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Abstract

A graph G = (V, E) on n vertices is (a, €)-regular if its minimal degree is at least

an, and for every pair of disjoint subsets S,T" C V of cardinalities at least en, the

e(S,T)

number of edges e(S,T') between S and T satisfies: ST — a‘ < e. We prove that

if & > € > 0 are not too small, then every («, €)-regular graph on n vertices contains
a family of (a/2 — O(€))n edge-disjoint Hamilton cycles. As a consequence we derive
that for every constant 0 < p < 1, with high probability in the random graph G(n,p),
almost all edges can be packed into edge-disjoint Hamilton cycles. A similar result is
proven for the directed case.

Key-words e-Regular Graphs, Hamilton Cycles.

1 Introduction

Hamiltonicity (see a recent survey of Gould [8]) is undoubtedly one of the most important
topics in modern Graph Theory. There are great many papers devoted to finding sufficient
conditions for a graph to be Hamilton.

In this paper we address a closely related question: how many edge disjoint Hamilton cycles
can be found in a graph? Here, too, there have been quite a few results. For example,

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A. Sup-
ported in part by NSF grant CCR-0200945.

tDepartment of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel
BSF Grants 99-0013 and 2002-133, by grant 64/01 from the Israel Science Foundation, and by a Bergmann
Memorial Grant.



Nash-Williams proved already in 1971 [15] that the Dirac condition for a graph G on n
vertices (i.e., the assumption that all vertex degrees in G are at least n/2) guarantees the
existence of a family of at least |5n/224| edge-disjoint Hamilton cycles.

Obviously, if § = 6(G) is the minimum degree of a graph G, then G contains at most
|0/2] edge-disjoint Hamilton cycles. Motivated by this observation, we denote by Hs the
property of having |0/2] edge disjoint Hamilton cycles plus an edge disjoint matching of
size |n/2] if § is odd. As it turns out, in some probability spaces of random graphs one
can prove that property Hs holds with high probability, or whp. For example, Bollobés
and Frieze [2] proved this for the probability space G(n,m) of labeled graphs on n vertices
with m edges and with uniform probability:

Theorem 1 Let m = §(Inn+ klnlnn+ w) where k is constant and w — oo with n. Then
whp G(n,m) contains |k/2]| edge disjoint Hamilton cycles plus an edge disjoint matching
of size |n/2] if k is odd.

This result is best possible in the sense that if w = o(Inlnn) then whp G(n,m) has
minimum degree k. We conjecture though that the above result can be extended to all
values of m = m(n):

Conjecture 1 Whp G(n,m) has property Hs for any 1 <m < ().
It is likely that the following slightly stronger conjecture is also true.

Conjecture 2 Consider the graph process where ey, e, ..., en, N = (’2’) s a random per-
mutation of the edges of K,. Let G,, = ([n],{e1,e2,...,em}). Then whp every graph in
the sequence G,,, 1 < m < N has property H.s.

Note that Bollobés and Frieze proved that whp G(n,m) has property Hs as long as 1 <
m < Z(Inn + O(Inlnn)).

As another example consider the probability space G, , of all r-regular graphs on n vertices
(nr is assumed to be even). There Kim and Wormald proved recently [10] that for a constant
r > 3 property Hs holds whp in G, ,.

Conjecture 1 appears to be quite hard for the case m > nlogn, where whp in G(n,m) all
degrees are almost equal. One can thus ask a weaker question of packing almost all edges
of a graph into edge-disjoint Hamilton cycles. In this paper we resolve this question for a
class of dense graphs. Let 0 < a < 1 be constant and suppose that

Inn)Y*
10 <—> feka (1)
n

Let Gy, o, denote the set of graphs G on vertex set [n] which have the following properties:
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P1 §(G) > an.

P2 If S, T are disjoint subsets of [n] and |S|, |T'| > en then
is the number of S — T edges in G.

ST Pp——

Graphs of this sort are sometimes also called pseudo-random as their edge distribution
approaches closely that of the random graph G(n,m) with m = an?/2 edges. (See [11]
for a survey on pseudo-random graphs.) Hamiltonian properties of pseudo-random graphs
have been considered in [17], [6], [7].

