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1 Introduction

Model 1. Consider the complete graph K, with vertex set [n] = {1,2,...,n}, in which each
edge e is assigned a length X.. Colour the k£ shortest edges incident with each vertex green
and the remaining edges blue. The graph made up of the green edges only, will be referred
to as the k-th nearest neighbour graph. This graph has been studied in a variety of contexts
both computational and statistical.

We consider here a simple probabilistic model in which the X, are independent uniform [0,1]
random variables. We call this random model Oy.

We remark that choosing the uniform distribution here is no restriction. The distribution of
the order statistics of independent identically distributed random variables from any distribu-
tion without atoms is equivalent (by a simple transformation) to the distribution of the order
statistics in the uniform case.

Oy is interesting to us because it arises naturally and also because it induces more severe edge
dependence than the standard random graph models G, , and G, ,,,. Aspects of O; have been
studied (for example) by Holst [5] and Newman, Rinott and Tversky [7]. Our main results
will be on the connectivity of these graphs, but first we will describe an equivalent but more
combinatorial version of the model.

Model 2. Given the outcomes {X. : ¢ € F(K,)} we a.s. obtain a random permuta-
tion (ei,i =1,...,N = (;)) of E(K,) where X., < X, ,,1 < i < N. We now define
another graph by the following process: let F,, = {ej,es,...¢,} and G,, be the random

*Supported by NSF grant CCR-9225008



graph ([n], E,). Let d,, denote degree in (G,,,. Examine the edges e; sequentially and colour
em+1 = {u,v} green if min{d,,(u),d,,(v)} < k and otherwise blue. The resulting green graph
is also Oy.

Thus O, is the undirected counterpart of the k-out digraphs (G_y:) in which a process colours
the first k£ edges with initial vertex v, for each vertex v, using a random permutation of the
edges of the complete digraph. The properties of the k-out digraphs are much better known.
For example, there is a large literature on 1-out digraphs (random functional digraphs), see

for instance [2] 364-373.

What can we say about 0,7 Elementary calculations show that O; has approximately 3n/4
edges, O, has approximately 11n/8 edges and in general:

Theorem 1 For k = o(logn) the number of edges of Oy, is whp'
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where 6(1,j) is the Kronecker delta.

Thus, not surprisingly, Oy is almost always disconnected. But what about connectivity for
k > 27 Our main theorems are that:

Theorem 2 Let w(n) — oo with n. Then whp, O is either connected, or consists of a giant
component of at least n —w(n) vertices, and one or more small cyclic components.

Theorem 3 There exists a positive constant v, where 0.99081 < v < 0.99586 such that

lim,, oo Pr(O; is connected ) = .

Theorem 4 If k > 3 is fized, then

lim, o Pr(Oy is k-connected ) = 1.

In the following proofs of these theorems, inequalities are only claimed for sufficiently large n.

2 Proof of Theorem 1: The number of edges of O;.

For 1 <¢,5 < k let ¢(7,j) be the number of green edges e = {u,v} such that X, is the ¢-th
order statistic for vertex u and the j-th order statistic for vertex v. Call such an edge shared.
Let m = enlogn, for some large constant c.

Ywhp (with high probability); with probability 1 — o(1) as n — oco.
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Then whp the first m edges of the process in Model 2 contain O and ¢(¢,7) is sharply
concentrated within O(y/nlogn) of its expected value, which is

nn—1) ()05
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The subtracted terms in the statement of Theorem 1, are the correction to the degree sum
(kn) due to the shared green edges.

3 Proof of Theorem 2: The giant component of O,.

Chernoff bounds: If B(m,p) denotes a binomial random variable then the following tail
estimates are well known:
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Pr(B(m,p) < (1 —0)mp)
Pr(B(m,p) > (1 + 0)mp)
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for any 0 < 6 < 1. We refer to the above inequalities as Chernoff bounds.

We now consider the case kK = 2 and concentrate on Oy as defined by Model 2.

Given edges e;,e; € E,,, we say ¢; < ¢; if 1+ < 7. We extend this notation to sets of edges by
saying that S < T ife € S, f € T implies e < f.

Similarly, from Model 1, and for any 0 < p < 1 we define £, = {e: X. < p} and G, = ([n], F,).
Thus G, has the same distribution as the familiar random graph G/, ,.

It is well-known (see for example [2]), that whp G, , has minimal degree 2 for p = (Inn +
Inlnn+w)/n, whenever w = w(n) — oo. Therefore whp e; is blue for all ¢ > n(Inn+Inlnn+

w)/2.

Let
w = (Blan)/4, p = w/n,

€ = w_1/4,

o = [Vin|,  m o= [ae]

Let I', denote the subgraph of G, induced by the green edges of E,,.

a = /2

Let G(s,¢,t) denote the set of connected graphs with vertex set S, of size s, t edges and
¢ vertices of degree one, except that when s < 20¢'®Inn we do not include trees (see the
statement of Theorem 5). We are especially interested in the case where

t < (l+4+¢€)sand £ <es. (1)

We prove the following gap theorem for the component structure of I' = I',. We use it much as
in the proof by Erdds and Rényi [3] of the existence of a unique giant component in a sparse
random graph.



Theorem 5 whp no component S of I' with s vertices satisfies
(a) s <ng and S contains at least s + 1 edges, or
(b) S is not a tree, ng < s < nqy and S has at most es vertices of degree one, or

(c) S is a tree, 20 Inn < s < ny and S has at most es vertices of degree one.

