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Abstract

This paper addresses the problem of virtual circuit switching in bounded
degree expander graphs. We study the static and dynamic versions of this
problem. Our solutions are based on the rapidly mixing properties of random
walks on expander graphs.

In the static version of the problem an algorithm is required to route a
path between each of K pairs of vertices so that no edge is used by more than
g paths. A natural approach to this problem is through a multi-commodity
flow reduction. However, we show that the random walk approach leads to
significantly stronger results than those recently obtained by Leighton and Rao
[13] using the multi-commodity flow setup.

In the dynamic version of the problem connection requests are continuously
injected into the network. Once a connection is established it utilizes a path (a
virtual circuit) for a certain time until the communication terminates and the
path is deleted. Again each edge in the network should not be used by more
than g paths at once.

The dynamic version is a better model for the practical use of communica-
tion networks. Our random walk approach gives a simple and fully distributed
solution for this problem. We show that if the injection to the network and
the duration of connections are both controlled by Poisson processes then our
algorithm achieves a steady state utilization of the network which is similar to
the utilization achieved in the static case situation.

1 Introduction

Communication protocols for high-speed high bandwidth networks are based on wir-
tual circuit switching. The speed of the network does not allow for on-line routing of
individual packets. Instead, upon establishing a connection, bandwidth is allocated
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along a path connecting the two endpoints for the duration of the connection. These
“virtual circuits” are set up on a per-call basis and are disconnected when the call is
terminated. Efficient utilization of the network depends on the allocation of virtual
circuits between pairs of nodes so that no link is overloaded beyond its capacity.

As in other routing problems we distinguish between a static and a dynamic
version. In the static version all the requests are given at once and must be simul-
taneously satisfied. In the dynamic version requests are continuously generated. A
connection once established, continues for a certain amount of time and afterwards
its bandwidth can be re-used for other connections.

The static version of this problem translates into the following combinatorial
question: Given a network G = (V, E) and a set of K pairs of vertices in V, find
for each pair (a;,b;), a path connecting a; to b;, such that no edge is used by more
than g paths. For arbitrary graphs, the related decision problem is in P for fixed K
- Robertson and Seymour [15], but is NP-complete if K is part of the input.

In contrast to the negative results for general graphs a significant progress has
been made in solving this problem for the interesting class of bounded degree ex-
pander graphs. In particular Leighton and Rao [13] have recently obtained a number
of constructive and existential results for this problem based on the natural linear
relaxation of the circuit switching problem to a multi-commodity flow problem. This
paper explores a different approach: we study solutions for this problem based on
the rapidly mixing properties of random walks on expander graphs. The method we
explore here builds on the basic technique developed in [6]. Using the random walk
approach we improve the Leighton-Rao results for the static case and obtain the first
non-trivial results for the dynamic version of the virtual circuit switching problem.

Our first result for the static case establishes a tradeoff between the number of
pairs K, and the allowed congestion g.

Logarithms are natural unless explicitly stated otherwise.

Theorem 1 There is an explicit polynomial time algorithm that can connect any set
of K = a(n)n/logn pairs of vertices on a bounded degree expander so that no edge
1s used by more than g paths where

loglogn")

- = = 1 2.

ool legial) e
O(s + a+loglogn), for a>1/2,

& = min(a, 1/loglogn), and s is the mazimal multiplicity of a vertex in the set of
pasirs.

Since the expected distance between two random vertices on a bounded degree
expander is Q(logn) our results are always within an additive factor of O(loglogn)
from optimal. Our theorem improves the results obtained by Leighton and Rao [13]
using the multi-commodity flow approach. The case a(n) = 1/(logn)¢ improves the



bound of Theorem 1 of [13], the case a(n) = O(1) improves the bound of Theorem
2 in [13], and makes the result constructive.
We also note that Kleinberg and Rubinfeld [10] have recently used our result in
their analysis of a greedy algorithm for finding short disjoint paths on expanders.
We next show constructively that K = n/(logn)2*¢ pairs of vertices can be con-
nected by edge-disjoint paths, provided the graph has sufficiently strong expansion.

Theorem 2 Suppose € > 0 and G is an r-regular («, 3,7)-expander (See Section
2 for definitions). If conditions (11),(12) and (18) below hold and r is sufficiently
large then any K = n/(logn)?T¢ pairs of vertices can be connected by edge-disjoint
paths. Furthermore these paths can be explicitly found in polynomial time.

The following non-constructive result removes the € and improves Theorem 3 of
[13]:

Theorem 3 Given a bounded degree (e, 3,7)-expander graph (o < 1/4) there exists
a parameters ¢ and o that depend only on «, B, 7, but not on n, such if r > ro and
then any set of less than cn/(logn)? disjoint pairs of vertices can be connected by
edge disjoint paths.

The advantage of the random walks approach is even more significant in the
solution of the dynamic virtual circuit switching problems. In practice networks are
rarely used in the “batch mode” modeled by the static problem. Real-life network
performance is better modeled by a dynamic process whereby requests for connection
are continuously arriving at the nodes of the network. A connection has a duration
time, and once the communication has terminated its bandwidth can be used for
another connection. In sectionb we formulate a model for studying the dynamic
virtual circuit switching problem under stochastic assumptions about the injection
rate of new requests and the duration of connections.

