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Let V,={1,2,.,n} and 9(n, m) be the set of digraphs with vertex set ¥, in
which each ve ¥, has outdegree m. D(n, m) is chosen uniformly at random from
9(n, m) and then D(n, m) is obtained by ignoring the orientation of the edges of
D(n, m). We show that

Lim Pr(D(n, 1) has a perfect matching) =0,
noven

Lim Pr(D(n, 2) has a perfect matching) = 1.
n— oo
neven

© 1986 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the following three related models of a ran-
dom graph Dy(n, m), =0, 1,2: let V,={1, 2,.., n} and suppose that each
ve V, independently chooses m vertices w,, w,,..., w,, and adds the arcs
(v, w;), i=1, 2,.., m, to create a random digraph D(n, m) with nm arcs.

When

8=2: wy, w,,..., w,, are distinct members of ¥, — {v} and each m-sub-
set is equally likely to be chosen;

é=1: w,, w,,..,w,, are chosen independently and uniformly from
V,—{v};
0=0: w;, w,,.., w,, are chosen independently and uniformly from V.

Thus D',;(n, m), 6 =0, 1, may contain parallel arcs but ﬁz(n, m) cannot.

We obtain the graph D4(n, m) by ignoring orientation, removing loops,
and allowing parallel edges to coalesce.

From now on we use the following convention: all probabilistic
statements are based on the probability space of Ds(n, m) and all graph
theoretic statements concern D4(n, m), unless specifically stated otherwise.
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The three models obviously have very similar properties, but we are
mainly interested in the case § = 2. These graphs suffice as an approximate
model of a sparse random graph with a lower bound of m on the vertex
degrees. On the other hand, we find in one point of our proof that it is
useful to have the little bit of extra independence available in the cases
60=0or 1.

For a graph property IT we say that Ds(n, m) almost surely (as.) has
property IT if

lim Pr(Dgs(n, m) has IT)=1.

In Fenner and Frieze [2] we studied the connectivity of D,(n, m) and in
[3] we showed that D,(n, 23) is a.s. Hamiltonian. An interesting open
problem is that of determining m,, the smallest m such that D,(n, m) is a.s.
Hamiltonian. It is known that m, >3 and that the value 23 can be reduced,
but the exact value of m, is not known, although we strongly suspect
my=3.

Shamir and Upfal [7] showed that D,(n, 6) a.s. has a perfect matching
for n even. The main aim of this paper is to tighten this.

It is clear that if Dg(n, m) as. has a perfect matching, then so do
D;, (n,m) for 6=0, 1. Thus we obtain a complete answer to when these
graphs as. have a perfect matching by proving

THEOREM 1.1.
(a) lim Pr(D,(n, 1) has a perfect matching) =0,
(b) lim Pr(Dy(n, 2) has a perfect matching)= 1. [ ]

n— oo
neven

It is interesting to note that Walkup [9] obtained the same result in the
bipartite analogues of these graphs.

Finally, note here that recently Grimmett [5], Grimmett and
Pulleyblank [6] have studied D,(n, m) in relation to the vertex packing
problem.

2. PROOF OF THEOREM 1.1
(a) D,(m, 1) has no perfect matching if there exists a vertex having

two neighbors of degree 1. A standard application of the Chebycheff
inequality shows that there will a.s. be a large number of such vertices.
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(b) In this case we let D,=Dgy(n, 2) and introduce the following
notation: For a graph G let V(G), E(G) denote the sets of vertices and
edges of G, respectively. For Sc¥V(G) let G[S]=(S, E5) where
Es={ecE(G)ecS}, let Ng(S)={w¢S: there exists veS such that
{v,w} € E(G)} and let N(S)= N, (S). As usual a stable set S of G is a set
of vertices S for which Eg= (.

Our main tool is a refinement of Tutte’s Theorem [8] on the existence of
a perfect matching. It is due independently to Gallai [4] and
Edmonds [1]. We do not need the full theorem, only:

LeMMA 2.1. If a graph G does not have a perfect matching then there
exists KS V(G), |K| =k >0 such that if H=G[V(G)— K] then

H has at least k + 1 components with an odd number of vertices; (2.1a)
no odd component of H, which is not an isolated vertex, is a tree. (2.1b)
1

We call such a set K a bad set.
We proceed via a sequence of Lemmas to show that D, a.s. has no bad
sets, for n even.

