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ABSTRACT
Let a random graph G be constructed by adding random edges one by
one, starting with n isolated vertices. We show that with probability go-

ing to one as n goes to infinity, when G first has minimum degree two, it
has at least (log n)"" " distinct hamilton cycles for any fixed € > 0.

1. INTRODUCTION

Let V, = {1,2,...,n} and consider the random graph process (Bollobés [3])
G, Gy, ...,G,, v = (3) where G,, = (V,,E,), E; = ¢, and E,,,, is obtained
from E,, by adding an edge e,,,, chosen randomly from [#]® — E,,. Now let

m* = min{m: §G,) = 2}.

Bollobés {2] (see also Ajtai, Komlos, and Szemerédi [1] and Komlos and
Szemerédi [7]) showed that

lim Pr(G,, is hamiltonian) = 1.
Knowing that G,. usually has at least one hamilton cycle raises the question

of how many distinct hamilton cycles does it usually contain. We prove
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Theorem. If € > 0 is fixed then lim Pr(G,, has at least (log n)" " distinct
" hamilton cycles) = 1. & =

Thus at m* the number of hamilton cycles jumps dramatically from O to at
least (log n)"""™. On the other hand, the expected number of hamilton cycles at
this point is (log n)"¢ "™ and so the theorem gives the right order of magni-
tude for the number of hamilton cycles in G,,..

2. NOTATION AND PRELIMINARIES

‘We say that almost every (a.e.) graph process satisfies a certain property if this
property holds with probability tending to 1 as n tends to «. Let m, =
LG(iog n + log log n — log log log n)) and m, = I'zn(log n + loglogn —
log log log n)]. It follows from Erdés and Renyi [4] that m, < m* < m,in a.e.
graph process. '

In what follows, our inequalities need only be true for large enough n Itis |
aIWays useful to bear in mind the relationship between G, and G = m/v,
= (3), the random graph in which each possible edge appears mdependently

_w1th probability p. Let E, denote the edge set of G,.

The properties we need are (see [2]) suppose .‘,ﬁ is some property of graphs.
Then

PG, EA) =3VnlognPrG,Esl), m=m=m, (2l
ae. G, & s and o is monotone implies a.e. G, € . (2.1b)

a.e. G, € s{ implies there exists m’, m — Vailogn=m =m _
_such that a.e. G, € . B (2.1c)

Now let ¢ > 0 be fixed and small from now on, and V+ =V, - V.., where

n, = {1 — &)n/2],

L,={v€EV,:d,(v) =<logn/I0}
where d,, (v) is the degree of v in G,, and

Ly ={veEV,:d,(v) =< log n/10}

where d,(v) is the number of neighbors of v in V.
ForSCV,let

N(Sy={weV,—8§: FvES suchthatww € E,},

and let N,(S) be defined similarly.
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ForS,TCV,SNT= qb,e,,,(S,T) =low EE,;vES,WwETY.
LetNL =L, UL} U WL, UL NV,).

“We now descrlbe the basic propertles ‘of G,,m, = m =< m,, which are
needed for the paper.

Lemma 2.1. Almost every graph proccss is such that stmu[taneously for all
m=m= mz, G,, satisfies

AG,)=3logn (maximum degree) . - - (2.2a)
IL.| =< n®,  |L} =< n*, _ (2.2b)
No pair of vertices v, w € L, are within distance 4 of each other. {2.2¢)
No pair of vertices v,w € V, have 3 or more cominon neighbors. (2.2d)v
TCV, |M= @girﬁ implies that T contains at most 3|T] edges.
(2.2e)
: !
$#£SCV,~ L, ~Is|=+ " ~ implies [N, (5)] = o8 ”[SI 2.2f)
" , I
$#£SCV, =Ly, || = implies [N, (5) N V] = °6gO”|s|
(2.2g)
S,TCV,, SNT=é¢,
no N nlogn
S| =T = | ———= 1 5,T)= —————. .2h
IS1 = 171 [(Iog log n)a—l implies e,,(S, ) 2(iog log n)® 2.20)
v, contains at least 5 n log n edges. ‘ (2.2i) -

Proof. (0ut11ne detalls of srmllar results can be found in [2]). Let p, =
m\/N, P2 = m/N. -

Proof of (2.2a).