Proof: Part (a) follows immediately from the fact that (G, contains no subgraphs of this
size and this number of edges; as the expected number of such subgraphs tends to zero as
n — oo. The proof of parts (b),(c) is somewhat more substantial.

Let I = [ng,n1] and Q@ = {S C [n]:|S| € I}. For |S| = s € I consider the event
E(S) = {S contains at most (1 + €)s edges in G, }.

Then (proof deferred) ? _
S Pr(&o(S5)) = o(1). (2)

Sen
Now let D denote the event that some set S satisfies (b) or (¢). Then

D)<Y Y (Pr(so SIS SB DS pr<,4<a,s>>), 8

sel |S|=s £=0 t=5—1 Geg(s,{,t)

where

A(G,S) = {T,(S) = G and S:S is blue }. (4)

Thus A(G, S) is the event that S induces the isolated component G in I',. Here, I',(.S) denotes
the subgraph of I', induced by S, and S:S is the set of (7,-edges joining S and S.

From (2), the term Pr(&y(S)) in the summation in (3) is negligible. Thus we can concentrate
on the terms of the triple sum, for fixed S C [n],s = |S|, ¢, satisfying (1) and G € G(s,{,1).

For the first part of the proof we work in (7, and only require that (G is contained in GG,(.5), the
subgraph of (G, induced by 5. We consider events &, ..., & which establish whp the existence
of an independent set of vertices with certain regularity properties, contained in N(S), the
disjoint neighbour set of 5.

For a graph H and XY C V(H) we let N(X,Y; H) denote the set of H-neighbours of X
in Y. Also let No(X,Y; H) C N(X,Y; H) denote the set of vertices in Y which have two or
more H-neighbours in X. Let Ny(S) = Ny(S,S;G,) and for v € S let N(v) = N({v},S5;G,)
and Ny(v) = N(v) N No(S5).

Let So = {v e S:|N(v)] € [(1 — €)w, (1l + €)w]} and

£.(5) = {|50| > (1 _ é) 5}.

?In the interests of clarity, we have deferred the derivation of the probability bounds for many of the events
we consider, until Section 4. In each case we explicitly state when this has occurred.

4



Then (proof deferred)
Pr(E:(5) | Gy() 2 G) <", (5)

where, hereafter ¢ is a generic positive constant, i.e. one whose value can change from formula
to formula.

Now let 51 = {v € So: [N(v)\ N2(v)| > (1 — @)w}, and let
&(5) =A{5] = (1 = 3a)s}. (6)
Then (proof deferred)

Pr(.(5) | £1(5),G,(S) 2 G) < e~ (7)

For each v € Sy, choose a distinct set T, of [(1 — a)w]| neighbours of v in N(v) \ Na(S5). Let
T = Uyes, Tv. Given &(S) we have (1 —4a)ws < |T] < [(1 — a)ws] < ws.

Next let To = {v € T : |[N(v, (S\ N(9));G,)] < (1 + ¢)w} and let
&(5) = A{|To] = (1 — a)|T']}.

Then (proof deferred)
1/4

Pr(&3(S) | G,(S) 2 G) < e
Note next that given &(S5),i = 1,2,3, if

E (8)

Sy ={v € 51 :|N(v)NTy| > 9w/10},
then v € Sy \ Sz implies |1, \ To| > (1 — a)w — 9w/10 and so
151\ S2|((1 — a)w — 9w/10) < |T'\ To| < ofT'| < aws

which, from (6), implies
|S2| > (1 — lda)s.

Now let
E4(S) = {N(S) contains at most s/100 edges }.

Then (proof deferred)

Pr(E4(S) | Gy(5) 2 G) < e7™. (9)
Let &(S) = NiZ; &(S) then from (5), (7),(8), (9) we see that
Pr(E5(5) | G,(S) 2 G) = e=*s. (10)

We now consider the structure of G € G(s,¢,t) when (1) is true. Let d(v) denote the degree
of vertex v in GG, Dy = {v : d(v) = 2}, ng = |Ds|, D5 = {v € S : d(v) > 3}, ng = |Ds|, and
ds = Y ,ep, d(v). Then

{+ny+n3 = s,
€—|—2n2—|—d3 = Qt,
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where n3 < ds/3, { <esand t < (14 ¢)s. Thus

ds < 2(1l+¢€)s—{—2ny
= 2(14+¢es—0—2(s—{—n3)
< 3es+ %
- 3
Thus
ds < Yes. (11)

Next let E(G) = E, U E3 where F; = {e : e meets a vertex of degree < 2}, and F3 =
E(G) \ EQ. Note that |E3| S d3/2

Starting with G, delete the vertices in Ds; unless G is a cycle, when an edge should be
randomly deleted. The remaining graph is a collection of vertex disjoint paths P. Thus, given
P € P we can write it as a directed path eq,z1,es,...€,,2,,€,41, where r = r(P). Here
e; = z;_1x; for 2 <2 < r and the missing endpoints of e, e,41 are of degree 1 or 2 in G. We
see that |P| < ds + 1 which is small, see (11).

Most vertices of degree two in G have both neighbours of degree two and so for each G €

G(s,l,t), we define a fixed set B = B(G) C V(P) as the set of vertices of degree 2 in P.

