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In this short note we prove a concentration result for the length L,, of the
longest monotone increasing subsequence of a random permutation of the set

{1,2,...,n}. Tt is known, Logan and Shepp [6], Vershik and Kerov [9] that

EL
limy, oo —— = 2 (1)

Vn
but less is known about the concentration of L, around its mean. Our aim

here is to prove the following.

Theorem 1 Suppose that o > % Then there ezists § = f(a) > 0 such that
for n sufficiently large

Pr(|L, — EL,| > n%) < exp{—nﬁ}
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Our main tool in the proof of this theorem is a simple inequality arising from
the theory of martingales. It is often referred to as Azuma’s inequality. See
Bollobds [2] [3] and McDiarmid [7] for surveys on its use in random graphs,
probabilistic analiysis of algorithms etc., and Azuma [1] for the original result.
A similar stronger inequality can be read out from Hoeffding [4]. We will use

the result in the following form.

Suppose we have a random variable Z = Z(U),U = (Uy, Uy, ..., Uy,) where
Uy, U, ..., U, are chosen independently from probability spaces €2, Q, ..., 0,
ie. U € Q=0 x0x...x0,,. Assume next that Z does not change by much
if U does not change by much. More precisely write U ~ V for U,V € Q
when U,V differ in at most one component i.e. |{i: U; # V;}| = 1. We state

the inequality we need as a theorem.

Theorem 2 Suppose Z above satisfies the following inequality;

U~V implies |Z(U) — Z(V)| <1

then
2u?

for any real u > 0.

|

The value m is the width of the inequality and to obtain sharp concentration

of measure we need m = o((EZ)?).

We will make use of the following crude probability inequality for L,, where

s is an arbitrary (large) positive integer.



Lemma 1

Pr(L, > 2e\/s) < e 2V°

Proof Let so = [2ey/s]. Then, where o denotes the number of increas-

ing subsequences of X, X, ..., X; which are of length s,

Pr(L, > s9) < E(o0)
- ()
(

50
se?

802

< e %evs

|

Proof(of Theorem 1) Let X = (X3, Xy, ...X,,) be a sequence of indepen-
dent uniform [0,1] random variables. We can clearly assume that L, is the

length of the longest monotone increasing subsequence of X.

Before getting on with the proof proper observe that although changing one
X; only changes L, by at most 1, the width n is too large in relation to the
mean 2,/n for us to obtain a sharp concentration result. It therefore appears
that to use the theorem in this case requires us to reduce the width by a

more careful choice for Z.

For a set I = {i; < iy < ... <ix} C [n] we let A\(I) denote the length of the

longest increasing subsequence of X;,, X;,, ... X;,. So for example A([n]) = L,.

Let m = [n®],0 < b < 1 where a range for b will be given later. Let
v = |n/m| and p = n — mv. Let I, I, ...I, be the partition of [n] =

{1,2,...,n} into consecutive intervals where the first 4 have |I;| = v + 1 and
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the remaining m—yp have |I;| = v (precisely: I; = {k;_1+1,k;_1+2,..k;},j =
1,2,...,m where k; = j(v +1)forj = 0,1,..p and k; = jv + pforj =
p+1,...,m.) For S C [m] we let Is = Ujes 1.

Let # = n® and € = 2e~2?%. Define [ by
I =maz{t:Pr(L, <t—1) <e},

so that in particular

Pr(L, <) <e. (2)

Now let
Zp, =maz{|S]|: S C [m] and A(Is) < 1}.

Note that if L, = A([m]) <[ then Z,, = m and so the definition of | gives
Pr(Z,=m)>¢ (3)

Note next that for any j € [m], changing the value of U; = {X; : 7 € I,}, can
only change the value of Z,, by at most one. We can thus apply Theorem 2
to obtain

2 2
Pr(|Z, — EZ,| > u) < 2eap{——} (4)
m

Hence, putting v = v/m# in (4) and comparing with (3) we see that
EZ, >m— vmb.
Applying (4) once again with the same value for u we obtain

Pr(Z, <m —2vVm#) < e (5)

Let now s = [2v/mf] and let £ denote the event

(3S C [m] : |S| = s and A(Is) > 6 %}.
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Now if |S| = s then |Ig| = (1 + o(1))(sn/m) and so on applying Lemma 1

above we get

Pl'(g) S (7;’/) e—Zeylsn/m
< exp{slnm — 2e %}

< e =expfe(n Inm — 2n2Ti74))

Notice that ¢; is small if

a+3b<2. (6)

Now if Z,, > m — 2v/m# and &£ does not occur then

Lo <1+622. (7)
m

To see this let S C [m] be such that |S| = Z, and A\(Ig) < . If T =
[m] — S then |T'| < s and so as £ does not occur we have A\(Ir) < 6,/°" and
(7) follows since L, < A(Is) + A(I7).

So
sn
Pr(L, > 14+ 64/—) < e+ €. (8)
m
Putting lp = + 3\/% we see from (2) and (8) that
5N
Pr(|L, — ly] >3”E) < 2€+ €. 9)
The theorem follows by choosing any a, b,  such that (6) holds and
1 a b
ﬂ < 5 + Z - Z <



We observe next that Steele [8] has generalised (1) in the following way: let
now k be a fixed positive integer and given a random permutation let Ly,
denote the length of the longest subsequence which can be decomposed into
k + 1 successive monotone sequences, alternately increasing and decreasing.

The monotone case above corresponds to k=0. In analogy to (1) Steele proves
EL
limy, oo —2 = 2v/k + 1.

Theorem 1 generalises easily to include this problem. In fact we only need
to change L, to Ly, throughout. In order to avoid complicating the proof

of Lemma 1, it suffices to prove
Pr(L, > 2(k + 1)ey/s) < e72eV5,

This follows from Lemma 1 since if the 'up and down’ sequence is of length
at least 2(k 4+ 1)ey/s then one of the monotone pieces is at least 2ey/s in
length.

There is at least one more related case in which a concentration result can
be proved by the above method. Before giving the details it might be useful

to abstract the properties of L, which make the method work. These are
MIs) < MIgur) < A(Is) + A(Ir) (10)

for SNT = .
Pr(L, > A/s) < e BV® (11)

for sufficiently large positive integer s and some absolute constants A, B > 0.

Inequality (10) is needed to show that the random variable Z, changes by

at most one for a change in one set ;. It is also needed to show that if Z,



is close to m then L, is unlikely to be much larger than [. It is here that we

need (11) as well.

Our final result concerns the number 7, = T,,(X;, Xy, ..., X;;) of increasing
subsequences among X1, Xs,...X,,. This was studied by Lifschitz and Pittel
[5]. Let now L, = InT,. The main result of [5] is that there exists an absolute

constant a,21n2 < a < 2 such that

A

L,n % = a, asn — oo

in probability and in mean.

A

It is now easy to see that Theorem 1 holds with L,, replaced by L,,. Indeed,
on replacing A, Z, by A, Z, we need only verify (10),(11) above. But (10)

should be clear and

Pr(T, > V")
e SVIE(T),)
67\/5

Pr(L, > 3v/n)

IN

IN

since Lifschitz and Pittel have shown that
E(T,) ~ 0.171n~"/4e2V™,

This completes our analysis of L.
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