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Abstract

We study the question as to when a random graph with n vertices and m
edges contains a copy of almost all graphs with n vertices and cn/2 edges, c
constant. We identify a ”phase transition” at c = 1. For c < 1, m needs to
grow slightly faster than n, and we prove that m = O(n log log n/ log log log n) is
sufficient. When c > 1, m needs to grow at a rate m = n1+a, where a = a(c) > 0
for every c > 1, and a(c) is between 1− 2

(1+o(1))c and 1− 1
c for large enough c.

1 Introduction

1.1 Problem statement and results

A graph G is universal for a class of graphs H if for every H ∈ H, there is a subgraph
of G which is isomorphic to H. The problem of constructing small G which are
universal for interesting classes H has attracted much attention as it arises in the
study of VLSI circuit design. See for example [1] and the references there-in. This
paper shows for example that if H = H(c, n) is the class of graphs with vertex set [n]
and maximum degree c, then any H-universal graph must contain Ω(n2−2/c) edges.
On the other hand, it is shown in [1] that almost every graph with (1+ǫ)n vertices and
An2−1/c(log n)1/c edges is H(c, n)-universal. Here A depends only on ǫ. Furthermore,
the results of [2] prove the existence of an H(c, n) universal graph with O(n) vertices
and O(n2−2/c(log n)1+8/c) edges.
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Suppose now we consider H = H∗(c, n) where H∗(c, n) is the set of all labeled graphs
with vertex set [n] and average degree at most c. ClearlyH∗(c, n) ⊇ H(c, n) but in fact
an H∗(c, n)-universal graph requires Ω(n2−o(1)) edges since it must contain all graphs
with (1− ǫ)n isolated vertices and a ⌊c/ǫ⌋-regular graph on the remaining ǫn vertices.

In this paper we relax the strict notion of universality. We say that G is almost
universal for the class of graphs H if it contains subgraphs isomorphic to all but
o(|H|) graphs in H. In particular we consider H = H∗(c, n). As customary we
denote by Gn,m the probability space of all labeled graphs on n vertices with m edges,

where all such graphs are equiprobable, i.e., Pr[G] =
((n

2)
m

)−1

. Similarly, Gn,p stands
for the probability space of all labeled graphs with vertex set {1, . . . , n}, where each
pair 1 ≤ i 6= j ≤ n is an edge of a sample graph Gn,p with probability p = p(n),
independently of all other edges. We study

Pr(Gn,m is almost universal for H∗(c, n)). (1)

More formally, we should perhaps consider

Π∗(c,m, ǫ) = Pr(|{H ∈ H∗(c, n) : Gn,m ⊒ H}| ≥ (1− ǫ)|H∗(c, n)|) (2)

where ⊒ denotes “contains a subgraph isomorphic to”.

We can reduce this to estimating the probability

Π(c,m) = Pr(Gn,m ⊒ Gn,cn/2) (3)

where Gn,m and Gn,cn/2 are generated independently.

We can link definitions (2) and (3) via

1− ǫ−1(1− Π(c,m)) ≤ Π∗(c,m, ǫ) ≤ Π(c,m)

1− ǫ . (4)

To verify this, let N =
(

n
2

)

and M1 =
(

N
m

)

, M2 =
(

N
cn/2

)

. Consider the M1×M2 matrix

A where A(i, j) = 1Gi=Hj
, assuming that Gi, i ∈ [M1] (resp. Hj, j ∈ [M2]) is an

enumeration of all graphs with vertex set [n] and m (resp. cn/2) edges. Π∗(c,m, ǫ) is
the proportion of rows of A with at least (1− ǫ)M2 1’s and Π(c,m) is the proportion
of entries of A which are 1. Equation (4) is now easy to verify.

We show that there is a sharp difference in Π(c,m) for the cases c < 1 and c > 1
respectively. We prove the following:

Theorem 1
(a) Suppose that c < 1 is constant. Then if A is constant,

Π(c,m)

{

≤ 1− (1− e−c3/6)e−A3/6 + o(1), m = An

= 1− o(1), m ≥ C0 log log n
log log log n

.
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for some sufficiently large C0 = C0(c).

(b) Suppose that c > 1 is constant. Then for some constants C1, C2,

Π(c,m) =

{

o(1), m ≤ C1n
2−2/(c+xc)

1− o(1), m ≥ C2n
2−1/(c−yc)

,

for some xc, yc → 0 as c→∞.