PrA(G,) >3logn)=n Y, (n « 1)p’é(l =P = o(1).

k>3logn

Hence (2.1b) implies Pr(A(G,,) > 3 log n) = o(1) and then the result follows
from A(G,) = A(G,,). ,
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Proof of (2.2b).

n-—1 -
s h=n_s ("7 oo pr
k=(1/10}logn

— 0(1’10'34).

Now use the Markov inequality and proceed as in the proof of (2.2a). The
proof of the upper bound for |L ;| is similar.

Proof of (2.2¢).

-1 -
Pr((2.2¢) fails in G, ) =< n5p§( > (" ‘ )p’;(l -p)y
- k=<(1/10} logn .
= o(1)
Now let m’ be as (2.1c). Then

Pr((2.2¢) fails from some G,,,m" = m < m,|(2.2a) — (2.2c) holds in G,)
=< Pr(3 ¢ = wv € E,, — E, such that dist(x, L), dist(v, L,;) =< 3 in G|
(2.2a) — (2.2¢) hold in G,;)))

= 0(n log log log n(n**(log n)*)*/v) [ = (;)]
= o(1).
Proof of (2.2d).

-2
Pr(G, has 2 vertices with 3 or more common neighbors) < (;) (n 3 )P 2

= (log n)%/n.

We can now use (2.1b) to “extend” this to G,,. But if (2.2f) holds for G,,,, it
must also hold for m = m,.

Proof of (2.2e). Fix m and p = m/v. Then

n(logn}2 A k
Pr{(2.2¢) fails in G,) = 2, (k) 2 e

k=8

=0(n"'%.

A N S P i ) € e e L
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Hence, by (2.1a),
Pr(2 m,m; < m < m, such that (2.2e) fails in G,) = o(1).
Proof of (2.2f). Now if (2.2e) holds, then this on its own implies”

log n
60

n
(log n)*’

INV,.(8)| = || for SCV,-L, |s|=

For larger S, we drop the condition § N L, = ¢. '
Suppose S C V,. |S| = n/log n. If v € V, — § then Pr(v € N,(S) =
1= (1~ p = ([S|p)/2. Hence-

log n
60

Pr(E SCV, and |N,(8)| =

n n
—— <5 =
(log n)* 51 log |S!)

vy sp\ _slogn
= PriBln —s5,—) =—=—
5= -’%!E!'I)4 (S) r(- (n ’ 2) 60

ne
= —) — anps for some constant o > 0
s=af(logmy*

s
=o(n%.
Proof of (2_.2g). Similar to that of (2.2f).

Proof of (2.2k). Let s = [n/(log log n)*]. Now e,(S,T) is distributed as
the binomial random variable B(s?, p). But

1
Pr(B(s%, p) < 1s%p) = ¢ 8%,

Hence

2
Pr((2.2h) fails in G,) =< (;') e 5

I
2
=
&

and the result follows in ghc usual manner.,

Proof of (2.2i). 'The number of edges of G, that are contained in V, domi-
nates BGn%,p). 1

Now let §,, = {G,: (2.2) holds and &(G,,) = 2}.
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3. PROOF OF THE THEOREM

We now describe a way of choosing a large set % of subgraphs of G, € 4,
most of which are hamiltonian and such that if C, C’ are hamilton cycles of dis-
tinct H,H' € ¥ then C # C’. :
LetA, =V, —NL,B,=V, —NL, and for v € 4, let W(v) =
{ww EE,:w€EB,} '
Let L, = [log #/10] and r be a prime satisfying (log log n)* = r <

2(log log n), let k = |log, Ly and L = r*. We treat {1,2, .. .,L} as the points

of the k-dimensional vector space over the field with r elements, GF,. This
space has K = r*"'(#* — 1)/(r — 1) lines. Let the point sets for these lines be
the r-subsets X, X,, ..., X, of L. The only property of these sets used is
IX; N X;| = 1 fori # j.