As |P| < ds + 1 we see from (11) that |B| > s/2. Let B1(G) = B(G) N Sy. Delete from By
any vertex v with a neighbour € N(S) such that x has an edge in N(S), to obtain By(G).

If we assume that &(S) occurs, then |Bi(G)| > s/3, and
|Bs| > s/3 — /50 > s/4. (12)

In fact replace By by a subset of size exactly [s/4]. Each vertex v in B, has an associated set

N, in S of size wy = [9w/10] such that

(i) there are no edges from U,cp, Ny to N(S5),

(ii) each vertex in each N, has at most (1 + ¢)w G,-neighbours in S\ N(S).

For v € S, let A(v) be the set of {v}:S edges of GG, joining v to N(v). We now consider events
Ap, Bp, which are defined as follows.

(i) Ap =Npep Ap, where Ap = {A(x;) > ¢; for 1 <7 <r(P)}.

(ii) For # € By(G) let A, C A(x) be the set of [9w/10] edges joining = to N,. For zy € A,
let M, be the set of at most (1 + €)w G,-edges joining y to S\ N(S). Then,

Bp = m ﬂ {ey £ My}



If {S:S is blue}, then (see (i)), x; € P € P implies that A(x;) > ¢; and so {S:S is blue} C Ap.
In addition, if + € B3(G) and y € N, then, since y has no neighbours in N(S5), zy < M,
implies zy is green. Hence {S:S is blue} C Ap N Bp. It is also true that {T',(S) = G} C
{G S Gy(S)}

Recall from (4) that A(G,S) = {T,(S) = G} N {S:S is blue}, so we may bound the last term
in (3) as follows,
¢
Pr(A(G,5)) < (%) (Pr(.Ap NBpNE | G,(S) D G)+Pr(E | Gy(S) 2 G)) . (13)
Let F = {G,(S5) 2 G}. We claim (proof deferred) that,
Pr(ApN& | F)<e’ ()t (14)

We now use Model 1 restricted to (¢,, so that the edge lengths are independent uniform [0, p]
random variables. For v € By, let I(v) = X,y where ¢(v) is the P edge directed into v.

Let C ={v € By:Il(v) > %} and C = {|C| < |By|/2}.
We show (proof deferred) that
Pr(Bp |C, &, Ap, F) <
Pr(C| &, Ap, F) < ', (16)
where § = Le™!%0.

Thus from (14), (15) and (16),
Pr(Ap NBpN& | F) < Pr(Apn& | F) (Pr(Bp |C, &, Ap, F)+ Pr(C | &,Ap,f))

< eo(s)w—t(e—es + 6_103). (17)
We now need an estimate of the size of G(s,¢,t). We claim (proof deferred) that
G(s,0,1)] = e?Bste. (18)

Then from (10), (13) and (17),

1
(i) <€O(S)w_t(€_95—|—€_105)—|—€_CW1/45)

n

< B tets, (19)

Pr(A(G, S))

IN

Hence from (2), (3), (18), (19)

sel t=s—1

t —sn—te—ﬁs

IN

(146)s
Pr(D) < o)1 3" (es) ( )|gsz,t>|max{Pr<A<G,s>>}
)

(14¢€)s

D+Y 3 (!
sel t=s—1
(14¢€)s

g )

sel t=s5—-1

IN

= o).



provided we assume s > 20¢'°°Inn when ¢t = s — 1, as in the statement of the theorem.
This completes the proof of Theorem 5.

O

We now continue the process described in Model 2, adding edges until a subgraph of minimum
degree two has been obtained. We note that whp G/, and hence I, contains vy ~ n'/*
vertices (set Vo, say) and vy ~ %nl/‘l Inn vertices of degree one (set Vi, say). Each of these
vertices obtains at least 1 or 2 random green edges when the process reaches minimum degree

2.

isolated

Consider any green components of size at least n'%/1% in I',. Let them be C;,C,,. ... Consider
the graph H with vertex set C,Cs, ... and an edge C;C; if there exists a vertex v € Vj such
that v is incident with green edges vw;, vw; where w; € C; and w; € C;. H is complete whp

since
nl/4

Pr(C;C; is not an edge) < (1 — ( ) ) < o—(=o(1)nt/®

n =

and there are at most n'/® choices for 7,j. Thus whp at the end of the process there is a
green component containing ' = C; U Cy U .. .. Assume now that I', contains no component
as described in Theorem 5. Then whp if v ¢ C then in I', exactly one of the following is true:

(a) v is in a component with s vertices, where ng < s < n'®'6. This component has at least
es vertices of degree 1,

(b) v is in a tree of size at most 20e'°Inn,
(c) v is in a unicyclic component of size at most ng, which is not a cycle,

(d) v is in a cyclic component of size at most ng.

The number of vertices in (a) is at most v; /e, in (b) at most O(; Inn) and from (c),(d) n°®
(there are few short cycles in (i, whp). Thus whp |C| > n — n'/?.

Consider finally the components induced by the vertices in (a), (b) and (c) above and the
vertices from V) that they contain. C was defined independently of the subsequent green
edges that are incident with Vj. Thus the probability that there is a v € V; whose second
green edge is not incident with C' is O(|V;|n~%?) = o(1) and so whp O, only has a giant
component K plus (perhaps) some cyclic components of size at most ng. A more precise
bound on the size of these components is derived in Section 5.



