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Abstract

We study the average-case complexity of shortest-paths problems in
the vertex-potential model. The vertex-potential model is a family of
probability distributions on complete directed graphs with arbitrary
real edge lengths but without negative cycles. We show that on a
graph with n vertices and with respect to this model, the single-source
shortest-paths problem can be solved in O(n?) expected time, and the
all-pairs shortest-paths problem can be solved in O(n?logn) expected
time.

1 Introduction

A large variety of combinatorial-optimization problems can be modeled as
shortest-paths problems. Given a (directed) graph in which edges are as-
signed real edge lengths, these problems ask for distances between pairs of
vertices. The distance of vertex j from vertex 7 is defined as the infimum of
the lengths of all directed paths from 7 to j, where the length of a path is the
sum of the lengths of its edges. (We need to take the infimum, since in the
presence of a negative cycle, that is, a (directed) cycle of negative length,
a finite minimum does not always exist.) We concentrate on two types of
shortest-paths problems. In the single-source shortest-paths problem, we are
interested in the distances of all vertices from a given source vertex; in the
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all-pairs shortest-paths problem, we want to compute the distance between
each pair of vertices.

The worst-case complexity of known algorithms for the single-source
shortest-paths problem on a directed graph with vertex set [n] = {1,...,n}
and m edges depends heavily on whether or not edge lengths are allowed to
be negative. In fact, if all edge lengths are non-negative, then Dijkstra’s al-
gorithm solves the single-source shortest-paths problem in near-linear time
O(m + nlogn) [8, 11] and the algorithms of McGeoch [20] and Karger,
Koller, and Phillips [18] solve the all-pairs shortest-paths problem in time
O(n|H| + n?logn), where H is the set of edges that are a shortest path
between their endpoints. In the general case, the Bellman—Ford algorithm
[2, 10] solves the single-source shortest-paths problem in time O(vm), where
v is the maximal number of edges on a shortest path. This is O(nm) in the
worst case. The solution of one single-source shortest-paths problem allows
to transform a problem with arbitrary real edge lengths into an equivalent
problem with non-negative edge lengths [9, 17]. This gives a running time of
O(nm+n?logn) for the all-pairs shortest-paths problem in the general case.
Somewhat better running times are known if the edge lengths are assumed
to be integers from some fixed range; see [1, 13, 5].

Worst-case analysis, however, sometimes fails to bring out the advan-
tages of algorithms that perform well in practice; average-case analysis has
turned out to be more appropriate for these purposes. In gverage-case anal-
ysis, we study the expected running time of shortest-paths algorithms where
instances of shortest-paths problems are generated according to a probabil-
ity distribution on the set of complete directed graphs with edge lengths.
Two kinds of probability distributions have been considered in the litera-
ture. In the uniform model, the edge lengths are independent, identically
distributed random variables. The endpoint-independent model is more gen-
eral. A random instance generated according to the endpoint-independent
model has the property that if the edges leaving a vertex are sorted accord-
ing to their lengths, then the associated endpoints occur in random order.
This even includes the case that the edge lengths themselves are arbitrarily
fixed, and only the assignment of the edge lengths to the edges leaving a
vertex is random.

The average running time of shortest-paths algorithms has mainly been
studied for the case of non-negative edge lengths. In the endpoint-independent
model, the following results on the average-case complexity of the single-
source shortest-paths problem (on instances with n vertices) are known.
Noshita [23] analyzed the average-case complexity of Dijkstra’s algorithm;
the time bound, however, does not improve over the worst-case complexity



of the algorithm. Spira [24] dealt first with the average-case complexity of
the all-pairs shortest-paths problem. He proved an expected time bound
of O(n?(logn)?), which was later improved by Bloniarz [3] and Frieze and
Grimmett [12]. Moffat and Takaoka [22] described an algorithm with ex-
pected running time O(n? logn). Recently, Mehlhorn and Priebe [21] showed
that the algorithm of Moffat and Takaoka is reliable, that is, it runs in time
O(n? logn) with high probability and not just in expectation. In the uniform
model, Frieze and Grimmett [12] derived precise results on the distribution
of edge lengths and distances. It is a consequence of their results that the
expected running time of the algorithms of McGeoch and Karger et al. is
O(n?logn) in the uniform model.

