We overcome this by considering graphs with a fixed degree
sequence and consequently the configuration model of multigraphs. (We
need now only consider G, ,. To handle Gy, , we simply condition on the
number of edges being close to the expected number.)

10.1 Configuration model

The graphs G;, 2 < i < 5 will be random given their degree sequences. This
is because the executions of lines 5 and 8 of SPLIT do not condition the
remaining graphs, once we are given their degree sequences. This idea has
been used several times previously, see for example Bollobas, Fenner, and
Frieze [BFF].

The simplest model for graphs with a fixed degree sequence is the config-
uration model of Bollobés [B2] which is a probabilistic interpretation of the
counting formula of Bender and Canfield [BC]. Let d = {d1,ds,...,d,} de-
note a degree sequence, D; = {1,...,d;} x{i} for1 <¢ <vand D = U;_,D;.
Let Q = Q(D) be the set of partitions of D into pairs. If F' € Q then the
multigraph M = M (F) is defined as follows: V(M) = [v] and there is an
edge {i,7} for every pair in F of the form {(z,1),(y,7)} (for some z and
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y). It is unfortunate that we have to introduce multi-graphs, but the salient
properties of M are:

Lemma 10 (a) If M is simple, then it is equally likely to be any simple
graph with degree sequence d.

(b) Pr(M is simple) = exp{—O(u?/v?)} where p = |D|/2 is the number of
edges in M — hence 2u/v is the average degree of M.

We consider the probability space of multigraphs M (F, ¢) where F is
chosen randomly from 2. We are interested in the case where

0 = mind > d/Cy,
A =maxd < Cid.

It will be useful to think of F' as being constructed sequentially.
algorithm CONSTRUCT
begin
Fy« 0; Ry + W
for t =1 to m* do
Choose us € Ry_1 arbitrarily
Choose v; randomly from Ry 1 \ {u}
Fy « Fi_1 U{{ug,ve}}; Ry — Ry—1 \ {ug, ve}
od
output F

© X® NS oW

—_
e

end CONSTRUCT

It is important to observe that for any ¢ > 0, F'\ F} is a random member of
Q(Ry).

An important consequence of the above observation is that if we start
with M = M(F), then the multigraph obtained by removing from M the
edges of a random walk W remains random. Indeed, we may imagine CON-
STRUCT as performed in parallel with our walk W. Suppose our walk makes
a transition from a vertex x and the current value of R; in CONSTRUCT is
R. The transition from z is equivalent to choosing a random member u = u,
of D;. If u € R, then we perform one step of CONSTRUCT and pair u with
a point v = v; € R\ {u}. If v € D, for some y, then the walk makes a
transition from z to y. If u € R then v is the point already paired with wu.
Thus, since F' \ F; is random, we see that removing from M the edges of a
random walk results in a multigraph from a random configuration.
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10.2 Random walks on configurations

We only discuss Gz since the situation for G is identical. Suppose G3 has
degree sequence d' = (d/,d),...,d!), where v = n(1 — o(1)). As observed,
(G35 is random given its degree sequence. In our analysis, we want to consider
G5 as of the form M(F) conditional on it being simple.

Each of the x iterations deletes some pairs from F. Suppose F() denotes
the remaining pairs at the start of iteration ¢ and D® = (JF®, If we
ignore the condition that M(F) is simple then F(*) is a random member of
Q(D(i)). This requires a little justification. Qur algorithm produces paths by
choosing a1, do, ..., 0, and 131, 132, ... ,IA)R at random and by applying WALK.
As observed in Lemma, 7, this is equivalent to just applying WALK1 a number
of times. By our arguments of the previous section, deleting edges in the
walks produced by WALK1 leaves a random configuration.

Thus, we may imagine that initially we have a multigraph M; Then
for © > 2 we apply GENPATHS to M; 1 and eventually produce M;. In
which case M; is a multigraph from a random configuration (when its degree
sequence is given).

All that remains now is to show that (15) holds with suitably high prob-
ability for M;, 1 > 1, conditioned on it being simple.