For each v € A,, we choose a random L-subset W'(v) C W(v) plus a random
ordering wy, w,, ..., w, (of W'(v)). We then define r-subsets W(v,k} C W'(v),
k=1,2,...,K by letting W(v, k) = {w; ,w ., W, } when X, =
{ivsbas .oy inh :

Now let ® = {f: A, — {1,2,...,K}}. For each f € ® we will define a
subgraph H; of G,, as follows: delete from G, all edges incident with A,, other
than U,e, W(v,f(v)). Let now ¥ = {H;: f € ®}. Observe

igr e

] = Ko | 3.0

— (log n)(l'e:*o(l))n

If Cf, C, are hamilton cycles of H,,H,,f # g, then C;# C,. (3.2)

For if f(v) # g(v) then C; uses 2 edges of W(v, f(v)) and C, can use at most one
edge of W(v,f(v)).

-Now let Z,, = |{f € ®: H,is not hamiltonian}|. We prove
EZ,|GE€%,) =P/ - (3.3)

and so

Pr(z,,, = E’;' Ge %m) =0(n7%.
Thus
) 1
PT(G,,, haS fewel‘ {ha{l(l - _;t.) (log n)(l'—s—(?(l))n (3'4)

hamilton cycles|G,, € fﬁm) =0(n"?).




NUMBER OF HAMILTON CYCLES 725 -

The theorem follows 1mmedlately from (3.4).
‘We must now show that most H; are hamiltonian.
Consider a fixed f € ®. To prove (3.3) we show

pr (H; is not hamiltonian | Ge%4,) = 0(n™%) . 3.5
First of all consider the distribution of the edges in the sets W, f(¥)).

Lemma 3.1. Conditional on the subgraph induced by V, — A,,, the sets
W(v, f(v)) are an independent collection of random r-subsets of B,.

Proof. Consider a fixed G,,, v € A, and W(v) = N,(v) N B, (We cannot
assume G, € 4, here.) Replacing W(v) by another subset of B, of the same
size does not change A,, or NL. We use here the fact that w € B, has at least
log n/10 neighbors in V’r and so changing the neighbors of v € A,, cannot
place w in NL. It follows that the sets W(v) are independent random subsets and
the lemma follows as the W(v, f(v)) are random subsets of these. N

Letnow X CE, and H; , = H; — X. We say that X is deletable if

X'l =n where Xx* =V{e EX:eC VY, : (3.6a)
X N Wy, f))| =3 -for v E A, (3.6b)
X is not incident with any vertex in v
£, = {v €V, d) = log 4 2log "’} (3.60)
, 10 log log n

IfvE€B,and d*(v) = |log n/10] + &
then v is incident with at most ¥ — I edges in X . (3.6d)

2logn

or more edges in X*.©  (3.6e)
log log n

No v € B, is incident with

AH,) = MH, ) where A denotes the o
: length of the longést path inrthe,appropriate graph.” . (3.6f)

Observe that a calculatlon similar to that given for (2 2b) shows that [f, | < n?*
in a.e. G,. We now incorporaté this condition into the definition of G-

Our next lemma deals with the number of neighbors of subsets of A,
For § C V, and subgraph H of G,, let Ny(S) = {w ¢ S: vw € E(H) for some
v E S}
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Lemma 3.2. The following hold with probability 1 — o(n%). Here let
H = Hf‘ :
(i) § C A, 1 =|5] = n/600 implies |N,(S)| = 80]S].
(i) S CA,, TCB,, IS| = |T| = [n/Vlog log r} implies that H contains
at least n log log » edges joining S and T.
(iiiy T C B,, |T| = n/(r log n) implies [Ny (T) N A4,| < 37T|.

Proof. (i) We first consider |S| = n/3r and show [N, (S)| = 7{S|/2 with the
required probability. : h

. nl3r —
Pr(3s: |S| = n/3r and V()] = 7ls|/2) = 3 (’Z) ("rs y 2”)

- - ni3r E 2(” — na)e 2 rs 5

a FE, ( s ( rs ) (Z(n - na))
nl3r ne ers 2\ s
=3 e ng) )

= o(n7?).

Suppose now n/3r < |S| =< n/600. Let §' C S be of size |n/3r]. Then

Vx (8)] = |Nu (Sl
= rln/3rj/2
= n/7
> 80}s].