Concerning the average-case complexity in the case of arbitrary real edge
lengths, it is a major problem to define a probability distribution that allows
negative edge lengths but does not trivialize the problem. For an instance
of the shortest-paths problem on a directed graph D, let D> and Do be
the subgraphs formed by the edges of non-negative and negative length, re-
spectively. If D contains a cycle and D> consists of a single strongly con-
nected component, then all distances are —oo. Topological sorting allows to
decide in linear time whether D.( contains a cycle, and depth-first search
allows to decide in linear time whether D¢ consists of a single strongly
connected component. We conclude that shortest-paths problems become
trivial if the probability distribution is such that, with high probability, D
contains a cycle and Dx consists of a single strongly connected component.
This will, for example, be the case if edge lengths have a non-zero probabil-
ity of being negative and instances are generated according to the uniform
model.

To the best of our knowledge, a probability distribution for graphs with
arbitrary real edge lengths (in order to generate instances of shortest-paths
problems) was proposed in the recent paper by Kolliopoulos and Stein [19]
for the first time. They studied the endpoint-independent model and gave
an algorithm for the single-source shortest-paths problem with expected
running time O(n?logn). In general, it is not clear how likely a negative
cycle is in the endpoint-independent model. (Note, however, that if each
vertex has at least one outgoing edge of negative length, then the directed
graph must contain a negative cycle.)

We study the average-case complexity of shortest-paths problems in the
vertex-potential model. This model was used previously by Cherkassky,
Goldberg, and Radzik [4] in an experimental evaluation of shortest-paths
algorithms. In this model, there is a potential ; for each vertex i € [n] and
a random variable r; ; for each edge (3,5), i, € [n]. (We will set r;; =0,



for i € [n].) The edge lengths are defined by
¢ij =rij —m +m; , for all edges (i,7) .

Of course, only the ¢; ;’s are revealed to our algorithms and the r; ;’s and 7;’s
are hidden parameters of the model. The variables r; ;, ,j € [n], i # j, are
assumed to be independent, identically distributed random variables with
values in [0, 1]. (Some additional assumptions on the common distribution
function F' of the r; ;’s are needed to allow the application of the results of
Frieze and Grimmett [12]. This will be made more precise in Sect. 3.) The
assumption r; ; > 0, i, j € [n], guarantees that instances generated according
to the vertex-potential model contain no negative cycle; see Propositions 1
and 2. The vertex potentials m;, ¢ € [n], may be arbitrarily chosen, provided
that they are contained in a real interval of size O(n/(logn)?). (This is a
considerable generalization of the model that we studied in [6], where the
m;’s were assumed to be random variables with values in [—1,1].)

We show that the single-source shortest-paths problem can be solved
in O(n?) expected time and that the all-pairs shortest-paths problem can
be solved in O(n?logn) expected time. In both cases our algorithms are
reliable, that is, finish their computations within the respective time bounds
with high probability. Our algorithm for the single-source shortest-paths
problem first computes vertex potentials 7;, ¢ € [n], with the property that
for any i,j € [n], the difference 7; — 7; is close to m; — w;. The 7;’s are
then used to define reduced edge lengths ¢ by ¢; ; := ¢;; + 7 — ;. The
reduced edge lengths will not be non-negative, they do however allow the
extraction of a small number of relevant edges from the complete graph that,
with high probability, give the same shortest-path distances. We extract
O(n?/(logn)?) edges and run the Bellman-Ford algorithm on this edge set.
We also argue that each shortest path consists of at most O((logn)?) edges
with high probability. Taking the two facts together, we get a solution to one
single-source shortest-paths problem in expected time O(n?). We use this
solution to define non-negative edge lengths and then use the algorithm of
McGeoch or Karger, Koller, and Phillips to solve the all-pairs shortest-paths
problem in O(n?logn) expected time.