4 Deferred proofs.

Proof of (2):

> Pr(&o(9) < X
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Proof of (5):
Let p = Pr(v € Sp), then E(|S \ So|) = sp where p < exp(—€c?w/4) by the Chernoff bounds

on the tails of the Binomial distribution. Hence

— S 2
D) < —cfw/4\es/6
PrE(S) G5 26) < (5 )
< e—cw1/4s

— ?

Proof of (7):

If v € S then the probability it has exactly one neighbour in S is p’ = sp(l — p)*~t. Thus
the number v; of vertices in S with exactly one neighbour in S is distributed as B(n — s, p').
Applying the Chernoff bound and observing that sp = o(e€) for s € I we obtain

Pr(n < (1 —ews | G,(5) 2 G) < e,

Assuming & occurs, S:S contains at most (1 + €)ws edges from Sy to S. But

[SorNa( ) = 180:5] — (1 = [[S\ Sol[N()\ No(9)])
< (14 €ws — ((1 — €)ws — 3w%) ,

where 3w is whp an upper bound on the maximum degree of any G,. Thus with probability
1 — e='*s there are at most bews/2 edges between Sy and N3(.S).

Assume this and note that each v € Sg \ Sy has at least (o — €)w neighbours in Ny(v). Under
these assumptions

d
|So \ S1l(a — €)w < WS
which implies |Sp \ 51| < 2.6as, and so

1/44

Pr(&5(5) | Gp(5) 2 G) <™
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Proof of (8):

If v € T then Pr(v ¢ Tp) < e~ (1=o()w/3 and the corresponding events are independent,
given T'. So

at

()"

Pr(E,(9) | [1]=1) < (t)/

IN

(VAN
|
€

If & occurs then t > (1 — o(1))ws and so
Pr(&3(S) | G,(S) 2 G) < e

Proof of (9):

Pr(£4(5) | Go(5) 2 G)

IN
w
)
n
=
%

> 3ws neighbours)
+ Pr(&4(5) | S has at most 3ws neighbours)

(i) 62 () G
67 5

—CWS

IN

IN

IN

Proof of (14):
Fix for the moment, the values of a(v) = |A(v)| = [N(v)], v € Dy. Then

Pr( () Ap) = ] Pr(Ap),

PeP PeP
where if P = ey, x1,€,...€,2,,€41 as before, and if A, = A(x;) then
Pr(Ap) = Pr(A; >e¢ for1 <i<r)
= ﬁ Pr(A; > ¢;)

=1
_ H !
- =1 G(IZ) + 1

Say v € S is small if a(v) < (1 — €)w. Then

Pr(Ap) < (1= ) 0071



where o(P) is the number of small vertices on P. Thus if ¢ is the total number of small
vertices,

Pr(() Ap) < ((1—elw)” Zrer o)
peP
< (1 = e)w)"t-CEl+o+1),

Thus

Pr(Ap N &|F) = *Pw,
since if & occurs then o < es/6, and as G € G(s,{,1) then (11) applies.
Proof of (15):

As before, let [(v) = X.) where e(v) is the P edge directed into v. Conditioning on Ap
means that {(v) < min{X,,,vw € A(v)} for all relevant v € V(P).

The edges vw in A, are of length X, = n,, say, which is at least {(v) and thus U[l(v), p]. The
edges of M, are distributed as U]0, p].

We now consider the event Bp, which requires that at least one of the (at most) (1 + €)w, G,
edges in M, joining w to S\ N(S), should be green. Now suppose that C occurs. Let I(Bs)
= {l{(v):v € By} and wy = [9w/10] be the size of A,. Recalling from (12) that |Bz| > s/4,

" . b\ (e .
Pr(Bp | [(B;), Ap, &, F) < H H (/77 (v) (1 B (p m) ) piiin;(v))

vEB,\C j=1 =l P

< ((-tezm)

< exp(—s(te™®)),

The above inequality is true for any [(B;) for which C occurs so that
Pr(Bp | C, Ap, &5, F) < ™%,

Proof of (16):

We now consider the probability that the event C does not occur, so that at least half the
vertices of By have [(v) > 100p/w.

Pr(C| Ap,&,F) < Z H Pr(l(v) > 100p/w | l(v) < Xy, vw € A,)

cCBy wel
[C12|B21/2

IN

s (-2

cCcBy wel
IC1>[B21/2

Z e~ 90101

CCBy
IC1>1B21/2

IN
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Finally as |By| = s/4, we have,

. 5/4 3/4
Pr(C | Ap, &, F) < ( )e—%u
u=s/8 u
S 2;16—115
< 710,

Proof of (18):

We claim first that oo
s\ [t\ /L2
G(s,¢,1)] < (5) (6) ot hat—t,s-1, (20)

where h,, , 1s the number of ways of putting m labelled balls into n labelled boxes with at
least two balls per box.