Our main result is the following theorem.

Theorem 2 Suppose that o is constant and (1) holds. If G € Gpae then G contains
(5 — 3e)n edge disjoint Hamilton cycles.

This result improves an estimate of Thomason [17], who proved that (a, €)-regular graphs
on n vertices with a > € > 0 contain a linear in n number of edge-disjoint cycles, but his
constant is substantially less than «/2 even for very small e.

If 0 < p < 1is constant then whp the random graph G, is in G, . where p’ = p —
O(n~"2In'2n) and € = O(n~/3In'/3 n). We therefore have

Corollary 1 Assume that 0 < p < 1 is constant. Then whp G,, contains np/2 —
O(n%%1n'/® n) edge disjoint Hamilton cycles.

The constraint (1) prevents us from claiming np/2 — O(n?/31n'/3 n) Hamilton cycles, as one
might think at first glance.

We can also prove a bipartite version of Theorem 2. Let B, ,. denote the set of bipartite
graphs G with vertex partition V; = [n], Vo = [n] which have the following properties:

P1 4(G) > an.

P2 If SC Vi, T C Vs and |S|,|T| > en then

eG(SvT)
—al <e.
ST ‘

Theorem 3 Suppose that o is constant and (1) holds. If G € Bpa.e then G contains
(5 — 3€)n edge disjoint Hamilton cycles.

The above results can be extended to digraphs, although our bound on the error term is
weaker. Note the 10¢'/2 in place of 3e. Let D, , . denote the set of digraphs D on vertex
set [n] which have the following properties.:



R1 min{é"(D),é (D)} > an.

R2 If S, T are subsets of [n] and |S|,|T'| > en then
number of S — T arcs in D.

ISTIT]

ep(S,T) Od‘ S €, where GD(S, T) is the

Theorem 4 Suppose that o is constant and (1) holds. If D € D, 4. then G contains
(o — 4€'/?)n edge disjoint directed Hamilton cycles.

Remark 1 As pointed out by the referee, the directed version (Theorem 4) can be used to
prove that any G € Gy, 9. contains (a/2 — o(1))n edge-disjoint Hamilton cycles, whenever
0 < a < 0.5 is a constant and € = o(1). Indeed, orienting the edges of such G randomly
one gets whp a random digraph D € D, o ¢ with &' = a — o(1) and € = o(1). However,
this approach would result in less accurate estimates in the error term of Theorem 2 and
Corollary 1.

Lu [12, 13, 14] considered the following Maker-Breaker game. Maker and Breaker take
turns choosing edges from the complete graph K,,. Maker aims to construct as many edge
disjoint Hamilton cycles as possible. Lu conjectured that Maker could construct ~ n/4
cycles. Using the results of this paper we confirm this and related conjectures in [9].

2 Proof of Theorem 2

Outline of proof

We first choose a random subgraph I' of G with edge density 5¢/2. Let G; = G —T.
We then show that G; has an r-factor F', where r = 2s = |(a — 4€)n| is assumed to be
even. We then extract 7 = s — |en] edge-disjoint 2-factors Fi, Fs, ..., F,, where each F;
has O(e~}(nlnn)"/?) cycles. Then, for i = 1,2,...,7 we convert F; into a Hamilton cycle
H;, using the edges of G\ (H1U...UH; jUF;U...UF,).

Assume from now on that G € G,, o . Let I' be obtained from G by independently including
each edge with probability 2¢.

Lemma 1 Whp

e §(T') > 2en and for disjoint S, T with |S|,|T| > en we have er(S,T) > €|S||T|.

e §(G1) > (o — 3e)n and for disjoint S,T with |S|,|T| > en we have eg,(S,T) <
(o —¢)|S]IT].



Proof Vertex degree dominates Bin(an,5¢/2a) in ' and Bin(an,1 — 5¢/2a) in Gy
and so a Chernoff bound implies 6(I') > 2en and §(G1) > (o — 3¢)n whp.

If |S|,|T| > en then in G; we have eg, (S,T’) dominated by Bin((a+€)|S||T|, (1 —5¢/2a))
and a Chernoff bound gives the answer since there are less than 4™ choices for S,7. A
similar argument works for T'. a

So assume from now on that the conditions of Lemma 1 hold.