10.3 Eigenvalues
We will prove (15) by imitating the proof of Kahn and Szemerédi [KS].

Let d = dy,dy, ..., d, be a degree sequence with maximum A = o(n'/?)
and minimum ¢ > 0 such that A/d < 6 for some constant 6. (Strictly
speaking we should be concerned with d = dy,ds,...,d, but v = n — o(n)

whp and n is “friendlier”). Let M = M (F') be the multigraph on [n] formed
from a random configuration F € (d). Use ey, to denote the number of
edges joining vertices u and v. Consider the Markov chain of a random walk
on M. The transition matrix of the chain is

Cuv
P, uy —

dy
Note that since the Markov chain is reversible, all eigenvalues of P are real
and the largest eigenvalue of P equals 1. The eigenvalues are denoted by

T=XM>X>...2> .

We need to show that conditional on M being simple, with probability
1-0(n3)
p* = max{|Xz|,| M|} < 7/ V4, (28)
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where d = 7 di/n and v = v(0).

Lemma 11 Let A be the matriz

and let
pL= max{|ytAy| : Zyu = O,Zyz = 1}.
u u
Then p* < Ap;.
Proof: Let () be the matrix

Quo = Cuv
w = 5 1)
u Oy

Note that @ and P are similar, that is, Q = DPD~! where D is a diagonal

matrix with diagonal elements d}/ 2, /2 and so (A, v) is an eigenvalue-
eigenvector pair of P iff (A, Dv) is an eigenvalue-eigenvector pair of Q). Since
the largest eigenvalue of @) is 1 with eigenvector (d}/ 2,d§/ 7, = 2), the
Rayleigh quotient principle gives that
| > quuv-Z'vl
x U,V 1/2
pr = max{ Tod,/* = 0}.

Since

Z Ty QuaoTy = Z xudql/zAuv-Tvdql;/z

u,v U,
and 1

2 2
/2

we have, on putting y, = xudt ,

p* < AmaX{\ytAyl > yu=0,Y yo= 1} = Apr.
u u
O

Following Kahn and Szemerédi, choose a real € € (0,1) (eventually € will
be fixed in equation (38)), and let

€ n 9
T:{we(mz> quzo,qugl}.
u Uu
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where Z denotes the set of integers. Then, by considering the total volume
of cubes of side €¢/y/n which have their centres in T', we see that

s (Y volfoer s (45))

_ ((2+€)n1/2)"r( /2 ) < ((2+6)n1/2>”( n/2en/2 (29)

2¢ n/2+1 2¢ n/2)"/2\/7n
- ((2+e)\/ﬁ>n
- 2e )

Lemma 12 Let p; be defined as in Lemma 11. We claim that
pr<(1-€7%

where
p = max{|z' Ay| | z,y € T}.

Proof: Let S = {z € R" | Y, 7y, = 0,%, 72 < 1}. We first show that for
every x € S, there is a y € T such that z —y € €S and ||z —y|| < €. Suppose
that for2 =1,2,...,n,

z; = emin~ % + fis m; € Z, fi € [O,en‘l/Z).

Note that since >, z, = 0, we have >, f; = efn1/2 where f is a non-
negative integer less than n. Rearrange subscripts so that m; < m; whenever
1 < 7. Define a vector y € R™ so that

| e(my + 1)n"12, ifu< f;
) emun Y2, ifu>f.

Then we have

(a) Zyuzzxuzo-
b)) > ye<d z <l

(¢) llz—yl| <e (since |zy — 1| < en™1/2).

Thus, y is in T and has the required property. It follows that one can apply
the above construction to obtain that for any z € S, there are z(9), z(1) .

in T such that
T = Z eiw(i),
i
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and therefore for any z € S, there are z(9 € T such that

Az = ZZ( ) Azt < (1 — €) 2 max{|y' Az| : y,z € T}.
1=07=0

The lemma now follows. 0O

Now write
p = max{|z'My| : z,y € T}.

Our aim is to find a probabilistic upper bound for p of order O(A_?’/ 2
which will verify (28). This is done by considering the random variables
X = X(z,y) = Xu» TuAuwwYy where 2,y € T. Note that for any two distinct
points in the configuration, the probability that the two points are joined
by an edge is 1/(2m — 1), where 2m = "7 ; d;. Thus for u # v,

 dud,
Blew] =5 -1
and du(dy — 1)
Elew] = 2m—1)
Fix z,y € T and define
B ={(u,v) | 0< |zuge| < AY2/n}. (30)

Let

X' = Z TyAuwyy and X" = Z Ty AuwYo,
(uw)€eB (u;v)¢B

so that X = X' + X".