We consider a natural mapping f from [s]* — MG(s,t), where MG(s, 1) is the set of multi-
graphs with vertex set [s] and ¢ edges. If x = (1, 2a,...,22) € [s]** then we let f(x) be the
multigraph with edge-set {{x2;_1, 22} : 1 < ¢ < t}. Observe now that each G € G(s,(,1)
is the image of precisely ¢! 2! members of [s]*. So we need only prove that the remain-
ing factors on the RH S of (20) are an upper bound on |f~!(G(s,¢,t))]|. For x € [s]** let
dx(j)=H{i:z; =j},1 <j <s. To construct x € f~1(G(s,¢,t)) we may

(i) choose J; = {j : dx(j) =1} in (Z) ways,

(ii) we then choose, in (é)ﬁ!?g ways, the set of indices ¢ such that z; € J;, noting
that, by connectivity any selected edge has only a single vertex of degree 1, and

(iii) fill in the remaining 2¢ — ¢ positions, using s — £ values so that dx(j) > 2 for
j &

This yields an upper bound only, as we have not ensured that f(x) will be connected or simple,
but verifies (20).

Now h,,, can be expressed as eo(”)nmqﬁ(a)” where @ = 2m/n > 2. The exact form of
the function ¢ is not important to us, only that it is continuous and that ¢(2) = 2¢™? as

hann = 2n!/2" and so ¢(2 + o(1)) = 2e7*(1 + o(1)) .

For { < es and t < (14 €)s, we have

S t 20— 4
— ofs). 2L 1oL < 2t — 9,2
(6)’ (ﬁ) e?s (s =) < 5% and ¢ ( - g) 2¢ (1 + o(1)).

Hence

G(s,4,1)] = e?Bste.
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5 Proof of Theorem 3: The limiting probability that
O, 1s connected.

We have shown in Section 3 that whp either O, is connected or consists of a giant component
and some cyclic components of size at most ng = y/logn. We now show that the expected
number of cyclic components of size at least s tends to zero as s tends to infinity, and that
the number of cyclic components of constant size is asymptotically Poisson with constant
parameter. Thus whp the size of the giant component is at least n —w(n) for any w(n) — occ.

Working with Model 1, we first establish some sharp inequalities for the number of second
order statistic edges which fall in the interval [0,y]. Let Q = Qx(y) be the event that there

are exactly k out of (Z) edges whose length is in [0, y], and let {2 be the union of these events.
Thus € is the entire sample space for Model 1. In either case, any edge with length at most
y, has length distributed as U[0, y].

Let X be some random variable on 2 with expectation £(X), and let £, (X) be the expectation
of X conditional on €.

Lemmal For0<e<1 let

K = {k:(l—E)(g)yS k< (1+6)<g)y},

p o= Pr( J ),

keV\K
6 = max|E(X) — E(X)| + p max Ei(X),
then
Pr(|X — B(X)| > 0) < maxPr(|X — E(X)| > 0~ | Q%)+ p. (21)
Proof: Using

E(X) = E(X)Pr()+ > E(X)Pr((),

leK leV\K

we see that

_ < _ —
B(X) = B(X)] € max |E(X) = Bu(X)] +p max Bi(X) = 5

Now for fixed k,

X — E(X))] | X — Ex(X)] + [Ex(X) — E(X)

<

thus
Pr(|X — E(X)| >0 | Q) < Pr(|X — Ef(X)|+6> 0| Q).

13



However
Pr(|X — E(X)|>0) < Y Pr(|X — E(X)| >0 | Q)Pr(%) +p,

keK
and the result follows. O

Now given w € Q, let V,(w) be the set of vertices v whose second order statistic edge length
T(2y, 18 at most y. Let N(y) = [V,| and S(y) = X ,cv, T(2)»; thus N(y) and S(y) are the
number of such vertices and the total length of their second order statistic edges respectively.
We adopt the convention that the parameter y is omitted from the random variable if no
confusion arises from this omission. We find that

E(N(y) = n(1—(1-y)" 21+ (n—2)y)), (22)

Bt = 2(1- -0 (1 -2+ (1)), (23)

The probability density function for the length, z, of the second order statistic edge at a vertex
is given by

9(z) = (n—1)(n —2) 2(1 - 2)"7,
thus, (22) is n [J g(2)dz and (23) is n [§ zg(z)d=.

We now derive asymptotic approximations for N, S for y < 3logn/n in terms of their expected
values at interpolated points.

Lemma 2 Let yo = Ay = n~>/% y; = 3logn/n, ¢ = 3log* n/(n(n — 1)y),
O(N(y)) = 4n(log® n)/y, and 0(S(y)) = 6n(log” n)y\/y.

Let the random variable X denote either N or S.
(i) Foryo <y <y,
Pr(|X(y) — E(X(y)| > 0(X(y))) < 4”21, (24)
(ii) Let y = iAy, i = 1,2,..., [3y/n(logn)], and z € [y,y + Ay], then whp,
B(X(2)) = 20(X(y)) < X(2) < E(X(2)) + 20(X(y)). (25)

Proof: (i) The expected number of edges falling in [0, y] is (g)y Thus if £ is the actual
number of edges,

g =l 5()

keV\K

< 2exp {—log4 n} .

We use the bounded martingale difference method (see, for example Alon and Spencer [1] or
McDiarmid [6]) to show that N and S are sharply concentrated for fixed &, y. In particular we
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see that |N; — Niy1| <2 and |S; — Siq1] < 2y, where NV; is the evaluation of E(N) conditional
on the first ¢ edges of the process defined by Model 2. Hence,

Pr <|N — Ex(N)| > \/2klog* n) < e log'n

Now, maxjey\x Ei(N) < n. Also maxjex |Ei(N) — Ex(N)| < |K| as we are adding at most
| K| edges going from Qy to Q;, (k < ). Thus §(N) < |K| + pn < nlog?ny/3y(1 + o(1)), and

the result follows from (21). We note that similar approximations can be made for S.