Using the random walk approach we develop a simple and fully distributed proto-
col for dynamic path selection on bounded degree expander graphs. For the analysis
we adopt the stochastic model assumed in the design of most long-distance telephone
networks [12]. Requests arrives according to a Poisson process, and the duration of a
connection is exponentially distributed. Our goal is to characterize the relationship
between the load and congestion parameters that guarantees system stability (i.e.,
the expected number of requests in queue is not growing unboundly with time).

Theorem 4 Let E(N) be the expected number of requests that arrive to the n-node
expander network at a given step, let E(D) be the expected duration of a connection.
IfE(N)E(D) < a(n)n/logn, where a(n) < 1/2, then there ezxists a constant ¢ such
that for g > c[loglogn/log(1/a)| the system running our dynamic algorithm is
stable, and the expected time a request waits in a queue is O(n/E(N)).

Since E(N)E(D) is the expected number of paths that must be active in the
network at the steady state in order to keep the system stable, we see that our



dynamic algorithm achieves almost the same edge utilization as that in our static
results.

One should note that out approach differs from the work on admission control
[4, 9, 5] in that we do not reject requests. All requests are eventually satisfied in our
model, but not immediately. In contrast, in the admission control model a request is
either immediately satisfied or it is rejected. Our approach better models computer
communication, while the admission control approach is a better model for human
(telephone) communication.

2 Preliminaries

There are various ways to define expander graphs; here we define them in terms of
edge expansion (a weaker property than vertex expansion).

Let G = (V, E) be a graph. For a set of vertices S C V' let out(S) be the set of
edges with one end-point in S and one end-point in V'\ S, that is

out(S) ={{u,v} | {u,v} € E,u e S,v ¢ S}.

Similarly,

in(S) :{{u,v} | {u,v} € E,u,v € S}.

Definition 1 A graph G = (V, E) is a B-expander, if for every set S C V, |S| <
|V'|/2, we have | out(S)| > B|S]|.

For the remainder of this paper, when ( is not explicitly mentioned we will assume
that it is an arbitrary constant greater than 0. For certain results we need expanders
that have the property that the expansion of small sets is not too small. The form of
definition given below differs slightly from that given in [6]. This allows one definition
for Theorems 2 and 3.

Definition 2 An r-regular graph G = (V, E) is called an («, 3,7)-expander if for
every set S CV

(1—a)r|S| if|S| <~|V]
out(S) > { B|S| if vV <|S| <|V]|/2

In particular random regular graphs and the (explicitly constructible) Ramanujan
graphs of of Lubotsky, Phillips and Sarnak [11] are («, 3,v)-expanders. (See discus-
sion in [6].)

A random walk on an undirected graph G = (V, E) is a Markov chain {X;} CV
associated with a particle that moves from vertex to vertex according to the following
rule: the probability of a transition from vertex ¢, of degree d;, to vertex j is 1/d; if
{i,7} € E, and 0 otherwise. (In case of a bi-partite graph we need to assume that



we do nothing with probability 1/2 and move off with probability 1/2 only. This
technicality is ignored for the remainder of the paper.) Its stationary distribution,
denoted , (or 7g) is given by w(v) = d,/(2|E|). Obviously, for regular graphs, the
stationary distribution is uniform.

A trajectory W of length 7 is a sequence of vertices [wg, w1, ..., w;] such that
{w¢, w1} € E. The Markov chain {X;} induces a probability distribution on tra-
jectories, namely the product of the probabilities of the transitions that define the
trajectory.

Let P denote the transition probability matrix of the random walk on G, and let
Pisfl)u denote the probability that the walk is at w at step ¢ given that it started at
v. Let A be the second largest eigenvalue of P. (All eigenvalues of P are real.) It is

known that
[P, — m(w)] < Xy/m(w)/m (). (1)

In particular, for regular graphs

p _ 1

v,w E + O()‘t) (2)
To ensure rapid convergence we need A < 1 — € for some constant ¢ > 0. This
holds for all expanders (Alon [1]). In particular if G is an r-regular 3-expander then
Sinclair and Jerrum [16] show that

Agl—%(gy (3)

r

It is often useful to consider the separation s of the distribution P,Ef.)

limit distribution 7 given by

from the

oy T(@) = PO
s(t) = na: )

(4)

Then we can write

P =1 —st)r + s(t)o

where o is a probability distribution. We can then imagine that the distribution Péf.)

is producing by choosing either o with probability s(¢) or = with probability 1 — s(t).
Hence if £ is an event that depends only on the state of the Markov chain we have

(1—s(t)) Pr(€ under )+ s(¢t) > Pr(€ under P,Sf.)) > (1—s(t)) Pr(€ under 7). (5)
We use this in the following scenario:

Experiment A: Choose u; € V uniformly at random and do a random walk W;
of length 7 from u;. Let v; be the terminal vertex of Wj.



Experiment B: Choose u2 and v2 uniformly and independently from V and do a
random walk of length 7 from us to vs.

Here 7 = cologn and s(7) < N73K~2. Since G is regular, u; and v; and uy and
vy have each the same (uniform) distribution in the two experiments. However v;
depends on wu; and therefore the distributions of W7 and Ws differ slightly. What
we claim though is that for any event £ depending on walks of length 7,

| Pr((u1,v1,W1) € &) — Pr((uz,v2, Wa) € €)| < (7). (6)

This follows from the stronger claim that for any u € V and any event £ depending
on walks of length 7

| Pr((u1,v1,Wh) € €| u1 = u) — Pr((uz,v2, Wa) € €| uz = u)| < s(7),

which follows from (5).
The notation B(m,p) stands for the binomial random variable with parameters
m = number of trials, and p = probability of success.