LEMMA 2.2. For positive integers k, | define the event E,(k, [) by
E\(k,[)=there exists K, LS V,, KNL=(,
|K| =k, |L| =1 such that N(L)< K.
For 0<e<1 let u(e)=((1—g)/e*(1+¢)' **))' ** and suppose that u=u(c)

satisfies e**/u* < 2Y8,
Then where ny=|un | and |, =[ (1 +¢)k7| and

n Ln/2

J
E\(e)= U U E(k,1)

k=1 1=14
we have

lim Pr(E,(e))=0.

n— oo

n! k+[ 21 ] 2(n—k—1)
Pr(E(k, ) <— (KX (1
r(Ei( l))<k!l!(n—k—l)!< p > <1 n>

(ne)k+l(k + I)ZIe—ZI(n—k—l)/n
S kk11n2l

Proof.

l[ e4k

Spre I<k<n, L<I<nj2,
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If we put u,= (I/n)’ we find u,u,_, <le/n. Thus, by dividing the range of / at
Ln/2e ], say, we find
Ln/2] 1 I
0 o(sf
/=y \n n

Thus

n Ln/2] o/ net k 11 I
$ S prEy k)< 3 (7> (2 <;> +n2_"/2"’)

k=1 1=1 k=1
ny (1+6)1+584k5 k edu n
<2 /) 4+
e kgl( e ) +n (uu21/2e>
=o(1). 1

We now consider the case where D,, contains a bad set K, | K| < u(¢)n for
some ¢, and E,(¢) does not occur. The next lemma proves the occurrence of
a second event E,(¢) which we deal with in Lemma 2.4.

LEMMA 2.3. Suppose D, contains a bad set K, 1<k =|K|<u(e)n, and
no subset of K is bad. Let H=G[V,— K] have s>k + 1 odd components
Cy,Cy Cg with ny=ny,=-"=n,=1<3<n,, <+ <n, vertices,
respectively.

. Assume that E (¢) does not occur. Then there exists a partition K, P, Q, M
of V, with p=|P|, q=|Q| satisfying

NM)< K, N(P)= K, N(Q)=K; (2.2a)
P is a stable set; (2.2b)
Q contains at least q edges; (2.2¢)
each vertex of K is adjacent to at least one member of Pu Q; (2.2d)

2<k<u(e)n, 0<p+g<(l+ek, p+1qg/3]2k
and q=0 implies p>2k+1. (2.2¢)

Proof. Define r by n,, < - <n.<(l+e)k<n, ;< - <n,. We
show first that

ny+n,+ - +n.<(l+e)k and s<r+1. (2.3)

Case 1. s>r+1.
If n,,,<n/2 then E (¢) occurs with L=C,,, and so n,,,>n/2 and
s=r+1. If r=1 then (23) follows immediately. Otherwise, if
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ny+ - +n,2(1+¢)k then there exists #<r such that n, + --- +n,_,<
(1+e)k<n;+ -+ +n,<2(1+¢)k. But as 2(1 +¢&) u(e)n<n/2 we see that
E(¢) occurs with L=)!_, C,. Thus we have demonstrated (2.3) in this
case.

Case 2. s=r.

We have only to show n,+ -+ +n,<(1+¢)k and this is shown as
above.

So now let P={Jr_, C, 0=Ui_,+:Ci, and M=V,—(KUuPuQ).
Now (2.2a), (22b) are immediate consequences of these definitions.
Equation (2.2c) follows from (2.1b). To prove (2.2d) we use the minimality
of K.

We show that ve K must be adjacent to vertices in at least two of
Cyy, C;. If v is adjacent to none of these components then Ciyy C
remain as odd components of H,=G[V,—(K— {v})]. If v is only
adjacent to one of these components then at least s — 1 of these remain as
components of H,.

It only remains to prove (2.2¢). The bounds of k are part of the
assumption and p+ ¢ < (1+¢)k follows from (2.3). p+ Lg/3 1=k follows
from r >k and the fact that |C,| >3 for i= p+1,..,r. To examine the case
¢=0 let ny be the number of vertices in even components of H. Suppose
p=k, then s=t+1 and 2k + n,+ ny=n. But as n,, n are even, this implies
n, is even, a contradiction. ||

Let us refer to the existence of a partition satisfying (2.2) as the
occurrence of E,(g).
We can immediately show for any fixed integer &,

lim Pr(D, has a bad set K, with 1 <|K| <k,)=0. (24)

n— o

Let us take ¢ =1/2k, and assume E,(¢) does not hold. If there is a bad
set K with 1 <|K| <k, then Lemma 2.3 implies that (2.2) holds for some
k <k,. But (2.2¢) implies

q<3ek/2 (2.5)

which in this case implies g <1, or ¢=0. But then p>k+ 1 contradicts
p<(l1+¢)k.

In the proof of the following lemma we assume k > k, for some suitably
large k, whose size need not be discussed until (2.10).

LEMMA 24.

lim Pr(E,(e))=0  for small e.
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Proof. For a given small ¢ let E,(k, p, q) refer to E,(¢) with given
values for k, p, q. Then

Pr(E,(k i £y
< z
H(Exlk, P, 9)) k!p!q!(n—p—q—k)!<”>
2zn—p—q—k) 2q
x<1J’+q> <k+‘1) 1,11, (2.6)
n n
where

IT1, =Pr((2.2c) holds for a fixed K, P, Q | (2.2a), (2.2b))

and

1T, = Pr(2.2d) holds for a fixed k, P, Q | (2.22), (2.2b), (2.2¢)).