(ii) If X = N, S then both X(z) and E(X(z)) are monotone nondecreasing for z € [0, 1].
Thus for any z € [y, y + Ay], we have from part (i) whp that

E(X(y)) —0(X(y)) < X(2) < E(X(y + Ay)) + 0(X(y + Ay)).
Setting X = N and using a Taylor series expansion of E(N(y + Ay)) we see that
E(N(y)) < E(N(2)) < E(N(y)) + (n)sAylé(1 = "], &€ (y,y+ Ay).

The final term is less than (N (y)) for all y in the range.
A similar proof holds for S. O

Let M ={1,2,...,m}, and C = 12...m1 be the cycle with edges
er ={1,2},e2=1{2,3},...,e, = {m, 1}

of lengths =1, x3, ..., ,, respectively, where z; < x5 < --- < x,,. We shall call this the natural
ordering a = (eq, €, ..., €,) of the edges of C induced by 1 <y <+ < 2.

As before, let ng = \/logn, and let m < ng be a fixed natural number. Let &, be the event

(1) C is a cyclic component of Oy with the natural ordering «, where the edge lengths satisfy
1<y <<y <y = (3logn)/n,

(ii) | X(y) — E(X(y))] <0(X(y)) for y <y;, X = N, S as in Lemma 2.

The conditional probability density function g(z1,...,2,,) for the edge lengths (x4, ..., 2,,) of
C' given the event &, is well defined and corresponds to a function

f(xh 7$m) = g($17 ...7.13m)PI'(ga).

We will call f(z1,...,2,) the incomplete probability density function (ipdf) of &,.

For brevity, denote [n] by V, and let x(;); denote the length of the second shortest edge
incident with vertex j. Let ¢ € M, and j € V — M, then the edges {7,5} in M x (V — M)
have length d;; where d;; ~ U|0, 1], independently of each other.

Suppose we are given Oy[M| and O3[V — M], then for the edges of O, to be the union
of those of Oy[M] and O3]V — M] we require for all ¢ € M and for all j € V — M that
di,j > maX{w(g)Z‘7$(2)j}.
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Lemma 3 Let f(x1,x,...,%,) be the ipdf for the event &,. Then if ¢(y) = e~ tmy)e™™
we have

Flar,aon) = Baahilas) - oo )6 (on) (140 (222)).

Proof: If we consider the vertex set M in isolation, then the edges in M are U]0, 1] and
the ipdf for the event A(C') that Oy[M] is the cycle C' with the natural ordering is
V(21 T2, ooy T ATy dyy = (1 — 2,,)" 7% ¥ H(l — x;)l_del...dxm, (26)

(=4

as we require that 1 < zy < ... <z, and thus the probability that an edge {j,¢}, k <¢—1
is longer than z; is 1 — x;. For the values given by &, we have that ©» = 1 — O(m?*logn/n).

We now estimate the probability that Oy = O3[M]U Oz[V — M], when A(C) has occurred
and the structure and edge lengths of Oz[M] and O,[V — M| are known.

Let i € M, and let z = z(3);. Let
'H(i,z) = {dm’ > z and dm’ > Z(2);; \V/j eV-M | A(C), OQ[M], OQ[V — M]},

and let h(7,z) = Pr(H(7, 2)).
By the independence of the edges {i,7}, the ipdf f(ay,...,2, | O2[V — M]) of &, given
OQ[V — M] 1s

OV — M))dxy...de,, = h(2,23)...h(m — 1, &pm_1)h(m,z,)h(1, 2,,)
XU(L1y ey Ty )T .. dT (27)

flz, .., am

The sharp estimates for N and S given in Lemma 2, allow us to estimate h(z,z) (whp) as
follows.

Let n = |V —=M]|, and let N, S in Lemma?2 referto V—M. Let yo <y < y1,and z € [y, y+Ay],
as defined in Lemma 2. Then,

h(i,z) = [T (1=2) JI (1-2@)) (28)

JEV-M JEV—M
T(2); 57 T(2);>#
= (1-2"O IT (0 —2@);)
T(2); >2

= exp (—(N(Z)Z + O(N(2)2%)) — Z (2(2); + O(:(:(QQ)J-))) . (29)

T(2)j > %
Now, whp E(S(y1)) = E(S(1)) which is 2 + O(%) and
Pr (|S(y1) — E(S(y1)| > log*n/\/7) = O(n~ 7).
Thus, as S(1) — S(z) = Yoy, >= T(2)is We have (whp) that

log®
z)y; =2 —5(2) + O( ).
f(zz);ﬂ ()] Vi
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Thus (whp)

h(i,z) = exp (—N(z)z —(2- S(Z))) exp (0 (10!577]) +O(N(2)2) +0( f”{f)z)j)) ;
22, >

and the terms in the second exponent are O(log?’n/\/ﬁ) as z,(2); < y1 whp. We now use

the results of Lemma 2 (25) to substitute the expected values of N(z), S(z) into the first
exponent to give

hi,z) = exp {~E(N(2))z — (2 = E(S(2)))} (1 + O[z0(N(y)) + 0(S(y))]) (L + O(x52)) .
From (22), (23) we see that, on replacing n by n — m,
E(N(2)z4+(2—-E(S(2)=nz+ (1 - Z)”_2(2 +nz) 4+ O(mz + nz? + %)