The vertex-potential model and the endpoint-independent model are in-
comparable as the endpoint-independent model cannot exclude negative cy-
cles and the vertex-potential model excludes negative cycles. Moreover, in
the vertex-potential model, there is a strong correlation between the end-
point of an edge and the length of the edge. Assume that the distribution
function F' is such that all 7; ;’s are very close to zero. This implies that for



all vertices ¢, it is probable that the shortest edge leaving 4 will go to the
vertex with minimum potential.

The paper is organized as follows. In Sect. 2, we recall basic facts
about shortest paths and reduced edge lengths. We provide auxiliary re-
sults needed for the analysis of our algorithms in Sect. 3. The algorithms
and their analysis are presented in Sect. 4.

2 Shortest paths and reduced edge lengths

Let D,, be the complete loop-less directed graph on the set [n] = {1,...,n}
of vertices. Assume that edge lengths are given by a function ¢ from the set
of edges to the reals; the length of the directed edge (4, j) will be denoted by
¢ij, for 1,7 € [n]. (For convenience, let ¢;; = 0, for 7 € [n].) We will write
(D, ¢) for D,, with edge lengths c.

For a directed path P in D, let ¢(P) be the length of P with respect
to ¢, that is, ¢(P) is defined as Z(z’,j)eP ¢;,j. For any pair i, j of vertices, let
d;,j(c) be the infimum of the lengths of all paths from i to j. The quantity
d;,j(c) will be referred to as the distance of j from i (with respect to c).

We consider the following two shortest-path problems. For a given source
vertex s € [n], the single-source shortest-paths problem asks for the distances
of all vertices ¢ € [n] from s. If s is fixed and no confusion is possible, we will
denote these distances by d;(c) for i € [n]. In the all-pairs shortest-paths
problem, we want to compute the distance between each pair of vertices. The
maximum of all these distances is called the diameter of D,, with respect to
¢ and will be denoted by A(c).

As mentioned in the introduction, we want to generate instances of
shortest-paths problems without negative cycles. The following proposi-
tion gives a characterization of edge lengths ¢ for which (D,,c) does not
contain a negative cycle.

Proposition 1 The absence of negative cycles in (Dy,c) is equivalent to
the existence of vertex potentials m; € R, i € [n], so that the reduced edge
lengths 7 (of ¢ with respect to the m;’s) are non-negative, that is,

riji=¢ij+m—m; >0, for all edges (i,7) .

Proposition 1 relies on the following optimality conditions for a solution to
the single-source shortest-paths problem (with source s).

For every vertex i € [n], let d;(c) denote the length (with respect
to ¢) of some directed path from s to i, with ds(c) = 0. The



quantities d;(c) are equal to the distances d;(c) if and only if
they satisfy

di(c) +¢ij > dj(c) , for all edges (4,7) . (1)

It is well-known that shortest-paths problems are invariant under reduc-
tion of edge lengths with respect to vertex potentials. We summarize this
knowledge in the following proposition.

Proposition 2 Suppose that we associate a vertex potential T; € R with
each vertex i € [n] and that we define reduced edge lengths ¢ (of ¢ with
respect to the ;’s) by ¢ j := ¢; ; + 7 — 7 for any edge (i,7). Then, for any
directed path P from vertex k to vertex £,

aqP)= > (cj+7i—7) =c(P)+ 7 —7e . (2)
(ij)EP

Therefore, distances with respect to ¢ and C relate to each other through
0k,e(€) = Ok pelc) + T — 7y, for all k, £ € [n]. It also follows from (2) that,
for any directed cycle C, Z(i,j)ec Cij = Z(i,j)eC’ cij; in particular, (Dp,<)
contains a negative cycle if and only if there is a negative cycle in (Dy,c).

3 Properties of the vertex-potential model

In the vertex-potential model that we consider in this paper, edge lengths
c;,; are generated according to

cij =rij —m +m; , for all edges (3,7) ,

with random variables 7; ; > 0 and (not necessarily random) vertex poten-
tials 7y, 4,5 € [n]. (We will set 7;; = 0, for ¢ € [n].) Our precise assumptions
for these variables are as follows:

(A1) The variables r;;, 4,5 € [n], i # j, are independent, identically dis-
tributed random variables with values in [0,1] and mean p. We will
denote their common distribution function by F and we assume that
F(0) = 0 and that F'(0) exists and is strictly positive. (This implies
p>0.)