(ii) Consider the selection of the sets W(v,f(v)) for v € §. This involves
rs(s = |S}) choices of elements in B,, and each choice always has probability at
least (s — r + 1)/{(n — n,) of being in 7. Thus the number of choices, and
hence edges in-question, stochastically dominates the binomial B(rs, (s — r + 1)/
(n — n.)). Hence

2 -r+
Pr({iii) fails) = (’:) Pr(B (rs,s—n—-_-’_:n—i) = n log log n)

and the result follows from the Chernoff bound (see for example [3D) for the
tails of the binomial since

2
£lp rs’s—r+1 - 2rs 22n10g10gn‘
n—n, a(l + g) 1+ e

|
i
H
1
i
i
!
H
i
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(iiY) Fix T' C B,, n/(r log n) < |T| = t < n/6r and S C A,, S| = 317].
Now if # = |B,| then

PriWv,fw) N T # ¢ forallve §)=11 -

2r\ 3"
={—) .
n

n6r A 1 3t
i\ [2rt
Pr{(iii) fails) = ( ) (2 ) (——)
,=,,,§03,,) t) \3rt) \ n
nlbr ne ! e 3rt
GG
=nirlogn t 3

=onY. 1

Hence

IA

Let €, be the event denoting the occurrence of the conditions in the above lemma.

Lemma 3.3. Suppose G, € %, FE D, €, occurs, X is deletable, and
H=H,,. Then

(i) $ C V,, INAS)H| < 28] implies

@ |S| = n/600

() |5 U Nu(8) N B, = (n/2) + (en/3).
(ii) H is connected.

Proof. (i) Suppose SC V,. Let Sq=8SNL,, S =8N Ly —L,),
S2 =S-nAmandS3 = S - (SD U Sl U Sz).

Assume first that |S;| < n/log 1 and |$,| = n/600.

Case I. |S)| =S, U &,
@ |5 -5 < 2L,

Let S* be the larger and § the smaller of § 1» 53. Then

210gn A
> + Y - — = ¥ —
A = NSOl + s = ZBE 5] — I5, U §
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— [N(8%) N (Sg U N,(59)]

log n 2logn
= + - ¥ — 315% — |§*
MI(m mmgwlmfli

= 2/$|,
(after usiﬁg (2.2¢c), (2.2f), (2.2g), and (3.6e) to obtain the second inequality).
(b) IS — 8| = 2[vL|.
Nu(S)| = [Nu(S3)| — INL U S|

log n 2logn
= - Ss| — INL| —
e [

= 2ls|,
(using S, U S, C NL and |S,] < |S;| + |NL|).
| Case2. |S)| > S, US,.
|N,,.'(S)| = 80|, — 3|, + 2ISo| — IS, U 5| = 2[s].

Suppose now that |S,} =< n/600 and 72/log n < |S| =< n/600. Choose S} C S,
of size |n/log n] and let §' = (§ — §3) U §3. Then
|NH(S)| = |NH(S")| - 153,"' Sél .

log n
200

= 2|So| + 22[Sz| + (lsll + |S§D - lsa - S::I

log n _lo n
— IS5 +
200 |S| 200 200 Log nJ

= 2ls,| + 225, +
= 2|s]|.

We have thus proved (i), part (a).

For part (b), we know, from part (a), that |S| = n/600 and hence

IS, U 8y = »r/700.

Assume first that |S;| = n/1400. Suppose |(S; U Ny(Sy) N B,| < in +
(en)/3. Then there exists T C B, of size at least (en)/7 such that Ny(S;) N T =
¢. Now it follows from (2.2h) that G,, contains at least # log n/2(log log n)°
edges joining S, and T. But X contains at most » edges joining S, and 7, and so
Ny(S;) N T # ¢ — contradiction.

Assume next that |S,| = 7/1400. The proof here is similar to that above, but
relying on Lemma 3.2(ii) in place of (2.2h), and the fact that X contains only
3 edges incident with eachv € A, '

L
i.
i
|
r
|
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(i) Suppose H is not connected and there exists § C V,, |S| < 3n such that
there are no § to V, — § edges in H. Now [(V, — ) N (B,)| = (sn)/3 and (i)
implies |S| = n/600. We obtain a contradiction using (2.2h) or Lemma 3.2(ii)
as in ((b). 1 : . )

Suppose now that H, is not hamiltonian and X is deletable. Let P =
(x, X1, - . ., x,) be a longest path of both H; and H = H; . If x,x, € E(H),
i # 0, then the associated rotation with x, fixed and broken edge x.x,,, yields a
new longest path p(P, x5, %) = (X0, %15 .+« 3 Xi Xy Xpis - -+ 2 Xip1)-

"Let END(P, x,) denote the set of other endpoints of longest paths that are
obtainable in H from P by a sequence of rotations, with x, fixed, and starting
from P. _

We will restrict our allowable rotations to those where the broken edge is an
edge of the starting path P. We further restrict ourselves so that if P’ is ob-
tained from P by a sequence of rotations through paths P = P,,P,,...,P, = P’
then the paths P, P,, . .., P, have distinct endpoints other than x,.