3 Static routing with bounded congestion

In this section we present an algorithm for static routing with bounded congestion.
We first use a flow algorithm to randomize the endpoints. We then connect each
pair of (new) endpoints by a random path. At this point, most of the edges have a
limited congestion but some edges are overloaded. We then remove all paths that
use overloaded edges. With high probability the number of disconnected pairs is
sufficiently small that we can use an algorithm for finding edge-disjoint paths [6] to
reconnect them. More formally our algorithm is:

Algorithm

Input: An r-regular B-expander G = (V, E). A collection of K = a(n)n/logn pairs
of vertices denoted {(a1,b1),...,(ax,bx)} such that no vertex in V participates in
more than s pairs.

Output: A set of K paths, {Py,..., Pk} such that P; connects a; to b; and the
maximum congestion g on any edge is bounded by

loglognl)

—_— fi 1/2;

o= Ofs+ gy |): ey
O(s+ a+loglogn), for o > 1/2.

where & = min(a, 1/loglogn).



Phase 1. Choose independently (with replacement) uniformly at random, two mul-
tisets R4 and Rp of 2K vertices each in V.

Phase 2. Select multisets Q4 C R4 and Qp C Rp of K vertices, such that every
element in @4 has multiplicity at most max(10eK/n,1) and every element in Qp
has multiplicity at most max(10eK /n,1). If such sets cannot be found, then stop.
The algorithm has failed.

Phase 3. Let Sy = {a1,...,ax} and Sp ={b;...,bk}. Using a flow algorithm in
G twice, connect in an arbitrary manner the vertices of S4 (resp. Sp for the second
flow) to the vertices of Q4 (resp. @p) by K paths as follows:

e Assume that every edge in G has a capacity equal to max(s,20eK/n,2)/5.

e View each vertex in Sy (resp. Sp) as a source with capacity equal to its
multiplicity in S4 (resp. Sp) and similarly every vertex in Q4 (resp. Qg) as
a sink with capacity equal to its multiplicity in Q4 (resp. @p) .

The expansion properties of G ensure that such flows always exist.

Phase 4. Let a; (resp. Bz) denote the vertex in Q4 (resp. @p) that was connected
to the original end-point a; (resp. b;). Choose zi,x2,...,zx uniformly at random
in V and then choose trajectories W; (resp. W/) of length 7 = ¢plogn that go from
a; to x; (resp. l;, to z;) according to the distribution on trajectories, conditioned on
w;0 = @; and w; » = z;. (The constant ¢ is discussed in the analysis.)

Let v(e) be the number of trajectories that use the edge e. Let gmax = gmax ()
be a parameter defined in the analysis below. For every edge e with v(e) > gmax
delete all the trajectories using it. For all ¢ such that both W; and W} survived,
connect @; to b; using W; followed by W/ with loops removed. (This will lead to
congestion at most gmax.)

If the numbers of disconnected pairs is “too large” (see analysis), then stop. The
algorithm has failed. Otherwise reconnect them using the algorithm in [6] on G.

The final path from a; to b; is the union of the paths from a; to a@;, and from b;
to b; found in Phase 3, and the path from a; to b; selected here, with loops removed.

End Algorithm

We will show that the algorithm above succeeds with probability greater than 1/3
for any given input. Thus by repeating it O(logn) times we prove

Theorem 1 There is an explicit polynomial time algorithm that with high probabil-
ity can connect any set of K = a(n)n/logn pairs of vertices on a bounded degree
expander so that no edge is used by more than g paths where

loglognw> ‘
. O(s—i— [71(%(1/&) , for a < 1/2;
O(s + a +loglogn), fora>1/2,
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& = min(a, 1/loglogn), and s is the mazimal multiplicity of a vertez in the set of
pairs.

Proof: We first discuss the existence of Q4,Qp. Note first that the multiplicity of
an element in R4 or Rp has distribution B(2K,1/n).
Let X, denote the multiplicity of v € V in the multi-set R4. Let

Zy = Z Xolx, >t
veV

where

10eK
t=max{2, Oe }

n
Then

Case 1 K > n/5e.

E(Z;) < n/20 < 3K/4.

Changing one of our 2K choices for R4 changes Z; by at most ¢ and so applying the
Azuma-Hoeffding martingale tail inequality (see Alon and Spencer [3], Chapter 6)
we see that for any u > 0,

2
Pr(Z, > E(Z;) +u) < exp {—%} - (7)
Putting u = K /4 we see that the RHS of (7) is o(1) provided K = o(n?). (For larger
K, the result is trivial, since then the Chernoff bounds imply that each X, is sharply
concentrated around its mean 2K /n.)

Let Sy be the set of vertices of multiplicity at least 10e K/n in R4. The total
multiplicity of Sp is whp at most K and so V'\ Sp contains a multi-set Q 4 as required.
Similarly for @p.

Case 2 K < n/5e.

5n (eK\? 5¢2K eK
E(Z,) < =) = K< —.
(Z1) < (n) <4n> — 4




For K > n%* we can use (7) to show concentration of Z; around its mean. For
K < n%* we can use the fact that E(Z;) = o(K) and apply the Markov inequality
to show that whp Z; < K. After this we proceed as in Case 1.

We now continue with the analysis of Phase 3. A straightforward application
of the Max-Flow Min-Cut Theorem shows that the flow phase always suceeds in
finding paths between the vertices in Sy (resp. Sp) to the vertices in Q4 (resp.
Q@p). Furthermore, the flow is computed in polynomial time.