2

We doubt that the upper bound in (a) is tight:

Conjecture If c < 1 and m/n→∞ then Π(c,m) = 1− o(1).

It is more difficult to guess whether the upper or lower bound is correct in (b).

1.2 m or p

In work on random graphs, it is usually more convenient to work in the independent
model Gn,p rather than in Gn,m. We therefore estimate

Π#(p1, p2) = Pr(Gn,p2
⊒ Gn,p1

)

where Gn,p1
and Gn,p2

are generated independently.

Putting p1 = c/n and p2 = 2m/n we relate Π and Π# through

Π(c,m) ≥ Π#

(

p1 +
log n

n3/2
, p2 −

m1/2 log n

n2

)

− o(1) (5)

Π(c,m) ≤ Π#

(

p1 −
log n

n3/2
, p2 +

m1/2 log n

n2

)

+ o(1). (6)

The inequalities come from the fact that whp Gn,p1−log n/n3/2 contains fewer than cn/2
edges etc.

We break the proof of Theorem 1 into 4 pieces:

2 c < 1, m = An.

This is straightforward. It is well known (see, e.g., Theorem 3.19 of [6]) that the
probability of Gn,(c+o(1))/n not to contain a triangle is asymptotically equal to e−c3/6.
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We thus get:

Pr(Gn,p1− log n

n3/2

contains a triangle and Gn,p2+
log n

n3/2

is triangle free)

= (1− e−c3/6)e−A3/6 + o(1).

The upper bound in part (a) of the theorem now follows from this and (3)–(6). Having
made this connection once, we will just focus on Π#(p1, p2) from now on.

3 c < 1, m = o(n log logn).

From now on let us shorten Gn,pi
to Gi for i = 1, 2.

We first state some almost sure properties of the random graph G1 required in our
proof.

Lemma 1 Let 0 < c < 1 be a constant. The random graph G = Gn,c/n has whp the
following properties:

1. All connected components of G have size at most L = (c− 1− log c)−1 log n;

2. All connected components of G are trees or unicyclic;

3. The number of vertices in unicyclic components of G does not exceed log log n
log log log n

;

4. The number of isolated vertices in G is at least n/e.

All of the above properties are quite standard and can be found, e.g., in [6].

Let p1 = c/n, m = ωn/2 and p2 = ω/n where

ω =
120 log logn

log log log n
.

The following properties of G1 are more technical and pertain closely to our arguments.
They aim to estimate from above the expected number of vertices of G2 needed to
embed all large tree components of G1.

Let a vertex of G1 be large if its degree is at least ≥ ω/20.

For a tree T of G1, let

σ(T ) =

a(T )
∏

i=1

(di − 1)!

where d1, d2, . . . , da(T ) are the degrees of the large vertices of T .
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Lemma 2 Let ω/20 ≤ k ≤ L, a > 0, σ, D be integers. Denote by Y (k, a, σ,D) the
number of isolated tree components T of G with |V (T )| = k, a(T ) = a, σ(T ) = σ and
d1 + . . .+da = D, where d1, . . . , da are the degrees of large vertices in T . Let 0 < c < 1
be a constant. Then the random graph G = G(n, c/n) has whp the following property:

∑

k≤L,a,σ,D

Y (k, a, σ,D)k(1− e−ω/10)−ke2ωa3D−aσω−D+a <
n

log2 n
.

Proof Let k∗ = k− 2−D+ a. The number of trees T with parameters k, a, σ,D
in the complete graph Kn can be estimated from above by:

(

n

k

)

∑

d1+···+da=D

(

k − 2

d1 − 1, d2 − 1, . . . , da − 1, k∗

)

(k)a(k − a)k∗

≤ (1 + o(1))nk

k!

(k − 2)!ka(k − a)k∗

k∗!

∑

d1+···+da=D

a
∏

i=1

1

(di − 1)!

< (1 + o(1))nkka

(

D − 1

a− 1

)

σ−1 ek−a .

