## On the length of the longest monotone subsequence in a random permutation

## Alan Frieze\*

Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.

June 26, 1997

In this short note we prove a concentration result for the length  $L_n$  of the longest monotone increasing subsequence of a random permutation of the set  $\{1, 2, ..., n\}$ . It is known, Logan and Shepp [6], Vershik and Kerov [9] that

$$\lim_{n \to \infty} \frac{\mathbf{E}L_n}{\sqrt{n}} = 2 \tag{1}$$

but less is known about the concentration of  $L_n$  around its mean. Our aim here is to prove the following.

**Theorem 1** Suppose that  $\alpha > \frac{1}{3}$ . Then there exists  $\beta = \beta(\alpha) > 0$  such that for n sufficiently large

$$\Pr(|L_n - \mathbf{E}L_n| \ge n^{\alpha}) \le exp\{-n^{\beta}\}$$

<sup>\*</sup>Supported by NSF grant CCR-8900112

Our main tool in the proof of this theorem is a simple inequality arising from the theory of martingales. It is often referred to as Azuma's inequality. See Bollobás [2] [3] and McDiarmid [7] for surveys on its use in random graphs, probabilistic analysis of algorithms etc., and Azuma [1] for the original result. A similar stronger inequality can be read out from Hoeffding [4]. We will use the result in the following form.

Suppose we have a random variable  $Z=Z(U), U=(U_1,U_2,...,U_m)$  where  $U_1,U_2,...,U_m$  are chosen independently from probability spaces  $\Omega_1,\Omega_2,...,\Omega_m$  i.e.  $U\in\Omega=\Omega_1\times\Omega_2\times...\times\Omega_m$ . Assume next that Z does not change by much if U does not change by much. More precisely write  $U\simeq V$  for  $U,V\in\Omega$  when U,V differ in at most one component i.e.  $|\{i:U_i\neq V_i\}|=1$ . We state the inequality we need as a theorem.

**Theorem 2** Suppose Z above satisfies the following inequality;

$$U \simeq V \ implies \ |Z(U) - Z(V)| \le 1$$

then

$$\mathbf{Pr}(|Z - \mathbf{E}Z| \ge u) \le 2exp\{-\frac{2u^2}{m}\},\$$

for any real  $u \geq 0$ .

The value m is the width of the inequality and to obtain sharp concentration of measure we need  $m = o((\mathbf{E}Z)^2)$ .

We will make use of the following crude probability inequality for  $L_s$ , where s is an arbitrary (large) positive integer.

## Lemma 1

$$\mathbf{Pr}(L_s \ge 2e\sqrt{s}) < e^{-2e\sqrt{s}}$$

**Proof** Let  $s_0 = \lceil 2e\sqrt{s} \rceil$ . Then, where  $\sigma$  denotes the number of increasing subsequences of  $X_1, X_2, ..., X_s$  which are of length  $s_0$ ,

$$\mathbf{Pr}(L_s \ge s_0) \le \mathbf{E}(\sigma)$$

$$= \binom{s}{s_0} / s_0!$$

$$\le \left(\frac{se^2}{s_0^2}\right)^{s_0}$$

$$\le e^{-2e\sqrt{s}}$$

**Proof**(of Theorem 1) Let  $X = (X_1, X_2, ... X_n)$  be a sequence of independent uniform [0,1] random variables. We can clearly assume that  $L_n$  is the length of the longest monotone increasing subsequence of X.

Before getting on with the proof proper observe that although changing one  $X_i$  only changes  $L_n$  by at most 1, the width n is too large in relation to the mean  $2\sqrt{n}$  for us to obtain a sharp concentration result. It therefore appears that to use the theorem in this case requires us to reduce the width by a more careful choice for Z.

For a set  $I = \{i_1 < i_2 < ... < i_k\} \subseteq [n]$  we let  $\lambda(I)$  denote the length of the longest increasing subsequence of  $X_{i_1}, X_{i_2}, ... X_{i_k}$ . So for example  $\lambda([n]) = L_n$ .