(A2) The vertex potentials m;, ¢ € [n], are arbitrary real numbers from
[-1,1].



The interval [—1,1] in (A2) is chosen for ease of presentation only. It will
be apparent from our proofs that only the size of the interval, from which
the vertex potentials are chosen, is important, and that the size may actually
be as large as O(n/(logn)?); see Remark 2 in Sect. 4.1. Note that even (A2)
subsumes the assumption on the ;s in [6], where they were assumed to be
independent, identically distributed random variables with values in [—1, 1].

The independence assumptions in (A1) are the most important (and re-
strictive) ones. We will not need to know the value of p; if needed, we could
get a good estimate for it from the data, see the remark after Lemma 4.
This lemma will be the only place where we use that the random variables
are bounded, and the assumption of boundedness is there more for conve-
nience than necessity. It could be replaced by bounds on the tails of the
distributions. By definition of F'(0) and since F(0) = 0,

F(e) =Pr(ri; <e)=F'(0)-e+o(e) , ase—0, (3)

that is, the assumption F’'(0) > 0 implies that the distribution of the r; ;’s
can be approximated by uniform distributions in a neighborhood of 0. This
allows to reduce the proof of Lemma, 1 to the case of the uniform distribution
on [0,1].

For a problem of size n, we will say that an event occurs with high
probability if it occurs with probability > 1 — O(n~7) for an arbitrary but
fixed constant y > 1. To ensure a probability of failure O(n~7), in most of
our statements, we have to choose sufficiently large constants, depending on
the actual value of . This is sometimes made explicit by a subscript .

3.1 The non-negative case (7 = 0)

If the r; ;’s are distributed as in (A1) and the 7;’s are identically 0, then
this gives rise to an instance (D,,r) with non-negative edge lengths, and
the analysis of shortest-paths algorithms by Frieze and Grimmett in [12]
can be applied. We briefly review how they argue to obtain bounds on the
distances in (D,,r). For every vertex i, they construct a spanning tree T;
rooted at ¢. With high probability, the length of the path in 7; from the
root to any other vertex is O((logn)/n) [12, (4.6) and (4.14)]. This implies
that the diameter A(r) is O((logn)/n) with high probability. (Davis and
Prieditis [7] showed that for exponentially distributed r, the expected length
of a shortest path is of exactly this order of magnitude. This is also true for
r uniformly distributed; see [7, 20].)

Furthermore, if (7,7) is the p-th shortest edge in the adjacency list of
i where p > B,logn (for a sufficiently large constant B,), then r;; >

7



A(r) with high probability [12, Lemma 4.3]. This means that, with high
probability, edge (4, 7) is irrelevant, that is, is not contained in any shortest
path in (D,,r). We can therefore restrict ourselves to examining the sparse
graph with only the O(logn) shortest edges from each adjacency list. We
will show in Lemma 5 how to adjust this idea of sparsifying the graph if
edge lengths are distributed according to the vertex-potential model.

Lemma 1 ([12]) Suppose that edge lengths in (Dy,,r) are distributed as
specified in (A1). Then, with high probability, A(r) = O((logn)/n), and the
set A:={(1,7) ; rij < A(r)} of relevant edges is of cardinality O(nlogn).

(For the special case of uniformly distributed r, similar results were proved
by Hassin and Zemel in [15].) By a fairly involved argument, Frieze and
Grimmett also proved that each of the trees Tj, i € [n], is of depth O(logn),
that is, that the short (in length, though not necessarily shortest-length)
paths in 7; consist of O(logn) edges with high probability [12, Theorem
5.2]. Shortest paths may have more (but shorter) edges, but we now prove
that, with high probability, shortest paths also consist of few edges only.

Lemma 2 With high probability, shortest paths in (Dy,r) consist of O((logn)?)
edges.