2.1 (G1 has an r-factor

This is a fairly simple task using a theorem of Tutte [18]: Let S, T, U be a partition of [n].
Then let
R(S,T) =) d(v) — ec,(S,T) + r(|S| - IT1),

veT

where d(v) is the degree of v in G.

Let Q(S,T) be the number of odd components of the graph Gy induced by U. A component
C of Gy is odd if 7|C| + e, (C,T) is odd.

Theorem 5 G; contains an r-factor iff for every partition of [n] into S,T,U we have

R(S,T) > Q(S,T).

Let us apply this theorem to G and let S, T,U be a partition of [n]. Then

R(S,T) =z (a —4e)n[S| + en|T| — eq, (S, T) —[|S] = T , (2)
where ||S| — |T|| accounts for rounding.
Case 1: |S|,|T| > en.

Then from (2) and from the second condition of Lemma 1 we see that
R(S,T) = [S|((a — 4e)n — (a — €)|T|) + en|T| — [|S] — T[]

If |T| < (1— 2)n then R(S,T) > en|T| —n > €n® —n>n and Q(S,T) < |U| < n.

If |T| > (1 — 2<)n then |S| < 2<n and R(S,T) > en|T| —n —3en|S| > en (1 — 2<)n —

a—e€ a—e€

n—2n?>n> Ul
Case 2: 2 < |S]| <en.

Now eg,(S,T) < en|T| and from (2) we see that R(S,T) > (a — 4€)n|S| —n >2n —n =
n > |U].

Case 3: |S| < 2 and |T| > (o — 4e)n.



Then (2) implies R(S,T) > en|T| — |S||T| — n > n.

Case 4: |S]| < -2 and 2 <|T| < (a —4e)n.

The eg,(S,T) < (a — 4€)n|S| and so (2) implies R(S,T) > en|T| —n >n > |U].
Case 5: |S| < 2 and |T| < 2.

a—4e

Now every component of U has size at least §(G1) — |S| — |T'| > (o« — 3e)n — |S| — |T'| and
so there are at most m < % components. Now either T'= () and R(S,T) > 0
while Q(S,T) = 0 because r is even, or R(S,T) > §(Gy) — |S| - |T| — max{|S|,|T|} >
(o —3e)n —0O(1) > 2/a.

This completes the proof that G; contains an r-factor which we denote by F'.

2.2 Extracting 2-factors

Petersen [16] showed that every 2s-regular graph contains a 2-factor and so F' can be
decomposed into the disjoint union of 2-factors. We need however to bound the number of
cycles in our 2-factors. To this end, we use well-known bounds on the permanent in a way
similar to that of [1] by Alon.

Lemma 2 Let H be a 2d-regular graph on vertex set [n], where d > en. Then H contains
a 2-factor with at most 10¢ ' (n1nn)/2 cycles.

Proof Suppose that H is a 2d-regular graph on vertex set [n]. Orient the edges of H
so that every vertex of H has in-degree=out-degree d. Now consider the d-regular bipartite
graph B on vertex set [n] + [n] where (z,y) is an edge of B iff (z,y) is an arc of H. Every
perfect matching M of B yields a collection Cj; of vertex disjoint oriented cycles in H
which cover all the vertices [n]. Each cycle is of length at least 3 since B does not contain
edges (z, ) and at most one of (z,y), (y, ) can be an edge of B. Thus ignoring orientation
gives a 2-factor of H and distinct matchings give distinct 2-factors. (Note that this does
not necessarily account for all 2-factors of H.)

Now let X denote the number of perfect matchings of B. It equals the permanent of the
adjacency matrix Ag of B. Then
d n
X> |- L 3

This follows from the proof of Van der Waerden’s conjecture [5], [4]: The Van der Waerden
conjecture being that the permanent of a non-negative matrix with all row and column
sums equal to 1 is at least n!/n™. We apply this theorem to d 1Ap.



Next let X}, be the number of perfect matchings M of B such that Cj; contains at least
k cycles of length £. Then

0\ ony i (0 — 2k0)d + K22\"F
X, , < k(E—1) p—k (n—kt) o, \10n/d 4
o< (e oL &) (3n) )
Explanation of (4): We choose one vertex for each of k cycles C1,C5, ..., Cy in (}) ways.

