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ABSTRACT

Suppose we are given a graph (V,E) and a function
c:E-~Z where c(e) is said to be the colour of edge ¢ of E.
A subset § C E is said to be polychromatic if lc(S)! = 1S1.
In this paper we study the complexity of recognizing
whether such an edge coloured graph has certain types of
polychromatic subsets, such as spanning trees, paths,
cutsets, matchings and Hamiltonian cycles.

1. Introduction

Erdds, Simonovits and Sés [6) studied the following problem:
given a graph H, what is the maximum number of colours m that can
be used to colour the edges of a complete graph K, on n vertices so
that no subgraph isomorphic to H has all its edges coloured differently?
They considered, in particular, the cases when H is a complete graph,
a path or a cycle. Hahn [9] [10] considered a similar problem when H
is a star. In his doctoral thesis, Bate [1] [2] investigates, inter alia,
related problems on the existence of polychromatic paths and cycles.
(See also Galvin [7].)

In this paper we study the problem of the complexity of determin-
ing whether such a subgraph exists.

An edge colouring of a graph G = (V,E) is a function ¢: E-Z for
some set Z. A subset X C E is said to be polychromatic if 1c(S) = (S,
i.e. each edge of § is coloured differently. A similar definition is
assumed for digraphs.

Possible applications of this model could be to problems where
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~ each colour represents an indivisible resource which can only be used

~ once. T

: In the paper we study the prcfblem of determining whether an
- edge coloured graph or digraph has various types of polychromatic sub-
. set, including spanning trees, spanning arborescences, s—t paths,

~ cycles, cutsets, matchings and Hamiltonian paths and cycles. Most

" cases turn out to be NP-Complete and in particular it is interesting to
' note that the case of spanning arborescences, which is a special case of
a matroid-greedoid intersection problem, turns out to be NP-Complete,
thus showing that this problem is unlikely to be polynomially solvable.

2. Polychromatic Spanning Trees and Arborescences

Spanning Trees

We first consider the problem of determining whether or not an
 edge coloured graph G contains a polychromatic spanning tree. For-
* tunately this is a matroid intersection problem: indeed a polychromatic
* spanning tree is a set of n—1 edges independent in both

(1) the cycle matroid of G, and

(2) the partition matroid defined by polych:omatw sets of edges
Thus the existence of a polychromatlc spanning tree can be tested in
polynomial time using a matroid intersection algorithm, e.g. Lawler
[13] pp. 313-314. In fact, this algonthm could easily be implemented

to run in time O(IVIIE).

Furthermore, it follows from Edmonds’ matroid intersection dual-

ity theorem [5)] that G contains a polychromatic spanning tree if and
-only if

(1.1) ry(S) + ro(E-S) = n—-1 for all SCE
 where )

(@) n—ry(S) = the number of components in the graph (V,5)

(B) ro(T) = the number of distinct colours used in T.
We can deduce from (1.1) the following simple but interesting result:

THEOREM 1.1. Let G be a complete graph on n vertices and let the
edges of G be coloured with n—1 colours such that each colour is used

at least once and no more than {#/2] + 1 times. Thea G contains a

. polychromatic spanning tree.

PROOF. If G does not have a polychromatic spanning tree then (1.1)
fails for some S§. Suppose (V,S8) has p components containing
ny,ny . . . .0, vertices respectively and that ro(E=5) =1 We can
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quickly eliminate the following values for p:

‘() p = 1: here ry(S) = n—1;

(ii) p = 2: here [E~S| = n~1 implies 1 = 1;
(ifiy p = n: here § = @ implies t = n — 1;
(iv) p = n—1: here IS! = 1 implies y(S) = 1 and t = n—-2.

‘We can thus assume that 3 < p < n—2 and n = 5. Since (1.1) fails

we have ¢t < p—2 and so some colour occurs at least |[E—S1/(p—2)
times. Now

E~S| = [’2'] - g[’;‘] |
= [g] - [n—g+1] = [p-z-l] + (p~1)(n—p+1).

Thus some colour is used - at least
m= [(p=1)2 + (p=1)(n—=p+1)/(p—2)] times. It is easy to show,
given our range of values for p, that m = [n/2] + 2 for n = 4. The
result follows.