10.4 Estimating X’
Note that

TyuYv xuyu(du - 1)
EX]= ) + > S DL
(u,v)EB 2m—1 (u,u)€B 2(2m o 1)du

Write S; and So for the first and second sums in the above equation. Then

Z |Zyyu|(dy — 1) < Al/2

< .
152] < 22m —1)d, ~ 4m

(31)
(u,u)€B
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For Si, we follow Lemma 2.4 in Kahn and Szemerédi. Since ), z, =

Z TyYo Z TylYv |-

(u,v)eB (u,v)¢B
Now,
x2y?

Z TuYy| < Z e 122%%— 172

(u0)¢B euel a1z 1E¥0] T = A Al
Hence

n Al/? n
X < =(1 1) ——. 32

We next show that X’ is concentrated around its mean. For this we need
some more notation. Recall that a configuration is a perfect matching F' of
the set W = U, {i} x[d;]. We call the elements in W points and assume that
the points in W are ordered lexicographically. For o € W, let v(«) denote
the first component of «, and for a pair e = {«, #}, in a configuration with
a < f, we write t(e) for v(«) and h(e) for v(f). For real z, define

() = 4 & if |z| < AY2/n;
XAE) = 0, otherwise.

Then

X(T4(e)Yn(e)) Ly X (Th(e)Yi(e))

X' =
S die)dae) o die)da(e)

= X, + X;, say. (33)

We next write F' = F} U Fy, U F3 where

Fi={e€F:|zye| >n""?/e},

Fy={e € F: |yl >n /e |ayey <n '/?/e},

Fy={e€F :|yne)| <n?/e |y <n ?/e}.
Then let

X;=Y X@uehne) g g3,
ccr: ie)h(e)
so that
X(Il :X1+X2+X3.

Recall that A/§ < 6, a constant. We claim
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Lemma 13 There are constants B; = B;(6) > 0, for i = 1,2,3, such that
for any t >0

Pr(|X; — E[X1]| > tA™%?) < 2exp(—tn + Bin) (34)
Pr(| Xy — B[X3]| > tA73/2) < 2exp(—tn + Bon). (35)
Pr(| X3 — B[X3]| > tA73/2) < 2exp(—tn + Bsn) (36)

Proof: We first prove (34). Assume without loss of generality that |z;| >
|z;+1| for all 7 and let the pairs {a;, 5;} for 1 < i < m that compose F
be ordered such that a; < G; and o; < ;11. Recall that the order among
points is lexicographic, thus v(e;) < v(@it1) and |Zya,)| > [Ty(as,)l-

Let =, be the equivalence relation on Q such that F' =, F” if and only if
the sequences of the first k pairs in F' and F" are identical. Write €, for the
set of equivalence classes, and Fj, for the corresponding o-algebra. Define
Y = B[X1|F]; that is, Y is a function from € to R so that Yi(F) equals
the expected value of X7 conditional on the first k£ pairs being exactly equal
to the first k£ pairs in F. Now Yj,Y1,...,Y,, is a Doob martingale with
Yy = E[X1] and Y,;, = X;. Define Z; = Yy — Y;_;. Note that as in Lemma
2.7 in [KS], if there is fx(¢) such that Z] = Elexp(¢*Z7)|Fr-1] < fx(C),
then for all ¢ and ¢ > 0,

Pr(1X, — BX]| > ) < 2 ][ /1(0). (37)
k=1

We next write down the distribution of Z;. Define

. | zy, if |zy| < AY2/n and |z| > n=2/e;
X(z,9) = {O, otherwise.

For a pair e = {a, 8} in F with a < 3, write

X(zv(a) » Yu(B) )

q(e) =
y () do(p)

Then

X1(F) =Y qle).

ecF
Note that we can express
2=k (m, — k)! 1
Zp(F) = ———————~ X (F") - ——————— X, (F") 3.
K(F) @m—Q@!{FZ%,I() 2m—2k+1pg£ﬁ ! )}
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Let {a,(} be the k-th pair in F with @ < § and let J be the set of
points contained in the first k pairs in F. For n ¢ J — {8} and for F' =4 F,
we define Fy as follows. Suppose that 7 is matched with v in F'. Write
e = {a,p}, f = {n,7}, ¢ = {a,n}, f' = {7,6}. Then F; is defined to

e (F'—{e, f}) u{e, f'}, giving F; =1 F and F = F'. Note also that
{F, In¢gJ—{B}} | F' = F} is a partition of {F" | F" =y F}. Thus,