Let  $m = \lceil n^b \rceil, 0 < b < 1$  where a range for b will be given later. Let  $\nu = \lfloor n/m \rfloor$  and  $\mu = n - m\nu$ . Let  $I_1, I_2, ... I_m$  be the partition of  $[n] = \{1, 2, ..., n\}$  into consecutive intervals where the first  $\mu$  have  $|I_j| = \nu + 1$  and

the remaining  $m-\mu$  have  $|I_j| = \nu$  (precisely:  $I_j = \{k_{j-1}+1, k_{j-1}+2, ...k_j\}, j = 1, 2, ..., m$  where  $k_j = j(\nu + 1)$  for  $j = 0, 1, ...\mu$  and  $k_j = j\nu + \mu$  for  $j = \mu + 1, ..., m$ .) For  $S \subseteq [m]$  we let  $I_S = \bigcup_{j \in S} I_j$ .

Let  $\theta = n^a$  and  $\epsilon = 2e^{-2\theta}$ . Define l by

$$l = max\{t : \mathbf{Pr}(L_n \le t - 1) \le \epsilon\},\$$

so that in particular

$$\mathbf{Pr}(L_n < l) \le \epsilon. \tag{2}$$

Now let

$$Z_n = max\{|S| : S \subseteq [m] \text{ and } \lambda(I_S) \le l\}.$$

Note that if  $L_n = \lambda([m]) \leq l$  then  $Z_n = m$  and so the definition of l gives

$$\Pr(Z_n = m) > \epsilon \tag{3}$$

Note next that for any  $j \in [m]$ , changing the value of  $U_j = \{X_i : i \in I_j\}$ , can only change the value of  $Z_n$  by at most one. We can thus apply Theorem 2 to obtain

$$\mathbf{Pr}(|Z_n - \mathbf{E}Z_n| \ge u) \le 2exp\{-\frac{2u^2}{m}\}\tag{4}$$

Hence, putting  $u = \sqrt{m\theta}$  in (4) and comparing with (3) we see that

$$\mathbf{E}Z_n > m - \sqrt{m\theta}$$
.

Applying (4) once again with the same value for u we obtain

$$\Pr(Z_n \le m - 2\sqrt{m\theta}) \le \epsilon \tag{5}$$

Let now  $s = \lceil 2\sqrt{m\theta} \rceil$  and let  $\mathcal{E}$  denote the event

$$\{\exists S \subseteq [m] : |S| = s \text{ and } \lambda(I_S) \ge 6\sqrt{\frac{sn}{m}}\}.$$

Now if |S| = s then  $|I_S| = (1 + o(1))(sn/m)$  and so on applying Lemma 1 above we get

$$\begin{aligned} \mathbf{Pr}(\mathcal{E}) &\leq \binom{m}{s} e^{-2e\sqrt{sn/m}} \\ &\leq exp\{s \ln m - 2e\sqrt{\frac{sn}{m}}\} \\ &\leq \epsilon_1 = exp\{e(n^{\frac{a+b}{2}} \ln m - 2n^{\frac{1}{2} + \frac{a}{4} - \frac{b}{4}})\} \end{aligned}$$

Notice that  $\epsilon_1$  is small if

$$a + 3b < 2. (6)$$

Now if  $Z_n > m - 2\sqrt{m\theta}$  and  $\mathcal{E}$  does not occur then

$$L_n \le l + 6\sqrt{\frac{sn}{m}}. (7)$$

To see this let  $S \subseteq [m]$  be such that  $|S| = Z_n$  and  $\lambda(I_S) \leq l$ . If T = [m] - S then  $|T| \leq s$  and so as  $\mathcal{E}$  does not occur we have  $\lambda(I_T) < 6\sqrt{\frac{sn}{m}}$  and (7) follows since  $L_n \leq \lambda(I_S) + \lambda(I_T)$ .

So

$$\mathbf{Pr}(L_n > l + 6\sqrt{\frac{sn}{m}}) \le \epsilon + \epsilon_1. \tag{8}$$

Putting  $l_0 = l + 3\sqrt{\frac{sn}{m}}$  we see from (2) and (8) that

$$\mathbf{Pr}(|L_n - l_0| > 3\sqrt{\frac{sn}{m}}) \le 2\epsilon + \epsilon_1. \tag{9}$$