Spanning Arborescences

We consider next the problem (PSA) of determining whether an
arc coloured digraph D contains a polychromatic spanning arborescence
rooted at a given vertex r. Here an arborescence is a spanning tree in
which each arc is directed away from the root and so each vertex other
than r has indegree 1. The uncoloured version is solvable in time
O(IVl1 + |E!), and it appears plausible that PSA could be polynomially
solvable as it involves the intersection of a greedoid, i.e. the arbores-
cence (see Korte and Lovdsz [12]), and the partition matroid defined
by the colouring. We show, however, that PSA is NP-Complete:

THEOREM 1.2. PSA is NP-Complete.

PROOF. We prove this by showing that SATISFIABILITY = PSA.
Suppose we are given a set X = {x;,x5, . . . ,x,} of boolean variables
and a set C = {C1,Cs, . .. .C,} of clauses over X. We define an
instance of PSA as follows: let L = {x,,%;, . . . ,x,,X,} be the set of
literals, where we can assume each literal appears in at least one
clause, otherwise the complementary literal can be taken as true. We
start with a bipartite digraph D, with vertices L U € and arcs of the
form {(o,C;) whenever literal o occurs in clause C;. Each arc of Dy is
differently coloured. We now add a new vertex r and join it by an arc
to each member of L (see Figure 1(a) ). Using n new colours
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j ay, . . . .a,, we colour these arcs, so that (r,x;) and (r,x;) are both
. coloured g; for i = 1,2, . . . ,n.

We next add a new vertex s and an arc (r,s) using a new colour,
We then join s to each literal o by a path P, (from s to o ) where the
sets of interior vertices of the P are disjoint. Suppose that literal o
. occurs in k, clauses; then P, contains k, arcs. The arcs of P are
~ coloured with exactly the same k, colours used to colour those arcs of
D with initial vertex o. Finally, each o is joined to each interior ver-

_ tex of P_, by an arc, using a new colour each time. This completes the.

. description of the arc coloured digraph D (see Figure 1(b)).

a)

b}

C= {Ixxad, & Ral, Rexal, Rofsl}

Figure 1
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Suppose first that C is satisfied by some assignment of truth

- values to X. Then there exists a polychromatic spanning arborescence

rooted at r with the following set of arcs:

(1) the arc (r,o) for each true literal o;

(2) for each C;,i = 1,2, . . . ,m, an arc (o,C;) where o is some true
literal occurring in C; (the existence of some such o is guaranteed since
C is satisfied);

(3) the arc (r,s);

(4) the path P for each false literal o;

(5) all arcs of the form (o,v) where o is a true literal and v is an inte-
rior vertex of P,

It is easy to see that (1) to (5) define a polychromaue spanning
arborescence.

Now suppose, conversely, that D contains a polychromatic span-
ning arborescence rooted at r with arc set A. Let the true literals be
those o for which (r,6) € A. Note that, since (r, xj) and (r,;) have
the same colour, this defines a proper assxgnment of truth valucs. Any
variable x; not assigned a truth value in this way will be assigned the
value rrue. We now show that this assignment of truth values satisfies
C.

We note first that for each literal o there are precisely 2 arcs in D that
enter o, i.e. (r,0) and the terminal arc u,, of P,. Now it can easily be
shown, by tracing P, in reverse, that to avoid cycles we must have
either u, £4 or P, C A; but if P, C A then (0,C;) £A because P,

uses the colours of all such arcs. Thus (o,C)) € A implies that

(r,o) € A and hence that ¢ is true in our assignment. Since A spans the
vertices of D this assignment satisfies € .0

We note that the problem is still hard if we do not specify the root
since in the above proof r is the root of any spanning arborescence.

We further note that PSA remains NP-Complete when we restrict
attention to those cases in which the number of colours used is n—1,
where n is the number of vertices. This is easily seen by “splitting“ r
as in Figure 2.
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m-n+l blocks

(We assume the original colours of D were ¢y,cy, . . . ,Cp,

~where m > n — 1. Arcs without a specified colour are given distinct

new colours. No. of colours = no. of vertices - 1.)

Figure 2

The problem remains NP-Complete if we further restrict attention
to complete digraphs; we simply add a new vertex © and a new colour,
red say, and complete the digraph with red arcs.

However, we observe that if the given digraph has no directed
cycles then the problem is solvable in polynomial time. Indeed, sup-
pose that the vertices of D are numbered 1,2,...,n such that i < j if
{#,7) is an arc of D. We can obtain an arborescence of D by selecting,
for each j > 1, an arbitrary arc entering j. Thus PSA reduces to a
bipartite matching problem in which the bipartite graph G has one ver-
tex for each j = 2,3,...,n and another vertex for each colour, The
arcs are of the form (j,c) whenever c is the colour of some arc enter-
ing j in the digraph D. Each matching of G of cardinality n—1
- corresponds to a polychromatic spanning arborescence of D and vice
. versa.