21—k (1 — k)! 1 . )
Zi(F) = (2m(— 2k)!) 2m — 2k + 1 ngm%] (Xl(F )~ Xl(F")) '
Also, since
X1(F') — X1(Fy) = q(e) + q(f) — a(e') — a(f"),
we have

q({a, B}) + q({v,n}) — a{a,n}) — q({%ﬁ})
%762127:#77 (2m — 2k +1)(2m — 2k — 1)

Note that since Y- x2 < 1, there at most ne? indices v such that |z,| >
n~Y2/e. Thus Zj, = 0 if k > €2An; Otherwise

2m — 2k — 1> 2m — 22An — 1 > én,

if we choose € so that

A 1

53 (38)
Therefore
| Zk (F )I

< GE s X Alatio 80|+ latfr b+ la({end)] +lar 8D}
n¢J y¢Jy#n
Let .
ya =T min{|y$v(a) |a Al/Q/n}

|‘Iv(oz)|
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Note that z,q) > max{xv(ﬂ),xv(y),xv(n)} and that |z, | < [Zy(q)| implies
[Ty 1Y < |Ty(a) [y Therefore

lg({a, BY)| < 072 |y(a) U5y
a7, D] < 672120 [y + [Toim 9y
<8 2 (|Zo() Yy + |Tu(@) U5
lg({a, n})] < 072z y(a) Y
a7, BN] < 872 (|@uy) 95 + |$u(ﬁ)|yf(7))
< 67|z Wa(s) + [Fo() Yoy

Next, observe that since " y2 < 1 implies }" |y,| < n'/2, we have for example

n
Zyg(n) < Z |y'u(n)| < A Z Iyw| < A’n,l/z.

n¢J néJ w=1

Thus, we have
|Zk(F)| < 40267 |2y a) | (v ) + 07 '/2).
Writing Z;, = E[exp(¢?Z2)|Fy—1], we have

1 _ N _
Y exp(16¢° A% (my(a)) (U, + 17 2)2).

Zk(F) - 2m — 2k — T (8

Take
=A%, (39)

which means that the expression
C2A4578("B’U(a))2(y3(y) o l/2)2
= cwﬁ{( To(a)¥5)? + 2@u(a)¥i)) 3w+ (@)t
is bounded by 46%¢~

(Here we use %(a)yv(,, < VA/n and Yo(w) 2 €/v/n (since y,) # 0) to
get Ty(a) < VA/(ey/n)).

Hence putting B = exp{640%¢=2} and using % < 1 + ze® for z > 0,

Yo AN () (W) + 0P
vgJ—{B}

<1+ BC2A4(S_9n_1(‘TU(a))2 Z(y?}(u) + 2|yv(u) |n_1/2 + n_l)

ZHF) <14+ -—="
W) < R T T—

v

< exp(4B¢2A36 90! (To(a) )?).
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Writing r(k) = [k/A], we have for any F € Q,
ZU(F) < exp(4BC A% 0 (1,)?)

Thus, using (37), we have

m
Pr(|X; — B[X)]| > tA™%) < 2e7¢47 exp (Z 4BC2A55‘9n‘1(xr(m)2>
k=1

m
< 2exp (—tn +4BA%5 On E(mT(k))2>
k=1

< 2exp (~tn+4BA%™n) . (40)

This proves (34).

The proof of (35) is almost identical even though F, has a slightly dif-
ferent definition to F;. We simply re-order F' according to y,(s), and go
through the proof above, without using the condition |z,(q)| < n~='2/e.

The proof of (36) is much simpler. We use the more usual martingale
argument (Alon and Spencer [ASE], Bollobés [B3], McDiarmid [M]); for now
if Y, = E(X3 | Fi) then |V — Vi 1] < 4/(€2n6%). Since we took (in (38)),
€= 1/\/3_0, we have

2 4,254
Pr(|X; — BIX3]| > 1A*/?) < 2exp (;T?nf)

—t2etn —t2n
< 2exp ( 3907 ) < 2exp (W) .

Note that the lemma above shows that there is a constant B > 0 such
that

a

Pr(| X! — B[X.]| > tA%/?) < 6 exp(—tn + Bn).