The theorem follows by choosing any  $a, b, \beta$  such that (6) holds and

$$\beta < \frac{1}{2} + \frac{a}{4} - \frac{b}{4} < \alpha$$

We observe next that Steele [8] has generalised (1) in the following way: let now k be a fixed positive integer and given a random permutation let  $L_{k,n}$ denote the length of the longest subsequence which can be decomposed into k+1 successive monotone sequences, alternately increasing and decreasing. The monotone case above corresponds to k=0. In analogy to (1) Steele proves

$$\lim_{n\to\infty} \frac{\mathbf{E}L_{k,n}}{\sqrt{n}} = 2\sqrt{k+1}.$$

Theorem 1 generalises easily to include this problem. In fact we only need to change  $L_n$  to  $L_{k,n}$  throughout. In order to avoid complicating the proof of Lemma 1, it suffices to prove

$$\mathbf{Pr}(L_s \ge 2(k+1)e\sqrt{s}) \le e^{-2e\sqrt{s}}$$

This follows from Lemma 1 since if the 'up and down' sequence is of length at least  $2(k+1)e\sqrt{s}$  then one of the monotone pieces is at least  $2e\sqrt{s}$  in length.

There is at least one more related case in which a concentration result can be proved by the above method. Before giving the details it might be useful to abstract the properties of  $L_n$  which make the method work. These are

$$\lambda(I_S) \le \lambda(I_{S \cup T}) \le \lambda(I_S) + \lambda(I_T) \tag{10}$$

for  $S \cap T = \emptyset$ .

$$\mathbf{Pr}(L_s \ge A\sqrt{s}) \le e^{-B\sqrt{s}} \tag{11}$$

for sufficiently large positive integer s and some absolute constants A, B > 0.

Inequality (10) is needed to show that the random variable  $Z_n$  changes by at most one for a change in one set  $I_t$ . It is also needed to show that if  $Z_n$ 

is close to m then  $L_n$  is unlikely to be much larger than l. It is here that we need (11) as well.

Our final result concerns the number  $T_n = T_n(X_1, X_2, ..., X_n)$  of increasing subsequences among  $X_1, X_2, ... X_n$ . This was studied by Lifschitz and Pittel [5]. Let now  $\hat{L}_n = \ln T_n$ . The main result of [5] is that there exists an absolute constant  $a, 2 \ln 2 \le a \le 2$  such that

$$\hat{L}_n n^{-1/2} \to a$$
, as  $n \to \infty$ 

in probability and in mean.

It is now easy to see that Theorem 1 holds with  $L_n$  replaced by  $\hat{L}_n$ . Indeed, on replacing  $\lambda, Z_n$  by  $\hat{\lambda}, \hat{Z}_n$  we need only verify (10),(11) above. But (10) should be clear and

$$\mathbf{Pr}(\hat{L}_n \ge 3\sqrt{n}) = \mathbf{Pr}(T_n \ge e^{3\sqrt{n}})$$

$$\le e^{-3\sqrt{n}}\mathbf{E}(T_n)$$

$$\le e^{-\sqrt{n}}$$

since Lifschitz and Pittel have shown that

$$\mathbf{E}(T_n) \approx 0.171 n^{-1/4} e^{2\sqrt{n}}$$
.

This completes our analysis of  $\hat{L_n}$ .

## References

[1] K.Azuma, Weighted sums of certain dependent random variables, Tokuku Mathematics Journal 19, (1967) 357-367.

- [2] B.Bollobás, Martingales, isoperimetric inequalities and random graphs, in Combinatorics, A.Hajnal, L.Lovász and V.T.Sós Ed., Colloq. Math. Sci. Janos Bolyai 52, North Holland 1988.
- [3] B.Bollobás, Sharp concentration of measure phenomena in random graphs, to appear in Proceedings of Random Graphs '87, M.Karonski Ed., Annals of Discrete Mathematics Series, North-Holland.
- [4] W.Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 27, (1963) 13-30.
- [5] V.Lifschitz and B.Pittel, The number of increasing subsequences of the random permutation, Journal of Combinatorial Theory A 31 (1981) 1-20.
- [6] B.F.Logan and L.A.Shepp, A variational problem for Young tableaux, Advances in Mathematics 26 (1977) 206-222.
- [7] C.J.H.McDiarmid, On the method of bounded differences, Surveys in Combinatorics, 1989, Invited papers at the Twelfth British Combinatorial Conference, Edited by J.Siemons, Cambridge University Press, 148-188.
- [8] J.M.Steele, Long unimodal subsequences: a problem of F.R.K.Chung, Discrete Mathematics 33 (1981) 223-225.
- [9] A.M. Vershik and C.V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and a limiting form for Young Tableau, Dokl. Akad. Nauk. U.S.S.R. 233 (1977) 1024-1027.