We finally note that, unless NP = Co-NP, there cannot be any
" good characterization of the set of coloured digraphs which contain a
- polychromatic spanning arborescence. This is in clear contradistinction
. to the undirected case where we have the characterization given by
- (1.1). These remarks will also apply to other classes of polychromatic
- subgraphs for which the corresponding recognition problems are NP-
- Complete.
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3. Polychromatic Paths, Cycles and Cutsets

Paths and Cycles

If an edge coloured graph has a polychromatic spanning tree then
every pair of vertices is connected by a polychromatic path. If, how-
ever, we specify a pair of vertices s and ¢ of a graph and ask whether it
contains a polychromatic path from s to ¢ then, surprisingly perhaps,
this problem is NP-Complete. We prove this by showing that 3-
DIMENSIONAL MATCHING (3DM) is polynomially transformable to
this problem which we call POLYCHROMATIC PATH (PP).

An instance of 3DM is described by
(a) disjoint sets X,Y¥,Z where IX! = |¥] = |Z| = m;
(b)yasubset TC X X Y X Z,

The problem is to determine whether or not there exists M C T such
that (a) IM1 = m, (b} cach element of X U ¥ U Z occurs in exactly one
member of M. A set M satisfying (a) and (b) is called a 3-dimensional
matching,

THEOREM 2.1. PP is NP-Complete.

PROCF. Given an instance of 3DM we construct the edge coloured
graph G indicated in Figure 3.

Figure 3

This can be described informally as follows. Starting with a path
ap,ay, . . . .G, we duplicate each edge (a;,q;.;) p times, where
p = ITL. Each of the p edges joining a; to 4,4, i = 0,1,...,m~1is
then replaced by a distinct path of length 5. This gives us a graph with
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m + 1 + 4mp vertices and Smp edges as in Figure 3. Let
T= {(x!,y,,z,-) [i= 1,2,...,p}.
For i = 0,1,...,m~1 we order the p paths joining a; to az+1~“ The §

edges of the kth path joining a; to a;,; are coloured CosXps YpaZpa €)' s
respectively, where ¢, and ¢/ , i=0,1,...,m-1 are 2m new

colours.

It is now easy to see that T contains a 3-dimensional matching if

* and only if G contains a polychromatic path from apto a,,. O

We note that the graph G constructed in Theorem 2.1 is bipartite,
~ planar and edge series-paralle] [14]. '

By adding a large monochromatic clique to the graph we can make -
the ratio of vertices to colours as large as we like; alternatively, by .
- adding a large polychromatic clique we can make this ratio as small as

~ we like.
' By applying the transformation indicated in Figure 4 to each of
the sets of edges coloured cg,cq’,cq,¢", . . . . m—1"» We can obtain a

. graph in which no vertex has degree exceeding 3.

dl,dz,-- - dg dare new colours
Figure 4 (forp = 5)

“The graph is stil] planar, edge series-parallel and can easily be made
bipartite. Thus we have ' '

'COROLLARY 2.1. PP is NP-Complete for bipartite, planar, edge
- series-paralle] graphs with maximum degree 3. O

If we add the edge (ay,a,,) to the graph constructed in Theorem
‘2.1 using a new colour (red say), we see that the problem (PC) of
determining whether or not an edge coloured graph has a
-polychromatic cycle is also NP-Complete. Moreover, we have

COROLLARY 2.2. PC is NP-Complete for bipartite, planar, edge
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series-paralle] graphs with maximum degree 3.

It is easy to show (Bate [1]) that an edge coloured complete graph
contains a polychromatic cycle if and only if it contains a polychromatic
triangle (if cycle C is polychromatic, any chord splits € into 2 smaller
cycles one of which must be polychromatic). Clearly, checking for
polychromatic triangles can be done in polynomial time.

All of the above results, except the last remark on complete
graphs, carry over to digraphs without difficulty. We note that the
uncoloured versions of these problems are solvable in time
o(Iv! + IEI).