We can take K, P, Q as fixed in these definitions as we have taken the
expectation over all possible set K, P, Q here.

In the construction of D, we shall refer to each veV, choosing two
neighbors at random.

Now
A (2q\ q g\
I, < 4 ) (1= 0.
! Z<t><q+k>< q+k> for ¢>

t=gq

To see this we have to consider the choice of neighbors for each g€ Q. One
can see that for each ge Q and each choice of neighbor, the probability
that the neighbor chosen is in Q (a success), given (2.2a), is q/(q+k)
regardless of any other choices made. Now if Q contains ¢ or more edges
then there must have been at least g successes. But, by the above remarks,
the probability that there are at least ¢ successes is given by the above
binomial summation.
Now (2.5) implies that g < k/2 for ¢ <1 which implies

7,2 — ) {l ——
' ( q ><q +k q+k
4kq \?
<l— ) .
<(q+k)2> for ¢>0 2.7)
Now clearly

1T, <Pr((2.2d) | (2.2a), (2.2b) and Q is stable). (2.8)
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It is now an immediate consequence of Lemma 2.5 (below) that
I, < O
where, for v any fixed vertex of K,

6 = Pr(v is adjacent to at least one vertex of P U Q)

2 2(p+q)
=1—<1—p+q> (1—1) .
n k

(To apply the lemma consider the vertex set K as a set of k boxes and a
vertex v of K being chosen by a member of PU Q as a ball falling into box
v. Thus we take m=2(p+q), a,= 1, and Y, = the number of choices made
by iin PuQ for ieK.) Since p+q< (1 +¢)k< (1+¢) u(e)n we have

1\ 201 + o)
9<1—(1—(1+£)u(8))2<1—;> .

Now taking kéko, see (2.4), we see that
IT1,<6*  for some & < 1 when k >k, and ¢ is small. (2.9)

Using Stirling’s formula and (2.7), (2.9) in (2.6) gives

k\P+ta—k k\” '
Pr(E,(k, p,q))<< ) (;) 49e2P+a)p+a+k)n gk

en

We can deduce from (2.2e) that (i) p+g—k>1, (ii) k/p <1+ q/p, and
(iii) ¢ < 3¢k/2 and so we can write, for k >k,

k
Pr(E,(k, p, q)) < o a*e*" 5 for some a> 0.

For k>k, let S(k)={(p,q): k, p, q satisfy (2.2e)} and note that
|S(k)| < 2k? for small &. Now choose & small enough so that a%e>)s < n<l
and then

u(e)n u(e)n

Y Y PrEkp )<Y Knt=o(n). 1
n

k=ko (p,q) e S(k) k=ko

By taking ¢ suitably small and k, suitably large, we can sum up what we
have proved so far by: there is an absolute constant uy > 0 such that

lim Pr(D, contains a bad set K, |K| <uyn)=0.

n— oo
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This of course does depend on us proving

LEMMA 2.5. Suppose r distinct balls are placed randomly in s boxes
where r =0 is a random variable. Let X, i=1, 2,..., 5, be the number of balls
placed in box i. Let Y;, i=1, 2,..., s, be independent integer random variables
in the range O, 1,..., L. Let a, a,,..., a, =0 be given fixed integers and let E;
be the event {X;+ Y;>a;}. Then

P P
Pr<m E,-)s [1P(E) for p=1,2,.,s. (2.10)
i=1 i=1

Proof. Let A; be the event {X,>b,} for some integer b;, i=1,2,..,s.
We first prove that

P P
Pr ( N A,-) <[] Pr(4,) for i=1,2,..,p. (2.11)
i=1 i=1
We prove (2.11) by induction on p. Note that it is trivially true when p=1.
Let
P
/l,,=Pr(ﬂ A;n {X,,H:b})
i=1
and

up=Pr(X,,,=b) for b=0,1,...
We note that

P
Ap/ty=Pr ( ﬂ A;

i=1

X, = b) provided p, > 0.

Hence, by considering re-directing one ball, we have

Aplte < Ap_1 [ty provided p, > 0.

Yzh)=( T 1)/ 2 m)
<(zZM(Zw)
=Pr (;én A,-).