Suppose that the paths produced in the construction of END(P, x,) are -
® = {P°P",P?, ...} where P° = P and P""' is obtained from some P/, j < i,
by a single rotation. '

Let END = END(P, x5} U {x,} and for each x € END et P, denote the first
‘path (in the above ordering) with endpoint x (so that P, = P). For x # x; let
END(x) = END(P,, x). Now a simple modification of the argument of Posa [6]
shows that -

IN(END®)| < 2[END()] .

(Indeed, all we have to show is that if v € N,(END) with neighbors w, w, on

P then {w,, w,} N END # ¢. Suppose w’ € END and vw' € E(H). Consider

the neighbors w{, w; of v on P,.. If {w{, w3} = {w,, w,} then some allowable

rotation from P,. shows one of wy, w, is in END. If say w, ¢ {w!, w3} then the

sequence of rotations that created P, deleted the edge vw, and so w, € END.)
We deduce from Lemma 3.3._that

[END(x)| = Egﬁ for x € END. (3.72)
n
D| = = .
JEND| = - (3.7b)

Each P,, x € END, contains at least £ en édges with both endpoints in B,, .
: ' (3.7¢)

To see (3.7¢c) let n,, i = 0, 1,2, denote the number of edges of P, with { ver-
tices in B,,. Then n, — n, = (|[V(P,) N B,| — |[V(P) N v, U NL)) — 1.
Since P, is a longest path, it must contain Ny(END(x)). But then Lemma 3.3
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implies [(END(x) U N,(END(x))) N (B,)| = 31 + (en)/3 and so n, — ny =
in+ (en)/3 — Gn — (en)/2 + o(m)) — 1 and (3.7¢) follows. Given (3.7) we
consider two possibilities.

Case I. There exists x € END such that [END(x) N B,| = »/1200.

Case 2. |END(x) N B,| < n/1200 for all x € END.

Case 1 is easier to deal with and is considered first. Without loss of general-
ity assume |END N B, = n/1200, i.e., x = x, suffices above. Observe that
because H, is connected,

x € END, y € END(x) implies xy ¢ E(H)). (3.8)

(We use the “coloring” argument of Fenner and Frieze [5] to show this is un-
likely when a large number of x € B,,. Since A,, contains no edges in Hy, (3.8)
does not help so much in Case 2 and we are in a similar situation to that en-
countered in the case of random bipartite graphs — see Frieze [6]).

Suppose now that given G,, € %, we randomly pick X C E,, satisfying
(3.6a) and (3.6b). We consider two events:

%, = ¢; N {G,, € 4,, H, is not hamiltonian; Case 1 occurs}
%, = %, N {X is deletable} .

We show

Pr%, | %) = — (1 - —2—) ) (1 . ) . (3.92)
2 r log n

Pr(%,) = ¢ for some constant 0 < ¢, < 1. (3.9b)
We can then deduce
Pr(8)) = (¢, + o(1))". (3.10)

Proof of (3.9a). Fix G € 4, and the choices W(v,f(v})) for v € A,,. Fix
some longest path P of H,. Consider first the edges of X that meet A,.. Each
W(v, f(v)) contains at most 2 edges of P. This accounts for the term (1 —
(2/r)¥%. Now consider the remaining » edges of X. Now to avoid P and the
edges incident with NL, X must avoid at most n + o(n) edges, given (2.2a) and
{2.2b). Using this and (2.2i) we obtain (1 — (20/log n))" as a lower bound for
the probability of avoiding these edges. Given that these edges are not selected,
the probability that (3.6d) or (3.6¢) fails is o(1), which accounts for the 3.
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Proof of (3.9b). Consider fixed graphs G and A. We show
Pr($,1G,—X=G, H,y=H=c (3.11)

and (3.9b) follows.