Then starting with one of these vertices, we can choose a sequence of ¢/ — 1 vertices to
make a cycle in at most d*~! ways. Each collection of cycles is produced ¢* times by this
construction, which expalins the factor £=%. If we remove the vertices of C;,Cs,...,C}
from H then we remove 2k{ vertices from B, k¢ vertices from each side. The remaining
bipartite sub-graph B’ has n — kf vertices on each side and at most (n — 2kf)d+ k2(* edges.
We will use Bregman’s solution of the Minc conjecture [3] to show that

n — 2kl)d + k*0?
n—kf

n—k{
B’ has at most <( > e~ "7k (3p) 107/ perfect matchings,  (5)

completing the explanation of (4).

Assume the truth of (5) for the moment. Estimating

_9 292\ n—k¢ 292
((n ké)d+k€> gdn’dexp{—kuﬂ}

n—kl d
we get
k2 )\ "
XX, < (% exp {7 }) (3n)'o/d
e k2 \*
< _ . 3 10/6
- (kfe exp{ en }) (3n)
Now put k& = 20e !Inn and assume £ < £ = ﬁ. Then
Xile,Z S (111 ,n/)fIOe_1 Inn
and

Lo
X1 Z X ke < 1.
=3
Consequently, H contains at least one 2-factor with at most kfy + % cycles, giving the
lemma.

We complete the proof of the lemma by verifying (5). Set v = n — k£ and let the degrees
on one side of B’ be dy,ds, ..., d,. It follows from [3] that the number of perfect matchings
u(B') in B’ satisfies

u(B) < J] @, (6)

=1
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Indeed the RHS of (6) is Minc’s conjectured upper bound on the permanent of an n x n
0-1 matrix with row sums d;,ds, ..., d,.

We will argue later that we can restrict our attention to the case where

d
d; > i=1,2,..

2% V. (7)

Using Stirling’s formula we then obtain

wu(B') < Aﬁe_ldi < Ae™V (y_l i di>
=1

i=1
where ,
A < H(3di)1/2d,- < (3n)10n/d’
i=1
completing the proof of (5).
We show now that (7) is justified. We can assume that B’ has (n — 2kf)d + k*¢? edges.

Since k¢ < (20nInn)'/? we see that the average degree in B’ is at least d/2. Suppose that
for example, d; = a < d/10. Then we can assume that do = b > d/2. Then

all/apii/b ab(a+1)(b—1) _ (a+ 1)!b(b—1) . pala+1)b @)
(CL + 1)!1/(a+1)(b _ 1)!1/(b—1) (CL + 1)(a+1)b(b—1) pla(a+1) "

Using Stirling’s formula, the logarithm of the RHS of (8) is at most
1
a(a+1)b—bb—1)(a+1—1n3 — §ln(a+ 1)) <.

So, given our lower bound on the number of edges in B’, the RHS of (6) is maximised by
a degree sequence satisfying (7). O

Remark 2 If all one wants is an upper bound of o(n) cycles then one need not work as
hard as we did in the above lemma. This will suffice if we only wish to assume that € is a
positive constant independent of n. But then we could not make the statement of Corollary
1.

Thus starting with F' we can pull out edge-disjoint 2-factors Fi, Fy, ..., F, each containing
at most
so = 10e }(nInn)"/?

cycles.



2.3 Transforming 2-factors to Hamilton cycles

Assume inductively that for some i > 0 we have created edge-disjoint Hamilton cycles
Hy,H,,...,H; which are edge-disjoint from Fji,..., F;. Assume further that |H; \ Fj| <
3sg for 1 < j <.

NethetFlzG\(HluUHzUE+1UFT) Then

Q1 4(Ty) > 6(T) > 2en.
Q2 If éS,T are disjoint subsets of [n] and |S|,|T| > en then er,(S,T) > er(S,T) — 3son >
€2

?'fl/.

It follows immediately that I'y is connected. Let I'y =I'y U F1;4.
Remark 3 It is Q2 that forces the lower bound of n=/6t°() on e.