(In the first line above, we choose k vertices of the tree in
(

n
k

)

ways, then choose names
of a large vertices in (k)a ways, then decide which positions in the Prüfer code of the
tree are occupied by each of the large vertices, then fill the rest of the positions by
remaining vertices in (k− a)k∗

ways.) For each such tree, the probability that it is an
isolated component in G(n, c/n) is (c/n)k−1(1 − c/n)k(n−k) ≤ (1 + o(1))(c/n)k−1e−ck.
Using the linearity of expectation we derive that the expected value of the random
variable in the lemma’s formulation is at most:

(1 + o(1))
∑

k,a,σ,D

nkka

(

D − 1

a− 1

)

σ−1ek−a(c/n)k−1e−ckk(1− e−ω/10)−ke2ωa3D−aσω−D+a

≤ (1 + o(1))
n

c

∑

k,a,σ,D

(ce1−c)k(k/e)a2Dk(1 + e−ω/9)ke2ωa3D−aω−D+a

< 2n
∑

k,a,σ,D

k((1 + o(1))ce1−c)k(ke2ωw/3e)a(6/ω)D .

Next observe that D ≥ aω/20 and that there are at most
(

D−1
a−1

)

≤ 2D possible values
for σ, given a,D. Thus the last expression can be bounded by

2n
∑

k,a,D

k((1 + o(1))(ce1−c))k
(

(ke2ωw/3e)20/ω
)D

(12/ω)D

≤ 2n
∑

k,a,D

k((1 + o(1))ce1−c)k(k20/ωe50)D(12/ω)D .
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Observe that k20/ω ≪ ω1/2. Indeed, k ≤ L = O(log n), while

wω/40 =

(

120 log log n

log log log n

)
120 log log n

40 log log log n

= (log n)3+o(1) .

Therefore, (k20/ωe50)D(12/ω)D ≪ (12ω1/2/ω)D ≤ ω−(1+o(1))ω/20 = (log n)−6+o(1). Also,
for c < 1 one has ce1−c < 1, and thus k(ce1−c)k = O(1). Since k ≤ L = O(log n),
D ≤ 2k, a ≤ k, we have altogether O(log3 n) summands, each at most (logn)−6+o(1),
hence the sum is at most (log n)−3+o(1). It follows by the Markov Inequality that the
random variable of the lemma whp has value at most n/ log2 n.

2

Lemma 3 For an integer k ≥ 2, denote πk = (1−e−ω/10)k−1. Let τk be the number of
isolated tree components of size k in G. Then, for every 0 < c < 1, whp in G(n, c/n)

L
∑

k=(log log n)2

kτk
πk

≤ n

log2 n
.

Proof First we estimate the expectation of the expression in question:

E





L
∑

k=(log log n)2

kτk
πk





=
L

∑

k=(log log n)2

(

n

k

)

kk−1pk−1
1 (1− p1)

k(n−k)+(k
2)−k+1π−1

k

=
L

∑

k=(log log n)2

(

n

k

)

kk−1p̄k−1
1 (1− p̄1)

k(n−k)+(k
2)−k+1 (1 + ǫ1)

k(n−k)+(k
2)−k+1

where

p̄1 = p1(1− e−ω/10)−1 and ǫ1 =
p1e

−ω/10

1− e−ω/10 − p1

=
ce−ω/10

n− c− ne−ω/10
≤ 2ce−ω/10

n
.

Thus, writing p̄1 = c̄1/n we see that

E





L
∑

k=(log log n)2

kτk
πk



 ≤ n

c̄1

L
∑

k=(log log n)2

(c̄1e
1−c̄1+o(1))k ,

and since 1− c̄1e1−c̄1+o(1) is bounded below by a positive function of c,

E





L
∑

k=(log log n)2

kτk
πk



 = o(n/ log2 n).
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Applying the Markov inequality, the lemma follows. 2

Suppose now that G1 consists of isolated trees T1, T2, . . . , Ts and unicyclic components
K1,K2, . . . ,Kt. We will assume that G1 satisfies the conditions stated in Lemmas 1–3.
We will assume that a(Ti) 6= 0 iff i ≤ r. Note that r ≤ 21cn/ω = o(n).