Observe that G,, — X, H; x together determine A, by v € A, iff v = n, and it
loses edges in H, . NL is then determined by v € NL iff v ¢ A, and d*(v) <
(log n)/10 or v € V,, and v is the nelghbor of such a vertex.

If Pr(%, | G, X G, Hyx = H) > 0 then there exists X such that €,
occurs for G + X, # + X. Hence we may assume that (3.7) holds where END,
END(x), x € END are determined by A only {and are independent of X). We
may also assume Case 1 occurs in . .

Furthermore, the edges in X are required to conform to (3.8). Thus let €,
denote the event {x € END, y € END(x) implies xy ¢ X}. Then

Pr(&)G, ~ X = G,H,x = A)
= Pr&,)G,, — X = G,H,, = H,(3.60), (3.6d). (3.12)
(For (3.12) use Pr(A|BC) = Pr(AB|C) for events A,B, C).

Let us now consider the distribution of X given G,, — X, H;, and (3.6¢),
(3.6d). Let X = X* U (U,e, Y,), where for v € A, ¥, = {vw € X}. We
claim the following:

X* is a random n-subset of B? — E(G). (3.13a)
For v € A,, Y, is a random 3-subset of {vw ¢ E(G): w € B,}
and these subsets are independent of each other . (3.13b)

(3.13a) follows from the fact that given (3.6¢), (3.6d) holds for one X, the
addition (and subsequent deletion) of any n-subset of B — E(G) does not af-
fect H; , and (3.6c¢), (3.6d) will still hold. (3.13b) follows from Lemma 3.1 and
its proof.

Now for w € END N B,, let B(w) = [END(w) N B,|. The following two
subcases cover all possibilities:

Case la. [{w: B(w) > n/1200}| = n/2400.

Case Ib.  [fw: B(w) < n/1200})] = n/2400.

It follows from (3.13a) that, where v* = ("7'9) and &1 < m,

Pr(%,|Case la) < (’” — - 3n2/(2(2400)2)) /(,,+ - m)

R n
95999}"
96000
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1t follows from (3.13b) that

. ' 3\ w0
Pr(‘é2|¢ase 1b) = (1 - m) .

We have thus confirmed (3.9b).

Let us now consider Case 2. Let €, be as before, except that Case 2 replaces
Case 1, and let €, now be defined with respect to the new ;. (3 9a) continues
to hold. We prove

Pr(%,lG,, = é,HL x = 0= c5 for some constant 0 < ¢, = ¢,(e) < 1,-
: (3.9b")

which combined wifh (3.9a) yields
Pr(%,) = (¢, + o(1))". (3.10"

From (3.10) and (3.10"), and the fact that Pr(%flG €%, = 1 ~ o(h~ ) we
obtain (3.3) and the theorem.

We.observe that (3.13) continues to hold. We can assume that H contains a
longest path P with endpoints x,, x, and /1200 vertices END C A,,, and for
each x € END there is a set of n/600 paths P, with distinct endpoints
(END{(x)). These will have been constructed from a path P, by rotations as in
- the discussion prior to (3.7).

We now consider in more detail the construction of END(P, x,). Let T = T(x,)
denote the tree with vertex set END(P, x), rooted at x; and with an edge di-
rected from x to y if P, is obtained by a single rotation from P. Let J be the set
of possible trees that can be so constructed.

Consider the following condition:

s there exists T € F such that T contains a subtree T’, rooted at x,, which
‘has (D VTH NA,|= ;_rz/1200 and (i) |V(T") N B,,| < n/4800r.

Suppose now that & holds. For each v € END’ = V(T') N A, let ¢(v) de-
note the neighbor of v on P,.

Lemma 3.4, If & holds then |$(END")| = n/9600.
Proaf. First we show thét
y € ¢(END’) — V(T") implies ¢~ '(y)| = 2. (3.149)
We do this by showing that if y = ¢(x), then xy is an edge of P. This is clearly

true if x = x,. If x # x|, then y is adjacent to x on P,. If xy is not an edge of P,
then y is an ancestor of x in 7', a contradiction, as y & V(T"').
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Now (3.14) implies that
[6END)] = ZEND' — 67 GEND) N VA, (1s)

But since ¢~ (¢(END") N V(T')) C Nyp(B,) N A, we see from Lemma 3.3
and #(ii) that '

|7 GEND) N V)| = 2 - 3r

and the lemma follows from this and (3.15). 0

It is important to note that any path obtained from P,, x € END’ by a se-
quence of rotations with x fixed has ¢(x) as x’s neighbor.