Next suppose that Fj,; comprises cycles C1,Cs,...,C; where t < so. We systematically
merge cycles.

General Step: Given the current 2-factor (initially Fj;;) choose an edge e = (z,y) of I'
which joins two distinct cycles C,C’. This is always possible because I's is connected. Let
f be an edge of C incident with x and f’ be an edge of C’ incident with y. Let P be the
path CUC"U{e} \ {f, f'}. There are now several possibilities.

(a): There is an endpoint u say, of P which has a neighbour v in a cycle C” disjoint from
P. We extend P by replacing P,C” by P UC" U {(u,v)} \ f” where f” is an edge of C”
incident with v. We repeat this operation as long as we can. We then carry out (b) or (c).

(b) The endpoints u, v of P are connected by an edge in I';. Adding (u,v) to P creates a
2-factor with at least one less cycle than at the start of the General Step and completes it.

(c) Let P = (uy,us...,u). Let X be the set of neighbors of u; in P\ {us}, and let Y be
the set of neighbors of uy in P\ {ux_1}. Then due to Q1 both sets X and Y contain at
least 2en elements. We denote by X7, resp. Y;, the set of the first en vertices of X, resp.
Y along P, and by X, resp. Y3, the set of the last en vertices of X, resp. Y, along P.

Consider first the case in where all of the vertices in X; precede all of the vertices in Y.
Denote by X the set of vertices which are the predecessors of X; along P, and by Y, the set
of vertices which are the successors of Y, along P. It follows from Q2 that e(X],Y;) > 0.
Then for some 2 < i < j < k— 1 the graph I'y contains edges (u1,u;), (wi—1,uj+1), (u;, ug).
In this case we get a cycle ujus ... u; 1Uj11Uj42 - . . UpU U1 . . . u;uq through the vertices of
pP.

Given that the above case fails, we find that all of the vertices in X5 precede all of the
vertices in Y;. Let X} be the set of vertices which are successors of X5 along P, and let Y/
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be the set of vertices which are predecessors of Y] along P. Again, e(X},Y]) > 0 due to
Q2, and therefore for some 1 < j < 4 < k the graph I'; contains edges (u1, %;), (Wit1, Ujt1),
(uj, ur). We can form a cycle ujug . .. 4jugp_1 - . . Uir1Uj41Uj12 - . . uug through the vertices
of P.

End of description of General Step.

Each general step reduces the number of cycles by at least one and we require at most three
edges of I'; per step to do this. Thus, after all general steps have been executed we obtain
the next Hamilton cycle H;,; for which |H;, ;1 \ Fi11| < 3sp. This completes the induction
and the proof of Theorem 2.

3 Bipartite Case

This is very similar to the previous case. We will therefore try to be brief. First let I' be
obtained from G by independently including each edge with probability ;’—; The following
lemma is proved the same way as Lemma 1.

Lemma 3 Whp

e §(T') > 2en and for S C V1, T C Vy with |S|,|T| > en we have er(S,T) > €|S||T|.
e §(Gy) > (o — 3e)n and for S C V1, T C Vy with |S|,|T| > en we have eg,(S,T) <
(o —€)[S][T].

O

So assume from now on that the conditions of Lemma 3 hold. Let r = 2s = | (a — 4€)n|.

3.1 (4 has an r-factor

This is a fairly simple task using the max-flow min-cut theorem. We construct a network
N by adding vertices s,t. We add an arc (s,v) of capacity r for each v € V7 and an arc
(w, t) of capacity r for each w € V5. The edges of G; are given capacity 1. We only have
to show that N admits an s — ¢ flow of value rn. So consider an s — t cut S : S where
S={s}uUS;US; and S; CV; for i = 1,2. The capacity of this cut is

r(n — |Sl|) + G(Sl, 52) + 7“ng|
and we need therefore to show that

e(81,52) > r(|S1] — |Sal). (9)

10



Assume therefore that

51| = [Sa]-
Case 1: |S;],|Ss] > en.
e(51,52) = (a—¢€)|Sif(n —|S2[)
> (a—en(|S]—[5])
which implies (9).
Case 2: |S;| < en.
6(51,52) Z (a - 36)7’L|§2| - |§1||S’2|
> (a — 3€)n|S,| — en|S,|

(o — 4e)n(n — |Sz|)

which implies (9).