Clearly the same result holds for the second sum X in (33). Thus, we have
that for any £ < ¢ € (0,1), there is a K = K(0,&) > 0 such that

Pr(|X' — E[X']| > KA3/2 | M is simple) < 20(d2)é"
< (41)

Note that we should multiply the RHS of (41) by x < n? to account for the
probability there exists M; for which X’ is large.
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10.5 Estimating X"

In view of (41), it remains to show that X” = O(A~%/?) with suitably
high probability. We shall first prove a preliminary result showing that
the random graph G with degree sequence d is unlikely to have a dense
subgraph. It will be enough to consider the case G = G3 and argue an
immediate implication for its subgraphs.

Lemma 14 Let G be chosen randomly from the set G(d) of simple graphs
with vertex set [n] and degree sequence d. For A,B C [n], let e(A, B) be
the number of edges joining a vertex in A to a vertex in B and u(A,B) =
0|A||B|A/n, where 8 > A/d is sufficiently large. For every constant K > 0
there is a constant C = C(0, K) such that with probability 1 —o(n=%) every
pair of A, B C [n], with |A| < |B|, satisfies at least one of the following:

(1) e(A,B) < Cu(4, B),

(IT) e(A, B)In £55% < C|B|In (o,

Proof: Write a = |A|, b = |B|, and let d4 and dp be the sums of degrees
in A and in B respectively. Condition (I) clearly holds deterministically if b
is at least a constant fraction of n since e(A4, B) < aA. Assume then that
a,b < n/(46).

We prove later that for any set of possible edges S, |S| < nA/(46) <
nd/2, we have

Pr(G contains S) < (—) . (42)

m

Thus, the probability that there exists a pair (A, B) with e(4,B) =t is at

most
n\ [n\ [ab A_2 ’
b/\a t m
2b 2\ ! 2b t
()" (2 < ()" (242
—\b mt —\b t
Now consider a value z that satisfies

T n 1 en
2y 2 hithd
zln (u(A,B)) >Cbln<b> > 2Cbln< b)

z > Cu(A, B)
x> (Inn)?
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Then clearly
Pr(34,B: e(A,B) =z) <n~ 27

and therefore
Pr(34,B: (e(4,B) > (Inn)?) & (1) & ~(11))
= Y Pr(34,B: (e(A,B) = 2) & (1) & (1)) < n?p7 0",

(Inn)2<z<n?

It remains to deal with Pr (34, B: (e(4, B) < (Inn)?) & —(I) & —(11)). If
e(A, B) < (Inn)? and (II) does not hold then

2¢(A, B)Inn > Cbln (%) > CbIn(46) (43)
and s0 b < e(A, B)Inn < (Inn)?, which in turn, from the first inequality in

(43), implies that e(A, B) > Cb/3. But the probability that e(A, B) > Cb/3,
for C sufficiently large, and b < (Inn)? can be bounded by

() ) =00 ()

2% 9 Cb/3
<9 <E) 3eaA
- b Cm

< 2(n2730/10b0/372)b_

This yields the conclusion of the lemma.

Proof of (42): Let S = {e1,e2,...,e5}, Go = G(d) and G; = {G €
G(d) : G contains {ej,eg,...,¢e;} for 1 <37 < s. It is sufficient to prove that
for 0 <i < s:

. 2 2
|G| A < A% ’
|Gi] ~ 2m—2A%2-2s — m
where the second inequality follows from our bound on s. To prove the first
inequality we consider

(44)

X ={(H1,Hy): Hy € G;i\Gir1,Hy € Giy1, Hy ~ Ha},

where H; ~ Hs means that there is some 4-cycle with edges f1 = e;+1, f2, f3, f4
such that Hs is obtained from H; by adding fi, f3 and deleting fs, f4. The
first inequality in (44) follows immediately from the following:

(i) A particular H; € G; \ Gi11 appears in at most A? pairs of X.
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(ii) A particular Hy € G;11 appears in at least 2m — 2A2 — s pairs of X.