Cutsets

We now consider the problem (PCS) of whether or not an edge
coloured graph has a polychromatic cutset.
THEOREM 2.2. Planar PCS is NP-Complete.
PROOF. Starting with the graph G constructed in Theorem 2.1 (see
Figure 3) together with the red edge (ag,a,,), we add “new* red edges
as shown in Figure 5 to create an edge coloured plane graph H in which
the common boundary of any 2 neighbouring faces is a single edge.

all 'naw’ edges ore red

Figure § (for p = 5)

It is straightforward to show that none of these “new*“ red edges can
occur in any polychromatic cycle of H. Now we construct the dual
graph H", the vertices of which correspong to the faces of H. For an
edge e of H, let h(e) denote the edge of H joining the 2 faces contain-
ing e; by construction, h is a bijection. We colour k(e) the same as e.
Now it is well known [3] that C is a cycle of H if and only if #(C) is a
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minimal cutset of H". Since C and 4(C) are coloured in the same way,
C is polychromatic if and only if A(C) is. " It follows that 3DM « Planar
PCS .,

For complete graphs PCS remains NP-Complete: given' an edge
coloured graph G, we can complete the graph, colouring each new

edge with a different new colour, to create an edge coloured complete

graph G’ which has a polychromatic cutset if and only if G has.

4. Polychromatic Matchings

It is easy to show that the problem (PPM) of determining whether

. an edge coloured graph has a polychromatic perfect matching is NP-

‘Complete, even for bipartite graphs. This contrasts with the
uncoloured matching problem which is solvable in time O(1VI>).

THEOREM 3.1. PPM is NP-Complete, even when the number of
colours is one half of the number of vertices.

PROOCF. Given an instance of 3DM, construct a bipartite graph G
- with vertex sets X and ¥. For each (x,y,z) € T we include the edge
(x,y) and colour it z, Now T contains a 3-dimensional matching if and
only if G contains a polychromatic perfect matching. Note that the
. number of colours used is m which is half the number of vertices and
~ hence is minimal. The above construction may produce parallel edges,
We can remove parallel edges by replacing each edge by a path of
- length 3 as shown in Figure 6. The resulting graph is still bipartite. O
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~ Figure 6

We show next that PPM remains NP-Complete when the graph G
is a complete bipartite graph or a complete graph. Thus, even when
the existence of many perfect matchings is assured, the problem
remains difficult.

COROLLARY 3.2. PPM is NP-Complete for complete bipartite
graphs and complete graphs.

PROOCF. Consider an arbitrary edge coloured bipartite graph. Add 2
new vertices g and b, putting them into different parts of the vertex
partition. Complete the graph by adding new edges all of the same new
colour, red say. Any polychromatic perfect matching must contain the
edge (a,b) and after deleting the red edges we are left with the
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previous problem. The same argument is valid whether we construct a
complete graph or complete bipartite graph. C

5. Polychromatic Hamiltonian Cycles and Paths

The general problem (PHC) of whether an edge coloured graph
contains a polychromatic Hamiltonian cycle is NP-Complete: we can
colour each edge differently and then every Hamiltonian cycle is
polychromatic. It is not obvious that the problem remains hard when

we restrict it to the case (CPHC) where we have a complete graph with

n vertices and only n colours are used. We give an outline proof of
this result,

THEOREM 4.1. CPHC is NP-Complete,

PROOF. Suppose that we are given an arbitrary edge coloured graph
G. If m > n colours are used, we split vertex 1 to obtain G, as indi-
cated in Figure 7, where each “block” of m parallel edges uses each
colour. Then G; contains a polychromatic Hamiltonian cycle if and
only if G does. (For the case m=n+1, we must add a dummy colour
which is not used in G so that we have m=n+2.)

v

4 L]
m=-n blocks

Figure 7

To remove the parallel edges, we replace each “block* of m
parallel edges as indicated in Figure 8, to obtain a simple graph G,. It
is not difficult to show that G; has a polychromatic Hamiltonian cycle if
and only if G does. :
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P
NG

(m new colours and m new vertices are added for each of the
m—n “blocks“.) .
Figure 8 (form = 4)

In order to obtain a complete graph we split one vertex as indicated in
Figure 9. The resulting graph has the same number of colours as ver-
tices, O ,

. — - + *

(r,b, and g are new colours; the graph is completed by colour 5.)
Figure 9 :

Using similar constructions it can be shown that, given a complete
graph G on n vertices, edge coloured using n—1 colours, the problem
of determining whether G has a polychromatic Hamiltonian path is
NP-Complete. This problem remains NP-Complete when either one or
both of the endpoints of the path is specified.

The corresponding Hamiltonian path and cycle problems for
directed graphs can also be shown to be NP-Complete.
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