We try to embed the trees one by one in G2. Our strategy for embedding a tree Ti into
G2 is as follows: Choose a vertex v1 of degree one of Ti and then let the vertices of Ti be
v1, v2, . . . , vk where the order comes from some breadth first search of Ti. Let dj be the
degree of vj in Ti. Suppose that the embedding of trees T1, T2, . . . , Ti−1 has involved
examining vertices w1, w2, . . . , wℓ. Being a subset of [n], U = [n] \ {w1, w2, . . . , wℓ},
the set of unexamined vertices, has a natural order. Let wℓ+1 be the first member of
U in this order. We use the following algorithm to try to embed Ti into G2. Basically,
at each stage we try to embed vi as wℓ+i by finding d∗i = di− 1 + 1i=1 new neighbours
for wℓ+i from which to continue the embedding.

Begin
λ = ℓ+ 1.
For i = 1, 2, . . . , k do
Begin

If wℓ+i has ≥ d∗i neighbours in U then
Begin

Let xj, j = 1, 2, . . . , d∗i , be the first d∗i neighbours of wℓ+i in U , in the natural order.
U ← U \ {xj : j = 1, 2, . . . , d∗i }
wκ ← xi, κ = λ+ 1, λ+ 2, . . . , λ+ d∗i .
λ← λ+ d∗i .

End
Else FAIL

End
End

If we fail then we repeat this procedure until either we succeed or ℓ reaches nF =
n(1− e−1), in which case we abandon the attempt to embed G1 into G2.

3.1 Phase 1: Embedding trees with large vertices

Consider first the embedding of the first r trees, i.e. those with a(T ) > 0. At the end
of this phase of the embedding we expect ℓ to be at most O(n/(log n)2) and consider
the attempt to be a failure if ℓ reaches n/(log n)1/2 before Tr has been embedded.

Suppose the tree Ti, i ≤ r, has the same parameters as in Lemma 2 and the degrees
of the large vertices are d1, d2, . . . , da. Let us condition on having consumed less than
n/2 vertices before starting to embed Ti. The number of G2 neighbours of a vertex in

7



U dominates Bin(n/2, p2) and so the probability that this number is at least ω/20 is
at least 1− e−ω/10. Thus the probability of success in any attempt is at least

(1− e−ω/10)k

a
∏

i=1

ψ(di)

where ψ(di) is the probability that a vertex has ≥ di − 1 G2 neighbours in U . Now

ψ(di) ≥
(

n/2

di − 1

)

pdi−1
2 (1− p2)

n ≥ ωdi−1

3di−1(di − 1)!
e−2ω

and then
a

∏

i=1

ψ(di) ≥
ωD−a

3D−aσ(T )
e−2ωa.

So the expected time (increase in ℓ) while embedding this tree is at most

k(1− e−ω/10)−ke2ωa3D−aσ(T )ω−D+a.

This explains the expression we put earlier in Lemma 2.

Let Xi be the number of vertices consumed while embedding Ti (or reaching a failure
while embedding Ti). Conditioning on X1 + . . .+Xi−1 ≤ n/2, the random variable Xi

is dominated by k times the geometric random variable with probability of success

ρi = (1− e−ω/10)k
a

∏

i=1

ψ(di) ≥ (1− e−ω/10)k ωD−a

3D−aσ(Ti)
e−2ωa .

Denote µi = k/ρi. Then

Pr[Xi ≥ (log1.5 n)µi|X1 + . . .+Xi−1 ≤
n

2
] ≤ (1− ρi)

log1.5 n/ρi = o(1/n).

Observe that by Lemma 2, whp,

r
∑

i=1

µi ≤
n

log2 n
.

It thus follows:

Pr[X1 + . . .+Xr ≥
n

log1/2 n
]

≤ o(1) + Pr[X1 + . . .+Xr ≥ log1.5 n
r

∑

i=1

µi]

≤ o(1) + Pr

[

r
⋃

i=1

(

Xi ≥ (log1.5 n)µi|X1 + . . .+Xi−1 ≤
n

2

)

]

= o(1) + o(r/n)

= o(1).
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Thus, whp Phase 1 completes successfully, having used at most n/(log n)1/2 vertices,
and the remaining trees of G1 have their maximum degree at most ω/20.