Let e;11 = (x,y). For (i) observe that there are at most A? choices for fa, f4
— one is incident with z and one is incident with y. For (ii), given Hs € G;1+1
we chose an oriented edge fs = (u,v) € H not incident with e; 1. Let
fo = (z,u) and fy = (y,v). At most 2(A — 1)? choices of f3 are forbidden
because at least one of fo, f4 are already in H; and at most s — 1 choices
are disallowed because f3 € S. O

We now explain why it suffices just to consider G3 (and G3) for the large
pairs and not their subgraphs f‘j (and I';). Indeed, if one of the conditions
(I) or (II) hold for G5 then at least one holds for any of its subgraphs T
If condition (I) was true for G then it is true a fortiori for I'. Similarly, if
condition (I) fails, C' > 1, and condition (IT) holds for G5 then it holds a
fortiori for T

Lemma 15 Given the assertions in Lemma 14, X" = X (uw)e B TuAuwYo,
where B = {(u,v) | 0 < |zyy,| < AY?/n}, satisfies

X" =0(A73?)
for every pair z,y € T.
Proof: Given z € T, we write
Si(z) = {u: V2 < |z, | < 7012, iel,
where I = {7 : Sj(z) # 0}. Define J and S;(y) analogously. Also, for S C [n]

and x € T, write
(55)y = Ty, if u € S
Su =19, otherwise.

Given z,y € T, we write A; = S;(x), B; = Sj(y), a; = |4, bj = |Bj|. Let

C={(irj) |4,j >0, &9 > VA, a; <b;},
C'= {(ZJ) | 1,7 >0, 70 > \/K, a; > bj}.
Since

X" = Z -TuAuvyva
|Tuyn|>A172/n

it is sufficient to show that

Z (xAi)tAyBj = O(Ai?’/z)v
(i,5)€C
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or equivalently, if e; ; = e(4;, B;),

. Z .~ O(VA).

€ti
(i,5)eC

The sum on C' follows by symmetry.
Note that since 3" z2 < 1 for z € T, we have

Z a; /€072 < n, Z b; /27D < .
il jeJ

Next, partition C into C; UCyy, where C, is the set of (i, ) € C such that
e(A;, B;) satisfies assertion z in Lemma 14. First, using the definition of C,
we have

1 €ij 1 a,b]A . A azb] _
LY oo ¥ M) -o(n 2 m) =0(VA).
I

(i,§)€Cr (i.4)€Cr (ij)ecr ©

It therefore remains to show

S RETV/N) (45)

n. .-
(4,5)€Crr

For k =1,...,5, let Dy, be the set of (i,7) € Cyy satisfying (k) below but
not (k') if k' < k.

(1) € >€eVA,

(@) eiy < s/ (€+9V/R), where iy = p(As, By),
(3) In(esj/pij) = —ln(n/b)

(4) n/bj < e,

(5) n/b; > e Y

Then equation (45) follows if for k =1,...,5,

=2 Y SW_ oA

1+J
" (e ©
Start by noting that since (,5) € Crr, we have

eij In(e; j/pi ;) < Cbjln(n/b;), (46)
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For k = 1, from the trivial inequality e; ; < a;A, we have
;A 1 VA
LYY 45 -0(L ) oA,
, €ty n < e
(2 ]6‘7>6“/ 7

For k = 2, we have

Z Hig —0(‘/Z “?bj.>:0(\/Z).

VAE(iH) n? 7 €2(i+7)
For k = 3, equatlon (46) implies that
€i,j — O(b]),
and so using (i,7) ¢ D1, that is €/ < eV/A,
b 1« VAb;
m-o(3Y ¥ 5)-o(;¥Y5") o)
€ n4“ e
J iei>el [VA J
For k = 4, using (i, j) ¢ D3, we have

7] < i
Hij el
Also, using (i,7) & D2, we have
Cij !
pij — etiv/A’
thus giving .
e < VA.
From (46), we also have e; ; = O(jb;) (using also e; j > Cp; ;). Thus,
3%\ _ (VA ib
m-o(iY ¥ ) -o(T )
z<\/_ J
Since }j¢ s bj/(ne¥) = 0(1) we have
H, = O(VA).

For k = 5, since b; < ne', we have from (46) that
eij < Cne*lne™¥ = O(nje").
Also, since (i, j) & Dy, we have ¢/ < €v/A, thus

~o(Y X i) =o(VAX ) = 0Wa)

J wei>el [VA
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Observe finally that for future reference we have in fact proven the fol-
lowing

Lemma 16 Letd = di,ds,...,d, be a degree sequence with mazimum de-
gree A = o(n/?) and minimum degree § such that A/§ < @ for some con-
stant 8 > 0. Let G be chosen randomly from the set of simple graphs with
degree sequence d. Let 0 < ¢ < 1 be an arbitrary constant and G be the set
of vertex induced subgraphs H of G which have degree at least ¢§. Let K > 0
be an arbitrary constant. Then with probability 1 — O(n=X) every graph H
in G has second eigenvalue at most v/v/A where v = (0, ¢, K).