Assume for a moment that we start random walks of length 7 = ¢glogn from
every element of R4, without any conditioning on their other endpoint. Let v/(e) be
the number of walks that use the edge e in this case. Then /(e) < B(2K,27/(rn))
in distribution. (Each walk starts at an independently chosen vertex and moves to
an independently chosen destination. The steady state of a random walk on G is
uniform and so at each stage of a walk, each edge of G is equally likely to be crossed.)
Thus for any ¢ > 0

¢ t ¢
Pr(v/(e) =) < [ F (2—7) = (4K> - (M) '
t ™ trn tr
Now let v1(e) (resp. v2(e)) be the number of trajectories W; (resp. W) in phase
4 that use e. We choose cg such that the separation between the distribution of

the endpoint of a walk of length 7 and the uniform distribution is less than (say)
1/(n®K?). Then in view of the paragraph above, we have

Pr(vi(e) =t) < (4ea(n)00>t 4 1

tr n3K?2’ ()
where the error term comes from the fact that the endpoint of each trajectory is
chosen uniformly at random rather than according to the distribution of the endpoint
of the walk. Note also that we have to consider 1y and v, separately because we
want the endpoints to be chosen independently.

The results of [6] imply that given any n vertex, bounded degree, regular (-
expander G and given any set of ¢ < n/(logn)* disjoint pairs of vertices in G, it is
possible to find with high probability a set of paths in GG connecting the ¢ pairs, such
that each edge in G participates in no more than 1+ 1/3 paths. The parameter x
depends only on the expansion properties of G. Fix it to be the value corresponding
to the input graph here. We now consider two cases:

Case 1: a <1/2
Define

logl
to = [4e2c0 + 3k log ogn"

log(1/&)
9max = 2t0
Observe that

o0 t to 2 to to/2
Z ; (4eaco> < 2% <4eaco) < 4e“acy < i (2) < 1 )
tr tor tor 4r \ g 4r(log n)*

t=to




Suppose that we delete all those trajectories W; or W, which use an edge with
max{v1(e),v2(e)} > to. The number of pairs of vertices which become disconnected

is at most

A= Z tl{e:vi(e) =t} + Z t|{e: va(e) =t}|.
to<t<K to<t<K
It follows from (8) and (9) (there are rn/2 edges) that E(A) < n/(4(logn)*) + 1/n
and so with probability at most 1/2 we find that A < n/(logn)®. We now re-link
these pairs using the algorithm of [6] at an additional congestion cost of 1 + 1/5.
Thus the total congestion on an edge is at most

max(s, 20eK /n,2) 1\ loglogn
g wan+ (14 5) =0 (s 0775).

Case 2: o > 1/2. This time we take

to = ’74C¥62Co + 3k loglog n-| = O(a + loglogn),
9max = 2tO

and proceed as before. The congestion now is O(s + a + loglogn). O

4 Edge Disjoint Paths

The main ideas are similar to those described in the previous section, except that we
need to partiton the edge set E into 2p disjoint subsets E1, E», ..., Egp, for a suitable
p. Let G; = (V, E;). We try to connect the K; pairs which are left unconnected from
the ¢—1’th routing phase using the edges Fo;_1UE»;. It is likely that K, is sufficently
small that all the K, pairs can be connected using the algorithm of [6].

The value of p and the required expansion properties are given next.

p=1+[logye ! +10log, | (10)
g2 Ly M H() (1)
f> 2 (12)
a< 8—1p (13)

where

H(y) = ((L=7y)'"7yM)!
PY(e)=(1—¢e)ln(l—€)+e€

10



The above conditions look complex but they will hold for the Ramanujuan graphs of
Lubotsky, Phillips and Sarnak [14] and for random regular graphs when r is large.
For the former, it follows from Lemma 2.3 of Alon and Chung [2] that

| X | = én implies out(X) > r(1 — A)(1 —9)|X],

where X is the second largest eigenvalue of the transition probability matrix asso-
ciated with the random walk on G. If GG is one of the Ramanujan graphs then
A = 2y/r—1/r and if G is a large random r-regular graph then A ~ 2//r (see
Friedman, Kahn, and Szemerédi [8]). We see then that in these cases (10) to (13)
hold with @« = 1/(100logr), 8 =7/3 and v =1/(2001log ).

Algorithm

Input: An r-regular (a,3,7)-expander G = (V, E) for which (10) - (13) hold. A
collection of K = n/(logn)2*¢ pairs of vertices denoted {(a1,b1),-- ., (ax,bx)} such
that no vertex in V participates in more than one pair.

Output: A set of K paths, {Py,..., Pk} such that P; connects a; to b;.

Phase 0. Using Algorithm Partition below, divide E into Ey U Ey U --- Egp, (p
defined in (10))
Let K1 = K, SA,I = {al,az, S ,aK} and SB,I = {bl,bQ, ... ,bK}.

Fori=1top—1do

Phase i.1. Choose independently (with replacement) two multisets R4; and Rp;
of 2K; vertices each in V. These vertices are individually chosen according to the
steady state distribution D; of random walks on Go; i.e. proportional to degrees in
this graph.

Phase i.2. Select sets Qa; C Ra; and @Qp; C Rp,; of K; vertices. If such sets
cannot be found, then stop. The algorithm has failed.