3.2 Phase 2: Embedding trees with no large vertices

We use the same embedding algorithm as before and a similar argument to analyze
it. Note that whp

∑s
i=r1+1 |V (Ti)| ≤ (1− 2α)n where α = e−1/2. We declare Phase

2 to be a failure if it uses at least (1− α)n vertices. At each stage of the embedding
|U | ≥ αn/2 for a tree Ti with k vertices, the probability of a successful attempt is at
least

Pr
(

Bin
(αn

2
, p2

)

> ω/20
)k−1

≥ πk = (1− e−ω/10)k−1. (7)

Let τk denote the number of trees of size k in G1 and let Zi,k denote the number of
vertices used in attempts to embed Ti,k, the ith tree of size k. Then

1. Zi,k is dominated by k times the geometric random variable Γi,k which has prob-
ability of success πk, see (7). We can couple Zi,k with a copy of Γi,k so that
Zi,k ≤ Γi,k.

2. If Z =
∑L

k=2

∑τk

i=1 Zi,k < (1− α)n then the embedding succeeds.

Let Z2 =
∑L

k=(log log n)2

∑τk

i=1 Zi,k. Observe that by Lemma 3, the expectation of Z2

does not exceed n/ log2 n. Thus we can apply the argument similar to that of Phase
1 to show that whp it takes O(n/ log1/2 n) vertices to embed tree components of G1

with at least (log logn)2) vertices.

We now turn to Z1 =
∑(log log n)2

k=2

∑τk

i=1 Zi,k. Consider the number of failures as we try
to embed trees with at most (log log n)2 vertices. Let ν = n

(log log n)3
. The probability

of failing at any attempt is at most 1− π(log log n)2 ≤ (log log n)2e−ω/10 < e−ω/20. Fur-
thermore, there will be less than n attempts embedding a tree and so the probability
that there are ν failed attempts or more is at most

(

n

ν

)

(e−ω/20)ν ≤
(

ene−ω/20

ν

)ν

= o(1).

Each failed attempt consumes at most (log logn)2 vertices. Thus whp

Z1 =

(log log n)2
∑

k=2

τk
∑

i=1

kZi,k =
ω

∑

k=2

kτk +O(n/ log log n) < (1− 2α)n.

Hence we conclude that whp Z = Z1 + Z2 < (1− α)n and the embedding succeeds.
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3.3 Phase 3: Embedding unicyclic components

Recall that by Lemma 1 G1 contains at most ω/120 vertices altogether in unicyclic
components. We divide the unused vertices of U into two sets U1, U2 of approximately
equal size, which whp are at least αn/2. Then whp U1 will, in G2, contain at least
ω cycles of size j for each 3 ≤ j ≤ ω. So, we will whp be able to choose a collection
of cycles in U1 to match with the cycles of G1. We can then use U2 to embed the
trees attached to these cycles which go to make up each of the unicyclic components.
Since these trees are without large vertices, we use the analysis of the previous section
and argue that the expected time to embed these trees is o(n). This completes the
analysis for c < 1. 2

4 c > 1, m ≤ C1n
2−2/(c+xc)

Let x = xc be the unique solution in (0, 1) to xe−x = ce−c. It is easy to verify that

c+ xc > 2 for all c > 1. Let α = 1− x
c

and β = c
2

(

1− x2

c2

)

. Whp Gn,cn/2 contains a

giant component with A vertices and B edges, where |A−αn|, |B−βn| = O(n1/2 log n)
vertices, [3].

We associate with each graph G1 in Gn, cn
2

, containing such a giant component, a graph
H with A vertices and B edges. Then

Pr[Gn,m ⊒ G1] ≤ Pr[Gn,m ⊒ H] ≤ (n)A

(

(1 + o(1))
2m

n2

)B

≤ nαn+O(
√

n log n)

(

2m

n2

)βn+O(
√

n log n)

=

[

n(1+o(1))α

(

2m

n2

)(1+o(1))β
]n

.

Hence if m ≤ c1n
2−2/(c+xc) for c1 > 0 small enough, the above expression tends to 0 as

n grows, implying that whp Gn,m does not contain most of the graphs from Gn,cn/2 .

Comments. (a) Since c+xc > 2, we get that for every c > 1 there exists ǫ = ǫ(c) > 0
such that Π(c,m) = o(1) for m ≤ n1+ǫ. This, combined with the result of Theorem 1
(a), shows that the function Π(c,m) has sharp threshold at c = 1;
(b) As pointed out by the referee, we can get a somewhat weaker bound Π(c,m) = o(1)

form = n2− 2
c
−o(1) by the following simple counting argument: the number of subgraphs

with cn
2

edges of a graph G2 with m edges is
(

m
cn
2

)

. The total number of non-isomorphic
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graphs on n vertices with cn
2

edges is at least
((n

2)
cn
2

)

(n!)−1. Thus, if

(

m
cn
2

)

= o

((
(

n
2

)

cn
2

)

(n!)−1

)

,

any graph G with m edges does not contain most of the graphs with cn/2 edges.
Solving the above inequality for m we get the claimed bound.