Proof. This will follow from the fact that if at least |P|/k of the edges of
a shortest path P in (D,,r) have length at least «, then |P| < k- A(r)/a,
where |P| denotes the number of edges in P.

By (3), we can fix a = ©(1/n) so that p, = Pr(r;; < o) < 1/(2n) for
sufficiently large n; an edge (4, j) with r; ; < a will be called tiny. For any
k > 1, the probability that a (directed) path with & edges consists only of
tiny edges is < p,*. Hence, with probability > 1 — 2(kil)pak >1-—n/2k
no path in (D,,,r) with > k edges consists only of tiny edges, which implies
that any path P in (D,,r) has at least ||P|/k| edges of lengths > a. If
we set kK = K, logn with K, chosen large enough, then, together with the
bound on A(r) from Lemma 1, we conclude that |P| = O((logn)?) for any
shortest path P in (D,,r) with high probability. O

Since shortest paths are invariant under reduction of edge lengths with
respect to vertex potentials (see Section 2), the following is an immediate
consequence of Lemma, 2.

Corollary 1 Let edge lengths r be distributed as specified in (A1), and let
edge lengths ¢ be obtained by reducing the edge lengths r with respect to some



vertex potentials. Shortest paths in (Dy,c) consist then of O((logn)?) edges
with high probability.

3.2 The general case: Approximating the vertex-potential
differences

We will use the following form of the well-known Chernoff-Hoeffding bound
on the tail of the distribution of a sum of independent random variables; see
[16, 14] for a proof.

Lemma 3 Let X be the sum of independent, identically distributed random

variables X1,..., Xy, with values in [0,1]; let & :== E[X1]. Then, for any ¢,
O<ex],

Pr(|X/m — €| > ef) < 2. e ™E/3 (4)

We now show how to compute vertex potentials 7;, ¢ € [n], so that,

for any k,¢ € [n], with high probability, the difference 7, — 7, is a good

approximation of the actual vertex-potential difference 7, — 7.

Lemma 4 For any i € [n], define

n

~ 1

U .——n_l . E Cz’,j .
J=1

Then, for any k,£ € [n], the term |(Tx — 7y) — (mx — ™)| is of order
O(+/(log n)/n) with high probability.

Proof. For any k, j € [n], we have —cj, ; = 7 — 1 ; — ™j by definition; thus,
1 - n 1 - 1 -
EESEP L it S e S DL s SOBLE
j= j= j=

from which we conclude that

1 1 - 1 -
R S P I A AP DR

Note that the rightmost term
for any k, £ € [n],

, ﬁ . 2?21 7, is independent of k. Hence,

~ . 1 1 -
|7 — ) = (e —me)| < —— +|mep —me| +2max | —— ';ﬁ‘,j—ﬂ » (5)



where p = ﬁ - E[}>;ri;]. By assumption (Al), >, ri,; is the sum of
n — 1 independent, identically distributed random variables with values in
[0, 1], and hence, the Chernoff-Hoeffding bound (4) implies that, with high
probability,

- ng—p| = 0(Vip-Togn)/n) = 0 (vlogn)/n)

for any i € [n]. Thus 2max; |1 - > Ti,j — pl = O(y/(logn)/n) with high
probability. The other term on the right-hand side of (5) is of order O(1/n)
by assumption (A2). This proves that |(7; —7¢) — (7 —m¢)| is O(+/(logn)/n)
with high probability. O
Remark 1 In [6], we defined approximate vertex potentials 7; = p — ﬁ .
>j ¢y, for i € [n], where p = ﬁ “ D Cig = ﬁ > Tij- (The
“observed mean” p is a good approximation of p.) Using the stronger as-
sumptions of [6] on the m;’s, one can prove that |7; — m;| = O(+/(logn)/n)
with high probability. It turns out, however, that the approximation of
single vertex potentials is not needed in the analysis of our algorithms; see
Sect. 4.1.