Phase i.3. Let S4; = {al,i, e ,aKi,i} and Sp; = {bl,i-- . 7bK,-,i}- Using a flow
algorithm in Gg;_; twice, connect in an arbitrary manner the vertices of S4; (resp.
Sp,; for the second flow) to the vertices of Q4 (resp. @B,) by K; paths as follows:

e Assume that every edge in G9;—1 has a capacity equal to 1.

e View each vertex in S4; (resp. Sp,;) as a source with capacity 1 and similarly
every vertex in Qa,; (resp. @p,;) as a sink with capacity equal 1.

11



The expansion properties of Go;_1 ensure that such flows always exist.

Phase i.4. Let aj; (resp. I;k,i) denote the vertex in Qa,; (resp. @) that was
connected to the original end-point ay ; (resp. bk,i). Choose 21,2, .., 2K, inde-
pendently with distribution D; in V' and then choose trajectories Wy ; (resp. W,éz)
of length 7; = ¢;logn that go from ag; to xx; (resp. Bk,i to ;) according to the
distribution on trajectories, conditioned on wy;0 = @r; and wy;, = xp;. (The
constant ¢; is discussed in the analysis.)

Let v;(e) be the number of trajectories that use the edge e. For every edge e with
vi(e) > 2 delete all the trajectories using it. For all k£ such that both W}, ; and Wl’c,i
survived, connect ay; to l;k7i using W}, ; followed by Wl/c,i with loops removed. For
such survivors, the final path from ay; to by ; is the union of the paths from ay; to
Gk, and from by ; to I;k’i found in Phase i.3, and the path from ag; to I;k,i selected
here, with loops removed.

If the number of disconnected pairs K; 1 is “too large” (see analysis), then stop.
The algorithm has failed.

End ¢ loop

Phase 5. Use the algorithm of [6] to connect the final K, pairs via the edges of
the graphs Gap_1, Gap.
End Algorithm
We will show that the algorithm above succeeds with probability greater than 1/3
for any given input. Thus by repeating it O(logn) times we prove Theorem 2.

We now describe our algorithm for partitioning E. It is a simple generalisation
of Algorithm Split of [6]. A desription is necessary in order to check that each G;
has sufficient expansion.

Algorithm Partition
Input: An r-regular (o, 3, 7)-expander G = (V, E) for which (10) — (13) hold.

Output: 2p spanning subgraphs G; = (V, E;),1 < i < 2p such that Eq, E», ..., Eq,
is a partition of F and each G; is a #-expander where

0 = min{(|r/(4p)| — ar), (1 —€)8/(2p)}-
1. Orient the edges of G so that |outdegree(v) — indegree(v)| < 1 for all v € V.

2. For each v € V randomly partition the edges directed out of v into 2p sets
X1, -, Xy2p €ach of size |r/4p] or [r/4p]. Let E; = U,cy Xo,, for 1 <i <
2p.

12



Note that the degrees d,; of vertices v € V in G; satisfy

%) <dui <3

If out;(S) denotes the number of G; edges leaving a set S then (see Case 1 of
Theorem 4.1 of [6]) for |S| < n,

[r/(4p)]|S| < 2in(S) + out;(S)
r|S| > 2in(S) + (1 — a)r|S|

yielding
out;(S) > (|r/(4p)] —ar)|S|.

Now consider |S| > yn. By following the proof of Case 2 of Theorem 4.1 (yn <
|S| < n/2) and replacing 2s by r/2 and k/2 by k/(2p) we see that provided (11)
holds then whp

out;(S) = (1 —€)B|S]/(2p)-

Thus Partition succeeds whp.

Theorem 5 Suppose € > 0 and G is an r-regular (o, B,7)-expander. If conditions
(11),(12) and (13) hold and r is sufficiently large then any K = n/(logn)**¢ pairs
of vertices can be connected by edge-disjoint paths. Furthermore these paths can be
explicitly found in polynomial time.

Proof: Assume Partition succeeds. Now assume inductively, that conditional on the
success of Partition, with probability at least 1 — (i — 1)/(2p) we start Phase 4,7 > 1
with

2i-11
Cr3p? n
K, <|—— ——— e 14
—( 94 (logn)2+2 e (14)

unsatisfied pairs, for some absolute constant C' > 0.

This is trivially true for i = 1.

First consider the existence of Q4;. We note that if D; = (7,4, v € V') then for
large r

1 2
— <mi <2 (15)
n

Let Sa; be the set of vertices of multiplicity 1 in R4 ;. Then

B(Sadl) = 3 2Komy (1 - )25

veV
4pK;
> 2K; 3 (1 _P ) using (15)
veV n
— 2K; (1 _ 4pK"> .
n

13



Changing one choice in R4 ; changes | S ;| by at most 1 and so the Azuma-Hoeffding
inequality implies that |S4 ;| is sharply concentrated around (2 — o(1))K; and Qa;
exists whp. Similarly for Qp ;.

A simple application of the Max-Flow Min-Cut Theorem shows that the flow
part Phase 7.3 will succeed. We use the fact that the expansion of Gg;_1 is at least
1, assuming 6 > 1, which is true when (12), (13) hold.