5 Upper bound

We now show that if c > 1 and p2 = n−1/((1+o(1))c) then whp Gn,p2
⊒ Gn,p1

.

We note first that Pittel, Spencer and Wormald [7] have shown that the threshold
probability ck/n for having a k-core satisfies ck = k +

√
k log k + O(log k) and so for

large c we find that whp Gn,c/n is d-degenerate for d = c − √c log c + O(log c). (A
graph is d-degenerate if its vertices can be ordered as v1, v2, . . . , vn so that vi has at
most d neighbours in {v1, v2, . . . , vi−1}.) Also, G1 is K2,3-free whp. Finally, whp G1

has (e−c + o(1))n isolated vertices. We will therefore be able to use the following:

Theorem 2 Let d > 3, 0 < c0 < 1 be constants. Let δ = max
{

1
d−1

, 1
d(d−3)

}

. Let

p(n) = An(−1+δ)/d. Let H be a d-degenerate K2,3-free graph on c0n vertices, of max-
imum degree ∆(H) ≤ ∆0 = 1/(4dp). If A = A(c0, d) is large enough, then whp the
random graph G(n, p) contains a copy of H.

Proof Fix an ordering σ = (v1, . . . , vc0n) of the vertices of H such that every
vertex of H has at most d neighbors preceding it in σ. Denote N−

H (vi) = {vj : j <
i, (vi, vj) ∈ E(H)}. We will embed H vertex by vertex, according to σ.

Partition the vertex set of G(n, p) into two parts: V0 of size |V0| = 1−c0
2
n, and V1. We

will use V0 to embed the first ν0 = A1n
δ vertices of σ, and V1 to embed the rest, the

value of A1 = A1(d) will be chosen later to satisfy inequality (8).

Observe that if A is large enough then whp in G(n, p) every d vertices of V0 have at
least A1n

δ common neighbors in V0. Thus we can easily embed the first A1n
δ vertices

of H according to σ in V0.

Now, we will use Theorem 2 of Fernandez de la Vega and Manoussakis [4] (or rather
its proof) to embed the rest of H in V1. We start by adding some edges to it to form a
new graph H ′. Specifically, for each i > A1n

δ, if vi ∈ V (H) has less than d neighbors
preceding it in H, we add to H d − |N−

H (vi)| edges connecting vi to random vertices
before it in the order. Let H ′ be the (random) graph obtained. Denote by Ui the set
of neighbors of vi in H ′ preceding vi.
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Let A1n
δ < i < j. We will estimate the probability of Ui = Uj. Assume |N−

H (vi)| = s1,
|N−

H (vj)| = s2, |N−
H (vi) ∩N−

H (vj)| = t. We first expose d− s1 random neighbors of vi;
for Ui = Uj they should contain all s2 − t vertices of N−

H (vj) \ N−
H (vi), this happens

with probability at most:
(

i−1−s2+t
d−s1−s2+t

)

(

i−1
d−s1

) <

(

i−1
d−s1−s2+t

)

(

i−1
d−s1

) ≤ (1 + o(1))(d− s1)
s2−t

is2−t
.

Now expose d− s2 random neighbors of vj, they should coincide with Ui \N−
H (vj), the

probability of this to happen is

1
(

j−1
d−s2

) =
(1 + o(1))(d− s2)!

jd−s2
.

So altogether the probability that Ui = Uj is less than dd

id−t .

Recall that H is K2,3-free and thus t ≤ 2. Also, t > 0 only for those i < j who have a
common neighbor in front of them in σ, and this happens for at most d∆(H) values
of j, for a given i. Therefore the probability that there exist i, j such that Ui = Uj is
at most:

∑

A1nδ<i<j

N−

H (vi)∩N−

H (vj) 6=∅

dd

id−2
+

∑

A1nδ<i<j

N−

H (vi)∩N−

H (vj)=∅

dd

id

≤ dd



d∆(H)
∑

i>A1nδ

1

id−2
+ n

∑

i>A1nδ

1

id





< dd

[

d∆(H)

(d− 3)(A1nδ)d−3
+

n

(d− 1)(A1nδ)d−1

]

<
1

2
(8)

for large enough A1 = A1(d).