Proof: We can handle “small pairs” by using multigraphs and pass to simple
graphs as above. We observe that only the failure probability (41) now needs
to be inflated by 9n+0(@) and this is handled by making £ small enough or
~ large enough. The case of “large” pairs is handled as before by deducing
it from what happens in G. 0O

There are no lower bounds explicitly stated for J, but our results are
not useful for small minimum degree. It follows from (40) that v is at least
460° exp{1926°}. Thus say for § < 10° we will have v > A and so the estimate
for the second eigenvalue will exceed one, the largest eigenvalue.

Acknowledgment: It is a pleasure to acknowledge the work of the
anonymous reviewers. In particular, we would like to thank the referee who
pointed out a small gap in the originally submitted version of the paper.

References

[ASE] N. Alon, J. Spencer and P. Erdds, The probabilistic method, John
Wiley and Sons, 1992.

[BC] E. A.Bender and E. R. Canfield, The asymptotic number of labelled
graphs with given degree sequences, Journal of Combinatorial Theory
(A) 24, (1978) 296-307.

[B] B. Bollobéds, Random graphs, Academic press, 1985.

[B2] B. Bollobés, A probabilistic proof of an asymptotic formula for the
number of labelled reqular graphs, Furopean Journal on Combina-
torics 1, (1980) 311-316.

B3] B. Bollobds, Martingales, isoperimetric inequalities and random
graphs, Coll. Math. Soc. J. Bolyai 52, 113-139 (1987).

43



[BFF]

[BM]

[BFU]

[BFSU]

[G]

[EL]

[KS]

[KT]

[M]

[PU]

[RS]

B. Bollobds, T. I. Fenner, and A. M. Frieze, Hamilton cycles in
random graphs with minimal degree at least k, in “A tribute to Paul
Erdés,” edited by A. Baker, B. Bollobds, and A. Hajnal (1990) 59-
96.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
North-Holland 1976.

A. 7. Broder, A. M. Frieze, and E. Upfal, Ezistence and construction
of edge disjoint paths on expander graphs, Proceedings of the 24’th
Annual ACM Symposium on Theory of Computing, (1992) 140-149.

A. 7. Broder, A. M. Frieze, S. Suen, and E. Upfal, Optimal con-
struction of vertex-disjoint paths in random graphs, in preparation.

D. Gale, A theorem on flows in networks, Pacific Journal of Math-
ematics 7 (1957) 1073-1082.

P. Erdés and L. Lovasz. Problems and results on 3-chromatic hy-
pergraphs and some related questions. In A. Hajnal et al., editors,
Infinite and Finite Sets, volume 11 of Collog. Math. Soc. J. Bolyai,
pages 609-627. North Holland, 1975.

D. S. Hochbaum. An ezact sublinear algorithm for the maz flow,
verter-disjoint paths, and communication problems on random
graphs, Operations Research 40 (1992) 923-935.

J. Kahn and E. Szemerédi, On the second eigenvalue in random
reqular graphs - Section 2, Proceedings of the 21’st Annual ACM
Symposium on Theory of Computing (1989) 587-598.

J. Kleinberg and E. Tardos, Approzimations for the disjoint paths
problem in high diameter planar networks, Proceedings of the 27’th
Annual ACM Symposium on Theory of Computing, (1995) 26-35.

C. J. H. McDiarmid, On the method of bounded differences, in Sur-
veys in Combinatorics, Proceedings of the Twelfth British Combi-
natorial Conference (J. Siemons, Ed.), 1989, pp. 148-188.

D. Peleg and E. Upfal, Constructing disjoint paths on expander
graphs, Combinatorica 9, (1989) 289-313.

N. Robertson and P. D. Seymour, Graph minors-XIII: The disjoint
paths problem, to appear.

44



[SUJ

[SJ]

[VB]

E. Shamir and E. Upfal. A fast construction of disjoint paths in
networks. Annals of Discrete Mathematics 24 (1985) 141-154.

A. Sinclair and M. Jerrum, Approxzimate counting, uniform gemer-
ation, and rapidly mizing Markov chains, Information and Compu-
tation 82 (1989) 93-133.

L. G. Valiant and G. J. Brebner, Universal schemes for parallel
computation, Proceedings of the 13’th Annual ACM Symposium on
Theory of Computing (1981) 263-277.

45