3.2 Extracting 2-factors

Lemma 2 is applicable (with n replaced by 2n) and so we can extract 7 = s — |en] edge-
disjoint 2-factors Fy, Fy, ..., F,, where each F; has O(e '(nlnn)'/?) cycles.

3.3 Transforming 2-factors to Hamilton cycles

Fy, F;, ..., F, can be transformed into Hamilton cycles in much the same way as before.
The only point to note is that the paths formed in the general steps are always of odd
length and so can be completed to cycles with a single edge.

4 Proof of Theorem 4

Outline of proof

Let v = €'/2/2. We first choose a random subdigraph T' of D with edge density 9v/2.
Let D; = D —T'. We then show that D; has an r-difactor F', where r = |(a — 67y)n] is
assumed to be even. (F is a regular subgraph of indegree=outdegree =r). We then extract
T = r — |en] edge-disjoint 1-difactors Fy, Fy, ..., F,, where each F; has O(e '(nlnn)'/?)
cycles. Then, for i =1,2,...,7 we convert F; into a directed Hamilton cycle H;, using the
arcsof D\ (HU...UH; 1UF;U...UF,).

Assume from now on that D € D,, , .. Let I' be obtained from D by independently including
each edge with probability g—z.

11



Lemma 4 Whp

e §7(T),0~(T') > 4yn and for disjoint S,T with |S|,|T| > en we have er(S,T) >
4y|S[1T.

e 67(Dy),0~(D1) > (o — 5y)n and for disjoint S,T with |S|,|T| > en we have

Proof Similar to the proof of Lemma 1. a

Assume from now on that the conditions of Lemma 4 hold.

4.1 D; has an r-difactor

We show next that D; has an r-difactor. Let B be the bipartite graph associated with Dj;.
An r-difactor in D; corresponds to an r-regular subgraph of B. Let the vertex bipartition
of B be V,W. We will use the max-flow min-cut theorem. We add vertices s,t and join s
to every vertex of V' by an edge of capacity r and also join every vertex of W to ¢ by an
edge of capacity r. Every edge of B has capacity 1 and we need to prove that this network
N has a flow of capacity rn from s to t.

A cut of N can be defined by S; C V and Sy C W. The capacity ¢(S1, S2) of this cut is
given by B
c(S1,82) = r(n — [S1]) + e(S1 : S2) + 7S]

where Sy = W\ Ss.

We need to show that ¢(Sy, S2) > rn for all Sy, S>. This is trivially true if |S;| < |S2| and
so assume |S;| > | S| from here on.

Case 1: |S1|,]S;| > en.

Then
c(S1,82) = r(n—|S1]) + (a —57)[S1|(n — [Sz]) + 7| Sz
r r
> r(n—1S51]) + E|S1|(n — |Ss|) +7|Sy| = rn — E|Sl||52| + 7| S,|
> rn.

Case 2: |Sy| < |S1| < en.

In this case we have e(S1,S52) > |S1](a — 5y)n — |S1|Sa| > |S1](a — (57 + €))n and so
c(S51,52) > r(n —|S1]) + |S1|(a — (57 + €))n + r|S2| > rn.

This completes the proof that D; has an r-difactor.

12



4.2 Extracting 1-difactors

We can use the same argument as in Section 2.2 to show we can find 7 edge-disjoint 1-
difactors Fy, Fy, ..., F,, where each F; has at most sy cycles, with so = 10¢~'(n1nn)'/? as
before.

4.3 Transforming 1-difactors to directed Hamilton cycles

Assume inductively that for some ¢ > 0 we have created arc disjoint directed Hamilton
cycles Hy, Hy, ..., H; which are arc-disjoint from Fj,4,...,F,. Assume further that |H; \
F;] <5sgfor1<j<i.

NethetFlzD\(H1UHZUE+1UUFT) Then

Q1 min{6"(I1),6 (I'1)} > min{6"(T),6 ()} > 4yn.

Q2 If S, T are disjoint subsets of [n] and | S|, |T'| > yn—2 then er, (S, T) > er(S,T)—5nsy >
45| IT.