Suppose now that &{ does not hold. We will obtain a contradiction. Let
T € J. Since [V(T) N A,| = n/1200 we must have |V(T) N B,,| > n/4800r.
Then T contains a subtree 7 with [V(F) N B,| = |#/4800r| and since o does
not hold [V(f) N A,| < n/1200. Let § = W) N B,,. 1t follows from (2.2h)
that [N4(S) N B,| = n/3. Now if v € S, w € Ny(S) N B,, and vw € E(H),
then we can legitimately construct p(P,, x,, w) unless the associated broken
edge ww' & E(P). But this latter condition rules out at most 2|V(1)| rotations
(2 for each added edge of each P,, 9 € V(f)). The same w' can be produced at
most twice in this way. Thus there exists 7% € J, which contains a subtree
which is obtained from 7 by adding at least 2(n/3) — 2((n/1200) + INL|) =
n/7 leaves. Since s{ does not occur, at least (n/7) — (n/1200) > (n/8) of
these new leaves are in B,,. But this means Case 1 holds, ‘a contradiction. .

Applying this argument for each x € END, i.e., constructing a tree T(x) of
paths starting with P,, we deduce, from Lemma 3.4 that the following is true:

Lemma 3.5. In A there are n/9600 vertices y,,y,, ... in END N A, and a set -
of /9600 vertices z,, z,, . . . in B, such that for each i there are n/1200 longest
_paths with one endpoint y;, z; adjacent to y; on each path and the other endpoints -

of each set of /1200 paths are distinct members of A,. L i

Let Y, i=1,2,...,n/9600 denote the set of other endpoints of the paths
with one fixed endpoint y,. ‘ 7

We can now confirm (3.95"). We must add random edges, as in (3.13), and
show that with high probability these extra edges make the resulting graph
hamiltonian or have a longer path than A . - :
* We consider the edges in (3.13b) to be added randomly in 3 waves X, X,,X, U
X*, where [X,| = |X,| = |X;| = |A,|, and each v € A,, is incident with one.
edge of each X,, t = 1,2, 3. :

Adding X,. Fory €Y = U,Y,let 8(y) = [{i: y € ¥,}|. Clearly |¥'| =
n/2400 where Y' = {y.€ ¥: 8(y) = n/8(1200)%}. _
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If y € ¥’ then independently of other members of V'
Pr(for some i, X, contains an edge yz, wherey €E ¥} = 1 /4(1200)% .
Hence there exist constants 0 < &, %, < 1 such that
Pri) =1 —

where
€, = {X, contains &,n edges of the form z,y,y € Y;}.

Assume now that €, occurs.

We now have &,n cycles C,, C,, . .. say, plus an edge joining y; to C;. Apply-
ing (3.7c) we see that each C; contains a set of vertices X, |K,| = %en, where
v € K, implies v lies on an edge of C; with both endpoints in B,,,.

Adding X;. Now, independently, for each i, Pr(X, contains an edge yu where
u € K;) = &. By considering these cycles one by one, we see that there exist
constants 0 < &, = £,(g), m, = M(e) < 1 such that

Pr($,]€;) > 1 —n}
where

%€, = {X,; contains &n edges of the form yu;, u; € K, and the B,

neighbors v, v,, ... of 4y, b, ... on C,C,, . .. are distinct} .

Now each time X, contains an edge yu;, u; € K;, we can obtain a longest path
of B + (X, U X,) with one endpoint y, and the other endpoint in B,, by usmg
the edges (C; U {vu;p) — {w;v;}.

Assume that %, occurs.

Adding X, U X*. We now have &;n longest paths Q,,Q,,... of A +
(X, U X3), each with a distinct endpoint v, € B,,. We are now essentially in a
Case 1 situation. Take each Q; and using v; as a fixed endpoint generate
= n/600 longest paths by rotations. Now throw in X; U X*. The probability
that we fail to close one of these paths is exponentially small. (3.9b") follows
and we are done.
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