4 The algorithms

4.1 Solving the single-source shortest-paths problem

We are now ready to explain in detail how we solve an instance (D,,c)
of the single-source shortest-paths problem if edge lengths in (D,,¢) are
generated according to the vertex-potential model of Sect. 3. Our algorithm
proceeds in three phases, a preprocessing phase, a computation phase, and
a postprocessing phase, in which the correctness of the solution from the
second phase is checked. Let the source vertex for the single-source shortest-
paths problem under consideration be denoted by s.

Preprocessing. The algorithm computes, for every vertex i € [n], a vertex
potential 7; as in Lemma 4 and transforms the edge lengths ¢; ; to

’C\i,j =G + %z - %\j =Tij + (?r\z — 7Ti) — (%] — 7Tj) y for all edges (’L,j) . (6)

The shortest-paths problems (D, c) and (Dy,,¢) are equivalent. However,
(D, ¢) is more efficiently solvable, since edge lengths ¢ allow a substantial
sparsification of the underlying graph. The following lemma, gives a bound
on the length of edges that are irrelevant with respect to c.
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Lemma 5 If¢;; > A(r) + maxy ¢ |(Ty — m;) — (7p — mp)|, then edge (3,7) is
not contained in any shortest path.

Proof. If (i, j) is contained in a shortest path, then ¢; ; = 6, ;(¢) < A(c). It

follows from (6) and Proposition 2 that for any k, £ € [n], ;. ¢(c) = 6 ¢(r) +

(7 —mk) — (Wg—mg). This implies A(c) < A(r)+maxy, ¢ |(T —7) — (Te— )|

O

For v > 1 arbitrary but fixed, we know from Lemma, 1 and from Lemma, 4
that there exist constants C, and M, so that

A(r) < Cy(logn)/n  and  max|(7 — m) — (g — )| < M,+/(logn)/n

k¢

(7)
with probability > 1 — O(n~7). For the time being, we will assume that
(7) holds. For an arbitrary (but fixed) constant L, > M, (and sufficiently
large n), all relevant edges (that is, edges that will possibly be contained in
a shortest path) are then contained in

A:={(i.5) 5 @ < L,/ogm)/n} -

(A more careful proof of Lemma 4 reveals that we could set L, = 5,/7.
This value is not optimal but nevertheless indicates that, for given -y, some
explicit constant L is easily derivable.) The vertex potentials 7;, ¢ € [n],
the reduced edge lengths ¢, and the set A can be computed in O(n?) time.
Let D denote the graph ([n], A).

Computation. We now solve a single-source shortest-paths problem with
source s on the sparsified graph (f),E) by running the Bellman—Ford algo-
rithm [2, 10]. This algorithm maintains tentative distances d; for every ver-
tex i € [n]. The d;’s are initially set to oo (except for d; = 0), and d; always
represents the length of some path in (D,é) from s to i. The Bellman—Ford
algorithm proceeds in passes over the edge set Z, maintaining the following
invariant. After the k-th pass, the Bellman—Ford algorithm has correctly
computed the distances of all vertices to which there is a shortest path from
s consisting of at most k edges. The algorithm actually checks the opti-
mality conditions (1) for all edges (in A) in each pass, and it will therefore
terminate (with all distances in (D,¢) computed correctly) after the v-th
pass, where v is the maximum number of edges in a shortest path in (13, C).
The running time of the Bellman-Ford algorithm is therefore O(v - |;ﬂ),
which is O(n?) in the worst case but o(n?) with high probability, as we now
argue.
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By (6) and (7),

Ac{g) 5 rig < Ly + M)/ Qogn)/n}

and it follows from (3) that edge (7,7) is an element of the set on the right-
hand side with probability p = ©(4/(logn)/n) for sufficiently large n, inde-
pendently of all the other edges. The random variable |;1\|, the cardinality of
21\, is therefore stochastically dominated by a random variable that is binomi-
ally distributed with parameters n(n—1) and p. We apply the tail estimates
of Lemma 3 to deduce that |A| = O(n(n — 1)1/(ogn)/n) = O(n3/2\/logn)
with high probability. By (6) and Corollary 1, v = O((logn)?) with high
probability. Hence, with high probability, it takes O(n%/?(logn)%/?) = o(n?)
time to run the Bellman-Ford algorithm on the sparsified graph (5,6)