Now consider the random walks Phase 7.4. Let )\; denote the second largest
eigenvalue of the transition probability matrix of the random walk on Ga;. We

choose
3

~ log A T
This implies that the separation (4) between the distribution of the endpoints xy;
of our walks and their steady state is at most 1/(nK?). For e € Ey; let v;(e) =
vi1(e) + via(e) where v;1(e) (resp. v52(e)) is the number of trajectories Wy ; (resp.
W,.;) which use e. Arguing as in Section 3 we see that for e € Eb;

2K;\ (cilogn\ 1
Pr(y; 2t) < nK’
r(V,l(e)_t)—< t )( | B ) K

C; (16)

Then

2K;\ [cilogn\® 2
s <2l i) (SEF) -+
12

t>2
9K?2ci(logn)? 2
- 2|E2i| E
< 20K 2c2p(logn)? .
™

So with probability at least 1 — 1/(2p)

40K2c;p*(logn)?

K;11 <
ol = rn

(17)

The conductance — see [16] — of the walk is at least 8/r. It follows (as in (3)) that

02
<] —
Ai < 2r2
It then follows from (16) that
< 672
C; S ﬁ
So from (17) we obtain
e CK?r3p?(logn)?
+1 > 04n



for some absolute constant C > 0.
Going back to (14) completes the induction. Thus with conditional probability
at least 1/2 there are at most

Cr3p? 2 n
( 94 ) (logn)2+21’—1e

unmatched pairs going into the final phase. Let x = 2 4+ 2P"le. We must check that
this is sufficiently large for the algorithm of [6]. The conditions (13) — (15) of [6] are
satisfied when

13(logr)?

(log A 1)?

Thus it suffices to ensure that
2+ 277 1e > 5274 (log r)? /6%

Going back to our definition of p in (10) we see that the above holds for large r and
this completes the proof of Theorem 5.

5 Dynamic Selection of Paths

We define a stochastic model for studying a dynamic version of the circuit switching
problem. In our model new requests for establishing paths arrive continuously at
nodes according to a discrete Poisson process. Requests wait in the processor’s queue
until the requested path is established. The duration of a path is exponentially
distributed.

Our model is characterized by three parameters:

e P is an upper bound on the probability that a new request arrives at a given
node at a given step.

e P, is the probability that a given existing path is terminated in a given step.
A path lives from the time it is established until it is terminated.

e g is the maximum congestion allowed on any edge.

We assume that the destinations of path requests are chosen uniformly at random
among all the graph vertices.

Our goal is to characterize the relationship between these parameters that ensures
stability of the system. (By stability, we mean that the expected length of any queue
does not grow unboundly in time). We also estimate the expected delay incurred by
a request in the steady state distribution.

We study a simple and fully distributed algorithm for this problem. In our
algorithm each processor at each step becomes active with probability P{ > P; (P;
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is defined later). An inactive processor does not try to establish a path even if there
are requests in its queue. One effect of this is to moderate the injection rate for
vertices with large queues. Also, just for the analysis, we imagine that if a process
is active but its queue is empty, then it tries to construct a ghost path to a random
vertex. The lifetime of a ghost path is distributed as that of real paths.

Our algorithm is simply this: Assume that a is active at step t, and the first
request in a’s queue is for b. Processor a tries to establish a path to b by choosing a
random trajectory of length 7 = ¢glogn connecting a to b. If the path does not use
any edge with congestion greater than g — 1, the path is established, otherwise the
request stays in the queue.

® = min{ ! "9 }
B log(grn)’ Tlet1)/g |~

Theorem 6 Let

There exists a constant vy such that if Py < y®Ps, then the system is stable and the
expected wait of a request in the queue is O(1/Py).

Before giving the proof let us see the consequence of this theorem. Let E(N) = nP;
be the expected number of new requests that arrive at the system at a given step,
and let E(D) = 1/P, be the expected duration of a connection. For the system to
be stable, the expected number of simultaneously active paths in the steady state
must be at least E(N) E(D) = nP;/P,. Plugging g = loglogn/logw for some w in
the range [1,log n] in the definition of ® we get

<1>=9< L )
wlogn

Thus the theorem above implies that for such a congestion g, the system remains
stable even if we choose P; and P such that
P

n
E(N)E(D)=n— =vn® =Q
(V)E(D) = ngt = m® =0 (2 ).

in which case the dynamic algorithm utilizes the edges of the network almost as
efficiently as the static algorithm analyzed in section 3 (there seems to be an efficiency
gap of maximum order logloglogn for w < loglogn).

Proof of the theorem: Partition time into intervals of length 7' (to be determined).
Let H; denote the history of the system during the first ¢ time intervals. Define the
event

E(v,t) = {

Our goal is to show that for all v and ¢,

If the queue of processor v was not empty at the beginning of
interval ¢ then v served at least one request during interval ¢

Pr(&(v,t) | Hys) >

N[ =
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To this end consider the following four events:

o &1 defined as

&1(v,t) = {Processor v was not active in any step of interval ¢. }
Then 1
Pr(&(v,t) | Hy o) < (1—-P)T <e Th < o (18)

provided that
TP} > log 10. (19)

o & defined as

that is still alive although it was established before the be-

At the beginning of interval ¢ there is a path in the network
&(t) =
ginning of interval ¢ — 1.

Clearly, at the start of time interval ¢ — 1 there are at most grn live paths. So

1
Pr(&(t) | Hi—2) < grn(1 — Py)T < grne 2T < 10’ (20)
provided that
TP, > log(10grn). (21)

o &3 defined as

within intervals ¢t — 1 and ¢ when v makes its first attempt in

There are more than 2nPj/P, live paths that were created
Es(v,t) =
interval ¢

To evaluate the probability of this event, we overestimate the number of paths in
the network when v makes its first attempt at establishing a path in time interval ¢.
We include in the count ghost paths, and paths or ghost path attempts which could
not be established because of congestion. The life of such failed paths will also be
geometric with parameter P,. In this count we exclude paths attempts from before
the start of period ¢ — 1. Suppose that period ¢ — 2 finished jo time steps ago. Then
our estimate is )

n  Jo

X=3 > Xu,

w=1 j=0

where X, ; is the 0/1 indicator variable for the event

j time steps ago, a path attempt was made from w and this
path is still alive.