Now we argue that whp

each Uk intersects at most 2d∆0 of the sets Uj with j < k. (9)

Clearly N−
H (vk) intersects at most d∆0 sets N−

H (vj) with j < k. We thus need to show
that whp the random edges of H ′ − H do not add d∆0 sets Uj, j < k, intersecting
Uk, for any given k. To do so, we fix vk, condition on Uk, fix u ∈ Uk. Then the
number Zu of vertices vj that choose to add a random edge (vj , u) is dominated
by X1 + X2 + . . . + Xn where X1, X2, . . . , Xn are independent and Xi is 0/1 and
Pr(Xi = 1) ≤ d

ν0+i−1
for i = 1, 2, . . . , n. Then E(X1 + X2 + . . . + Xn) ≤ O(log n)

and by Theorem 1 of Hoeffding [5] we see Pr(Zu ≥ ∆0) is exponentially small. We
conclude then that the probability that (9) is violated is less than 1/2, too. Thus,
when A > 0 is large enough, there exists a supergraph H ′ ⊇ H satisfying

12



(i) For each pair A1n
δ ≤ i < j, Ui \ Uj 6= ∅.

(ii) Each Uk intersects at most 2d∆0 sets Uj, j 6= k.

Now consider continuing an embedding of v1, v2, . . . , vj−1 in G2 where j > ν0. As in
[4] we define, for each i < j a vertex xi ∈ Ui\Uj. Suppose our embedding has assigned
vi → wi for i < j and that W = [n]\{w1, w2, . . . , wj−1}. Let the correspondence vi, wi

map Ui to Wi and for w ∈ W let N2(w) be the neighbours of w in G2. Suppose our
embedding algorithm checks each w ∈W as a candidate in increasing value of w. Let
J = {i < j : Ui ∩ Uj 6= 0}. Then arguing as in [4] we see

Pr(N2(w) ⊇ Wj | history of process) = Pr(N2(w) ⊇Wj | N2(w) 6⊇Wi, i ∈ J ′)

for some J ′ ⊆ J

≥ Pr(N2(w) ⊇Wj and xi /∈ N2(w), i ∈ J ′)

≥ pd(1− p)2d∆0

≥ pd/2.

Thus,

Pr( 6 ∃w : N2(w) ⊇Wj | history of process) ≤ (1− pd/2)(1−c0)n/2 ≤ e−Anδ/4.

Thus whp the embedding succeeds for all j ≤ c0n. 2

We apply the above theorem with H equal to G1 minus its isolated vertices. Then
whp H has at most (1− e−c + o(1))n vertices. Finally, we will need

p2 = n−c−1(1+
√

(log c)/c+O(c−1))

which is somewhat better than claimed in Theorem 1(b).

Comment 1 As pointed out by the referee, the techniques of [2] can be used to get an
explicit construction of a graph G with Õ(n2−1(c′+1)) edges, where c′ = ⌈c⌉, containing
almost all graphs with cn/2 edges. This is about the same as the upper bound of
n2−(1+o(1))/c derived in this paper, our argument shows however that almost all graphs
with that many edges are almost universal.

Comment 2 At a point quite late in the reviewing process, Andrzej Ruciński became
cognisant of and reminded us of the relevance of the paper by Riordan [8]. Theorem
2.1 of that paper is similar to Theorem 1(b). He shows that if

γ(G) = max
H⊆G
{|E(H)|/(|V (H)− 2)}
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then our 1/(c− yc) can be replaced by the likely value of 1/γ(Gn,p). Now the value for
γ(Gn,p) is not easy to estimate although it does seem likely that γ(Gn,p) = c + o(c).
Furthermore, Riordan’s proof is very different relying on the second moment method,
whereas ours is constructive.

Acknowledgement. The authors wish to thank Itai Benjamini for posing this prob-
lem. They are also thankful to the anonymous referee and to Andrzej Ruciński for
their helpful criticism on the first version of the paper.

References

[1] N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński and E. Szemerédi,
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