Postprocessing. The second phase will have failed to compute all dis-
tances correctly only if (7) does not hold, which happens only with proba-
bility O(n~7). The optimality conditions (1) (checked for all edges) are an
O(n?)-time certificate for the correctness of the solution. Since the worst-
case running time of the Bellman-Ford algorithm on (D,,¢) is O(n?), we
can easily afford to run the Bellman-Ford algorithm on (D,,,¢) in case of
failure, without affecting the bounds on the running time. Finally, it takes
O(n?) time to compute the distances §;(c) = §;(¢) — 75 + 7, i € [n].

The discussion above is summarized in the following theorem.

Theorem 1 Assume that edge lengths in (Dy, c) are generated according to
the vertex-potential model of Sect. 3. The single-source shortest-path problem
can then be solved in time O(n?) with high probability.

Remark 2 Theorem 1 will still hold if the Bellman—Ford algorithm takes
time O(n?) on (13,5) (with high probability), since pre- and postprocessing
of the algorithm take time O(n?) anyway. This means that because of
Corollary 1, we only have to ensure that, with high probability, the set
of relevant edges (with respect to €) is of cardinality at most O(n?/(logn)?).
Perhaps surprisingly, these observations allow us to relax (A2) to the much
weaker assumption

max |m; — ;| = O(n/(logn)?) .
0]

)

Note that the term |7 —p|/(n —1) = O(1/(logn)?) will then dominate the
right-hand side of (5) so that maxy |(Fx — mx) — (F¢ — m)| = O(1/(log n)?)
with high probability. Using arguments as in the proofs of Lemma 5 and
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Theorem 1, one can then show that the algorithm of Bellman and Ford will
compute correct distances (with respect to ¢) with high probability if it is
restricted to the edges in {(i,3) ; G ; < R/(logn)?}, for a suitable constant
R. With high probability, this is indeed a set of cardinality O(n?/(logn)?).

4.2 Solving the all-pairs shortest-paths problem

Theorem 2 Assume that the edge lengths in (Dy,c) are generated according
to the vertex-potential model of Sect. 8. The all-pairs shortest-path problem
can then be solved in O(n?logn) with high probability.

Proof. We first compute distances d;(c), ¢ € [n], with respect to source
vertex 1 by solving a single-source shortest-paths problem as in the proof
of Theorem 1. This takes time O(n?) with high probability. Let ¢ be the
reduced edge lengths of ¢ with respect to the vertex potentials ;(c), i € [n],
that is, for all edges (i, ),

Gj = cij+0di(c)—di(c)
= rij+ (6i(c) —mi) — (d(c) —mj) . (8)

It follows from the first equality and the optimality conditions (1), that
¢i; > 0 for all edges (4,5). The reduced edge lengths ¢ can be computed
in O(n?) time, and the same time bound will allow to transform distances
d;,5(¢) into distances 8; j(c), for all 4,5 € [n].

To compute the d; ;(¢)’s, we run one of the algorithms of Karger, Koller,
and Phillips [18] or McGeoch [20] on (D,,,¢) that efficiently solve the all-pairs
shortest-paths problem with non-negative edge lengths. Both algorithms run
in time O(n?logn + n|H|) where H = H(¢) is the set of edges that are the
shortest path (with respect to ¢) between their endpoints. We apply the
arguments of Sect. 2 again. Shortest paths are invariant under reduction
of the edge lengths with respect to vertex potentials, and it follows from
(8) that the edges in H are also the shortest path between their endpoints
with respect to edge lengths . H is therefore contained in the set A :=
{(4,4) ; ri; < A(r)}, and it follows by Lemma 1 that |H| = O(nlogn)
with high probability. This yields a running time of O(n?logn) with high
probability for the algorithms by McGeoch and Karger, Koller, and Phillips.
Since |H| = O(n?) in the worst case, our algorithm has a running time of
O(n?) with probability O(n~7), v > 1, which still gives an expected running
time of O(n?logn). |
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