17



Then Pr(X,, ; = 1) = P{(1 - P;)’ and so

n
P
E(X | Hi_s) ZZPll—P21<nF.
w=1j=0

An easy argument shows the concentration of X and therefore
Pr(&(v,t) | Hi—2) = o(1). (22)

o &4 defined as

edge used by at least g other paths that were created within
intervals ¢t — 1 and ¢.

The first path that processor v tries in interval ¢ includes an
Es(v,t)
We break the ensuing analysis into 2 cases:
Case 1: 27 (T‘;‘}Z ) > 1/10.
Then

PI‘(£4(’U,t) | Ht_Q,X S QTI,P{/PQ)

provided that

py < "9 (i)l/g. (24)
207

In the above calculation we have implicitly used the fact that the X path attempts
are a collection of X random walks between randomly chosen pairs. We include
unsuccessful path attempts in order to avoid conditioning problems caused by paths
blocking paths. Since

E(v,t) C & (v,t) U E(t) UEs(v,t) U Es(v,t)

we see that

Pr(€(v,t) | Hi—2) < % +0(1),

and we conclude that that in any segment of 27" steps processor v is serving at least
one request with probability at least 1/2. The number of new arrivals in this time
interval has a Binomial distribution with expectation at most 27'"P; < 1/2, provided

that )
TP <. (25)

Thus, under these conditions the queue is dominated by an M/M/1 queue with
expected inter-arrival distribution greater than 47", and expected service time smaller
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than 47. The queue is stable, and the expected wait in the queue is O(1/T) =
O(1/P,).

It remains to check that if 7 is small then we can choose T' and P; < P < 1 to
satisfy (19), (21), (24), (25). We take

1
T =
4vPy®
r . rgPs
P| =min {710007(g+1)/g, 1} .

This completes the proof for Case 1.

Case 2: 27 (r‘;%)g <1/10.

Here we take T as above and Pj = 1. Here (23) holds by the case hypothesis. O

6 Existential results regarding edge-disjoint paths

In this section we show how to use the Lovdsz Local Lemma [7] to prove the existence
of a large number of edge disjoint paths in any r-regular («, 3, v)-expanders. We do
not see how to make the argument constructive. More precisely we prove

Theorem 3 Given a bounded degree (a, 3,7)-expander graph there exists a parame-
ter c that depends on a, 3, 7, but not on n, such that any set of less than cn/(log n)2
disjoint pairs of vertices can be connected by edge disjoint paths.

Proof: Let
K — { rn J ,
57772
where
T = [calogn]
and cg is a constant discussed below. Let (a1,b1), (a2,b2), ..., (ak,bk) be any set of

K disjoint pairs of vertices. We claim that G contains edge disjoint paths joining a;
tob; fort=1,2,..., K.

Our proof follows the blueprint used in [6]. We start by splitting the original
graph G = (V, E) into two disjoint 3’-expanders Gr = (V, Eg) and Gg = (V, Ep)
exactly as was done in [6]. The salient facts here are: (a) 5’ > 1; (b) the construc-
tion succeeds with probability 1 — o(1), thus such a split always exists; and (c) the
maximum degree in Gp is at most 3r/4 and the minimum degree is at least /4.

The disjoint paths are constructed in two stages. In the first stage we choose a
random set Z = {(1,(2,...,C2k} of 2K distinct vertices. We connect the original
endpoints to the vertices of Z in an arbitrary fashion via edge-disjoint paths in Gpg,
such that each Z-vertex is the endpoint of exactly one path. A simple flow argument
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proves constructively the existence of such edge-disjoint paths on any graph with
edge expansion larger than one.

Let a; (resp. b;) denote the vertex in Z that was connected to the original end-
point a; (resp. b;) in the first stage. The core of the proof is to show via the Lovasz
Local Lemma the existence of edge-disjoint paths in Gp connecting @; to b;, for
i =1,..., K. To this end we choose for each 7 a random path of length 27 from a; to
b;. However the direct application of the Lovasz Local Lemma is precluded by the
fact that we do not have any control over how the pairing (a;, Bz) was done, and thus,
although the probability of paths sharing an edge is small, the dependency graph
is complete. To avoid this calamity, further randomization is necessary, as follows:
assume that we rename the vertices of Z at random. Then the pairing induced by
the flow becomes a random pairing.

More formally, let p be a random permutation of [2K]. Let

zi:Cp(i)7 for 1 <17 <2K.

The flow algorithm defines a pairing f : Z — Z, that is, a function f such that for
all ( € Z we have f(¢) # ¢ and and f2(¢) = ¢. This pairing is defined by f(a;) = b;
and f(b;) = a;. In turn, it induces a pairing ¢ on [2K] via

F(G) =G+ flzm10) = 2pm1(5) < d(p(0) = p~(4)-

It is easy to verify that after f is fixed, if p is chosen uniformly at random among
the permutations of [2K] then ¢ is uniform over the set ® of all possible pairings of
[2K].