Finally, recalling that m < /logn and z < 3logn/n, we see that

Wi z) = exp (—nz — (2 + nz)e™) (1 +o (105;")) . (30)

The result follows from (26), (27) and (30). a
Consider the cycle C = 12...m1 with edges e, €3, ...,€,, on M. In the previous lemma we used
the natural ordering o = (eq, €, ..., €,,) of the edges induced by x; < 29 < -+ 2. In general

let @ = {w:w=(en),e@), - €m))} be the set of all m tuples, where ¢(; is the edge of length
Ty, and x(1) < T(g), 0 < Ty

It £, is the event that ' with edge ordering w is an isolated cycle of Oy; then for m > 3, the
expected number of such cyclic components v,, is

U = (:;) e 5 L 3 Pr(€.). (31)

wed

We note that as m! = o(exp(; log* n)) the bounds for N, S derived in (24) of Lemma 2 hold
simultaneously for all entries in this expression. The limiting ipdf f(z1, x2, ..., T w) is derived
in the same way as for the natural ordering «, except now in h(z, z), the length of the second
order statistic edge of vertex ¢ in O3[M] is given by z = max{d;_1;,d;;+1} whereas previously
z =d;iq1.

The explicit form of this ipdf and the details of the bounds for v, are given in Lemmas 5.6
below. Before we prove the bounds in Theorem 3, we need to indicate why the number of
small cyclic components tends to a Poisson distribution.

Lemma 4 The number of cyclic components of Oy tends to a Poisson distribution with pa-
rameter V=73, 53 Vm.
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Proof: Let W be a random variable counting the number of isolated cycles, where
E(W) =v =3 ,,53Vn What can we say about the rth factorial moment of W? Consider
the case for r = 2. We wish to count the number of ordered pairs of isolated cycles.

Let C;,7 = 1,2 have edge orders w; and vertex sets M;, where M = M; UM, and M; N M, = ().
In order to compare Pr(&,, £.,) with Pr(&,, )Pr(€,,) we examine Pr(€,, | £,,). Specifically,
we consider (27) but condition on the existence of Cj.

If k¢ M and j € M,, then the term in the product for k in hy(j, z|C1) is the same as in
hy(g,z). 1f k € M then the product term (either (1 — z) or (1 — z(3)%)) is missing from
ha(j,z|C1) see (28). Thus,

Pr(&,,&.,) = Pr(&,, )Pr(€,,)(1 + O(mimay:))

as we have already noted that (.) given in (26) is 1 — O(m?*logn/n).

Thus E(W), = E*(W)(1 + 0(10g3 n/n)).

This generalizes to E(W), = E"(W)(1+ o(log”t" n/n)) which gives the required convergence.
O

As before, let ¢(y) denote the asymptotic value of h(z,y), thus from (30),

d(y) = exp(—ny — (2 + ny)e™™)

Lemma 5 Let w = (eq), €), ..., €(m)) be an ordering of the edges of C' by increasing length,
and let o = (€1, €z, ..., €n) be the natural ordering. Then

JL_/O1 ST (2) de < Pr(€) < </H¢ ) da: = Io. (32)

m — 1!

Proof: We have already shown that, asymptotically

/dxl (H¢ dxz) 62 () . (33)

Consider adding the edges ¢(;) to the cycle C' in order of increasing length. The variable j;
counts the number of vertices whose degree becomes 2 on addition of the edge e;).
We now claim that, asymptotically

/d"c ( ¢>J' ) $(i)) ¢’2($(m)) Az (m),

where 0 <7, <2, jo+ -4+ 5 <i1—1, jo+ -+ Jmo1 =m —2.

In particular let e;) = {k,k + 1}. There will be a ¢ entry for vertex k corresponding to
h(k,z(;) if and only if e(;) is the second edge in the sequence w incident with vertex k, if and
only if 2(;y = max{dr_1 4, drr41}. Hence 0 < j; < 2.

Fore <m—2, jo+---+7; <t —1 as this sum gives the number of vertices of degree 2 in the
paths formed by the edges e(1), €2y, ..., €;. Moreover j, + -+ + j,,_1 = m — 2 as this counts
vertices of degree 2 on the path formed by deleting the longest edge from the cycle.
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Let ¢ be the lowest index such that j; = 0 in Pr(€,), and k the first index such that j, = 2,
where 7 < k by the above discussion. The function ¢ is non-increasing on [0, 1], and z;) < z(
s0

/---¢2($(k)) dx () drgy < /"‘¢($(i))¢(x(k)) dx iy d ).

An induction based on successive rearrangements of this form gives the required inequalities.
O

We now give some bounds for v, the parameter of the Poisson distribution for the asymptotic
number of cyclic components.

Lemma 6
0.004152 < v < 0.009228

Proof: Lower bound.

We remark that for cycles of very short length, the different possible orderings of the edges
can be represented explicitly and the Poisson parameters obtained by direct integration. In
particular, for cycles of length 3, all cycles can be relabelled to have the natural ordering.

Thus, from (31) and (33) we see that

1 z —ny —nz
vy = (n)B/ ) Oye—(ny—l—(Q—I—ny)e )6—2(n2+(2—|—n2)e )dy dz
z= y=

= 0.00415239,

by numerical integration. Thus the number of triangles is asymptotically Poisson with pa-
rameter v3 = 0.00415239. We note that the lower bound v;, on v must be at least vs.