Q3 If S, T are disjoint subsets of [n] and |S|, |T'| > en then er,(S,T) > er(S,T)—5nsy > 1.

It follows immediately that I'y is strongly connected. Let I's = T'; U Fj ;.

Next suppose that Fj,; comprises cycles C1,Cs,...,C; where t < so. We systematically
merge cycles.

General Step: Given the current 1-difactor (initially F; ;) choose an arc e = (z,y) of I'y
which joins 2 distinct cycles C, C’. This is always possible because I'; is strongly connected.
Let f be the arc of C directed from x and f’ be the arc of C’ directed to y. Let P be the
directed path C UC" U {e} \ {f, f'} and suppose that it is directed from vertex a to vertex
b. There are now several possibilities.

(a): The endpoint b of P has an out-neighbour v in a cycle C” disjoint from P. We extend
P by replacing P,C" by PUC" U {(u,v)} \ f” where f” is the arc of C" directed into v.
We make a similar extension if endpoint a has an in-neighbour outside P. We repeat these
operations as long as we can. We then carry out (b) or (¢). At this point, P has length at
least 2yn.

(b) The endpoints a,b of P are connected by an arc (b, a) in I's. Adding (b, a) to P creates
a 1-difactor with at least one less cycle than at the start of the General Step and completes
it.

(c) Let P = (a = uy,uz...,ur = b). Let X be the set of in-neighbours of a in P and let Y’
be the set of out-neighbours b on P. It follows from Q1 that | X|,|Y| > 4vyn.
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Let X; be the first 2yn vertices in X along P and let X5 be the last 2yn vertices in X
along P and define Y7, Y5 similarly. There are 2 cases to consider:

(i) Each vertex of X; precedes each vertex of Y, along P.

Let X{ ={u;: j>ynand u;j ;1 € Xy} and Y; = {u; : j < k—yn and ujy; € Y2} and
note that |X7|,|Y5| > yn. Next let X{ = {u; : j < yn and Jarc X] — u; 1} and Yy’ =
{uj : j >k —yn and Jarc Y] — u;:1}. It follows from Q2 that |X7| > %ﬂl&l > en
and similarly |Y3'| > en.

X{,Y]) are clearly disjoint and it now follows from Q3 that there exist z = u, € X7, y =
us € Yy such that (y,z) is an arc of I'y. We may then replace P by the cycle C: Here
u, € X{ witnesses u, € X and u, € Y, witnesses u; € Y;'.

C= (YT = U, Upg1, -y Upe1, ULy ooy Up1, Up, Updy - - -y gy Ust 1y - - -y Uky U1y - - -, Us = Y).

(see Figure 1). This creates a 1-difactor with at least one less cycle than at the start of the
General Step and completes it.

Uy /\ Ugs Ug
® *—©@ *—© @
Up

Uy

Figure 1:

(ii) Each vertex of Y] precedes each vertex of X, along P.

Let Y] denote the first yn members of Y; along P and let jo = max{j : j € Y;}. Let
Xy =A{u; © j > jo+yn and u;j—; € Xy} and note that |Xj|,|Y]| > yn. Next let
Xy ={u; : jo <j<jo+ynandJarcu; 1 - X3} and Y{' = {u; : jo—yn < j < jo and

Jarc Y — wu;y1}. It follows from Q2 that | X3| > %’W > en and similarly |Y{"| > en.

It now follows from Q3 that there exist z = u, € X}, y = u, € Y/ such that (y,z) is an
arc of I';. We may then replace P by the cycle C: Here u, € X witnesses u, € X; and
u, € Y] witnesses u, € Y.

C = (YT =Up,Ups1,- -y Upy Uty vy Ug—1, Ust 1y - oy Upe1y Uphls - - - Uk, Ugry - - - 5 Us = Y).
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(see Figure 2).

Figure 2:

End of description of General Step. Each general step reduces the number of cycles by
at least one and we require at most five edges of I'; per step to do this. Thus after all general
steps have been completed we create a Hamilton cycle H;.; for which |H;; 1 \ Fiy1| < 5so.
This completes the induction and the proof of Theorem 4.
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