Now suppose that for 1 <7 < K we choose z; with distribution

_ dB(v)
2|Ep|

Pr(z; =v) = nmp(v)

(the steady state distribution of a random walk on Gp) and then choose W/ and
W/ randomly from all trajectories of length 7 which go from a; to z; and b; to z;
respectively. The distribution used for choosing W) is that of a random walk of
length 7 starting at a; conditional on ending at x;. Let W; denote the walk which
starts at z; for 1 < j < 2K and define the event

€ij = {WiNW; # 0 and $(i) # j}.
Our proof reduces to showing that the event

&= ﬂ gi,j

1<J

has positive probability.
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Now define ¢g € ® to be the pairing {(1,K +1),(2, K +2),...,(K,2K)}. Let
Prg denote probabilities conditional on ¢ = ¢g. We will prove that

Pro(€) > 0. (26)
Since Pr(¢ = ¢o) > 0 this suffices to complete the proof. Now if ¢ = ¢ then
&= ﬂ «‘Ii,j
li—i|AK
where
Aij ={Win W; # 0}.

We will apply the local lemma to the events A; ;, conditional on ¢ = ¢o.

For each pair (7, ) with |j —¢| # K we let

Si,j = {Aif’j/ :i/7j/ g {i7j7i+K,j+K}}.

Fix ¢, 7 and let B denote any event dependent only on the outcome of events in S; ;.
Then

Pro(A;; | B) = Z Pro(W;NW; #0,z; =xz,z; =y | B)

z,yeV

= Z ProWinW; # 0,2z = xz,z; = y) (27)
z,yev

= Pry (‘AW) (28)

Equation (27) follows from the fact that if we fix z; and z; then the occurrence of
A; j does not depend on the paths {Wy : k & I; ;}. Thus conditional on ¢ = ¢y,
A; ; is independent of the events in .S; ;. Thus the dependency graph has maximum

degree d where
d < 4K. (29)

This justifies the complexity of the previous analysis. If no care is taken, the depen-
dence graph will be complete.

Still keeping 4, fixed, let ®;; = {¢ € ® : ¢(i) # j} and choose an arbitrary
¢I € (I'i,j- Now

Pro(Aij) = > Pro(Aij,zi =x,2 =)

z,yeVv

= > Pr(Aijlzi==z2=y,¢=¢0)Pr(zi =z,2, =y | ¢ = ¢o)
z,yeVv

=Y Pr(Aijlzi==z2z=y,0=¢)Pr(zi==z,2 =y | ¢ = ¢')(30)
z,yeVv

=Pr(Ai;| ¢=4¢). (31)

To justify (30) observe that
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o Pr(Aij|zi=x,2=y,¢=d¢o) =Pr(Ai;| zi =,z =y,¢ = ¢') since given
z; = x and z; = y as long as ¢(i) # j, that is z; is not paired with z;, we can
decide A; ; without further reference to ¢.

o Pr(zi=z,2; =y | ¢ =¢o) =Pr(zi =x,2; =y | ¢ = ¢') since, conditioning
on Z and on the pairing induced by the flow phase on Z, if {z,y} Z Z or z
is paired with y, then both sides are 0; otherwise, the LHS is proportional to
the number of permutations that induce ¢9 and make z; = z and z; = y. This
is clearly the same as the number of permutations that induce ¢’ and make
z; = and z; = y.

It follows from (31) that

1 ,
Pl‘o(A,L',j) = m Z Pr(-A'i,j | ¢ = ¢)
LIl ged; ;
d
- .l. > Pr(Aij,¢=¢') = Pr(Ai; | 6(i) # J)
|¢17J| ¢’€q>i,j
and thus
1
Pro(A; ;) < Pr(6() £7) myZEV Pr(Aij|zi=z,2s =y)Pr(zi=z,2; =y) (32)

Since ¢ is a random pairing,

2K —2
2K —1°

Pr(¢(z) # j) = (33)
The sum in (32) is the probability of the following event M: Choose z, y uni-
formly at random (without replacement). Choose z’, ¥’ with probability 7p. Do
random walks W, W' of length 7 from z to 2’ and y to y’. The event is {IWNW' £ (}.

We now prove that
(36 4 o(1))72
™ ’

Pr(M) < (34)

Let Pg) be the distribution of a random walk on Gp starting from v after 7 steps.
Consider the event M’ which differs from M only in that  and y are chosen inde-
pendently with distribution 75, and 2’ and y' are chosen with the distribution Pz(::)
and Py(,T.) respectively. (We can now have z =y, but this has probability O(1/n) and
we will deal with it later.) Let W = ej,e2,...,e, and W' = fi, fa,..., fr as edge
sequences. Then for 1 < ¢,m < 7 we have

1 4

Pr(fo=en) = 1B(Go)| S
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since the edges of each random walk have the uniform distribution over E(Gp) and
the start points of these walks are chosen independently. Thus,

T T 2
Pr(M) <33 Pr(fi = em) <

=1 m=1 mn

Let now M" be the same as M’ except that we choose z' and 3’ according to 7p.
We take ¢z such that the separation s(7) is less than 1/n, and therefore

Pr(M") < Pr(M) + ~.
n

Finally, given the bounds on the degrees occurring in G, when choosing a pair z,y
according to mp we find that no pair occurs with probability more than 9 times any
other pair. Thus

Pr(M) < 9Pr(M" |z #y) < 9Pr(M")/ Pr(z # y)

and (34) follows.
We see from (32), (33) and (34) that

(36 + 0(1))72'

Pro(A;;) < -

Using this and (29) in the local lemma yields the theorem. O
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