Upper bound. Let

6_2, 0<y<2
— — n
e "™, %<y§1,

then ¥ (y) > ¢(y) for y € [0,1]. Replacing ¢ by % in the integral [y of the previous lemma,
we see that Ipy(v) = Y72, L(i) where

L(L) = /I (/I e—Zidl,l A dxz) e—n($i+1+...+$m)d$2.+1 Ce d:Em

K24 1,

and the range of integration of L(z) is over K;; = {0 < 27 < -+ < 2; < 2/n} and Ky; =
{2/n <z < <@, <1} Thus each L(2) is the product of two integrals. The first A(1,7)
has range of integration K;; and each of the ¢ entries for ¥ is e7%. The second B(i 4+ 1,m)
has range of integration K,; and thus each of the m — ¢ entries for ¢ is of the form e™".

21

It is immediate that A(1,7) = & (%)Z and a tedious induction shows that B(i+1,i+k) = &

7! n

2k
k!

asymptotically. Hence Iyy(y) = 3:@;? and it follows from (31), (32) that, asymptotically
1 1 o -2 (3777 (3e7?)
v = 5 (10g m —3e - 9 - 3 + vs.



O

It is an immediate consequence of Lemma 4 and 6 that the expected number of cyclic com-

ponents of length m is at most
n\ (m—1)! e~ )™
(2} 0 0

2m

and thus whp there are no cycles of length w(n) for any w(n) — oo, and at most w(n) vertices
on cyclic components of constant length. This completes the proof of Theorems 2 and 3.

6 Proof of Theorem 4: k-Connectivity of O;.

Assume now that k > 3 is fixed. For T' C [n] let
D(T)={O\T 1is not connected}.

We need to prove that
Pr ( U D(T)) = o(1). (34)
|T|:k’—1

Putting Ty = [k — 1] and Dy = D(Ty), we prove (34) by showing
Pr(Dy) = o(n~*"1). (35)

It is important to note that proving connectivity in Og[[n] — To] is not sufficient, as green
edges in this graph may be recoloured blue on addition of 7§, and hence deleted.

Suppose now that I',, denotes the subgraph of O \ Ty induced by the edges of G,. Re-
working the calculations of Sections 3 and 4 we see that there exists a constant ¢; such that
with probability 1 — o(n=F), I',x has the following property:

There is no component of size s between c;Inn and n; which has fewer than es vertices of
degree 1.

One hardly notices the effect of edges incident with 7§ in the calculations relating to the event
& of Theorem 5, where now S:S denotes the set of edges from S to [n]\ (S U Ty). We now
extend our definition of By, (refer to the paragraph of equation (12)), to require not only that
these neighbour vertices are independent, but also have no edge to T in G,.

Continuing the analysis following the proof of Theorem 5 in Section 3, we obtain a subgraph
of Oy, of minimum degree 2, induced by G, where ¢ = (logn + loglog n +w)/n, which we will
denote by O[G,]. With probability 1 — o(rn=%), O4[G,] — Ty is (a) connected, or (b) contains
one giant component K of size at least n —n'/? plus small components of size at most ¢ Inn.

We must consider Case (b). These small components are either
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(i) isolated components C' of O[], not necessarily cyclic, or

(i) span a set of vertices W, such that there are no green edges from W to K, but Oy [G,[WU
To]] is connected.

Case (i) is dealt with below by showing that either C' does not exist whp in G, as it contains
too many edges, or that at least & additional random green edges must be incident with C in
Oy, as the degree sum of C in O[] is too small. The probability that none of these random
green edges is incident with K is O(n~"). Specifically,

If |C| = 3 then there are at least 3(k — 2) > k additional green edges incident with C.
If |C| =4 and k > 4 then there are at least 4k — 12 > k additional edges incident with C.

If |[C] =4 and k = 3 then either (i) there are at least 4 additional edges incident with C,
or (ii) there are at least 5 edges contained in C'. The probability that G, contains a set of 4
vertices spanning 5 or 6 edges is o(1).

If |C| = s > 5 then there are at least
sk—2(s+as)+1=sk—2—-0(1))—2k+1>k
additional edges incident with C' by Lemma 7, stated below.

Case (ii) can now be dealt with in G,, (r = (logn + (k — 1)loglogn + w)/n). Let |W| = w.
We will show whp that the set W U T contains too many edges. Suppose that in O, W has
x internal edges and there are y edges between W and Tj. The probability in G, of this event
is at most

(IO - (2 ()

Now 2z + y > wk, where y > 1 and z < min{ (7“2”), w + a,}. By arguments similar to those

used above, we see that the probability of the event is bounded by O(n~*) as required.
Thus (35) and the rest of Theorem 4 follows.

Lemma 7 Suppose s < ¢plnn. Let p < 2logn/n
klnn+slnlnn 4+ sIn8

@ = Inn —Ins—1n8 —Ilnlnn
Inlnn
= k+s — + O(s/Inn) + o(1).

Then the probability that (G, contains a set of s vertices spanning s + a, edges is o(n™").

Proof: The expected number of sets of size s with at least s + a edges is

) (22) < e

(See (2) for a similar calculation.) Substituting a, for @ and simplifying yields the result. O
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