<1 Pr(4,)

=1

Hence

P
Pr(ﬂ A;
i=1

which completes the inductive step.
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Let now 2={0, 1,..,L}" and Y=(Y,, Y, - ¥,). Then
I 4 P
Pr(ﬂ E,~>=Z Pr( E,-lY:y)Pr(Y:y).
i=1 yeR i=1

But
P
Pr(ﬂ E, ‘ Y=y>=Pr(X,»>k,~—y,-, i=1,2,.,5)
i=1

P
< l—[ Pr(X, >k, — y))

i=1

by (2.11), assuming y=(y,, ¥3,..., ). Thus

Pr(ﬁ E-‘)S Z Iel (Pr(X; = k;— y,) Pr(Y;=y,))

=1 yei=1

-1 ( S Pr(X,>k,— y,) Pr(Y,= y,))

i=1 \y;=0

=] Prz). 1

i=1

We complete the proof by showing that the existence of a large bad set a.s.
implies the existence of a large stable set P with |N(P)| of comparable size

to |P|. We then show that this a.s. cannot happen.
’LEMMA 2.6. Let E, denote the following event:
“D,, contains at least (log n)® sets S< V., satisfying”
|S] <loglog n;
|Es| = 1|S].

Then lim,, _, , Pr(E;)=0.

Proof. The expected number s, of sets S with |S|=k and |Eg|=k

satisfies

NN <
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Thus
Lloglog |
z i< 2(4e)log log n
k=3
The result follows from the Markov inequality. |
Let a pair of sets K, P< V,, be matched if
(i) Pisstable in D,;
(iil) N(P)=K and hence Kn P = (;
(i) |P|>|K]|—d(n)
where 6(n) =[n/log log n +1log n)*7.
LEMMA 2.7. Suppose that D, has no bad sets of size ugn or less but D,

contains a bad set K, |K|=k>u,n. Suppose also that E, does not occur.
Then there exists a matched pair K', P with k—5(n) <|K'| <k.

Proof. We can assume that no proper subset of K is bad. Let
Cy,Cs,..,C,, P be as defined in Lemma2.3. We show first that
|P| 2k —d(n). This is true as fewer than n/log log n out of C,y1sms Cscan
have size exceeding loglogn and (2.1b) implies that fewer than (log n)?
have size no more than loglog n, assuming that E, does not occur. Let
K'=N(P)< K. If |K'| <|P| then K’ is a bad set and the lemma follows. ||

The final lemma that completes the proof of the theorem is
LEMMA 2.8. Let E (k) be the event
“There exists a matched pair K, P with |K| =k.”
Let ko= uon]—o6(n). Then

n/2
lim Pr( U E4(k)>=0.

k=ko

Proof. Now

n n—k n—k\/k 2p p 2(n—k—p)
weane() 5, (N (-0 e

where

u(k, p)=Pr(N(P)=K | P is stable and N(P) < K)

1 2p p 2\ k
<{l—{l—— —= 5.
(1 (1 k+1> (1 n)) by Lemma 2.5
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Using Stirling’s inequalities and making simple approximations yield

mastns, 5 (5 () (-1 (-2))

(2.13)

Let u, equal the summand in (2.13). For p>4k/3 and k <n/20 we have

1 \74 3\”
—_ - r P
u,,<(20€> (4> e? < (97)". (2.14)

For p <4k/3 we have
k p—k k P , 1 8k/3 4k 2\ k
2v,=|— - =1 —— - .
wre=()G) e (=) (0 -5))

V4 1/v,= (1 + o(1))(k/e*n)e* (2.15)

Now

and so (2.14) and (2.15) imply that if k<n/20
Pr(E,(k)) < e’ ™, +n(97)~
But
) 4k 2\ k
ve=e""(14+0(1/k)—e~%3 (1 —§-> > < (.99)F
and it follows that
Pr(E (k) <6,  ko<k<n/20 (2.16)

where d <1 is a constant.
We now wish to show that there exists a constant A 1 <4 such that

Pr( U E4(k)>=o(1) where k;=|A;n] (2.17)
k=ki

Let a(D,) denote the size of the largest stable set in D,. We prove the
existence of A, <1 such that

Pr(a(D,) > A,n | =o(1). (2.18)

Equation (2.17) then follows for any A, > 4y. Now for k > n/20
n k 2k
P Zk)< —=
r(a(D,) = k) (k)(l n)
=e’"((1=2)*""4"%"  where k=in.
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It follows that
Pr(a(D,)> (3 +¢&)n)=0(1) (2.19)

for any constant ¢ > 0.
A maximal stable set S is also a dominating set, i.e., each we V,,— S is
adjacent to at least one vertex of S. Hence, if n/20 < k < 3n/4, say,

Pr(there exists a maximal stable set of size k)

2k
< (Z)(l —S) (14 0(1/n) — e~/ =R)y1—k  ying Lemma 2.5

= e (ay"

where f(1)=(1—2)**"'A=*(1—e~#1-4)!~% Now f is continuous for
A<1 and f(3) < 1. Hence there exists ¢ >0 such that

Pr(there exists a maximal stable set of size k, (1 —e)n<k<(3+¢)n)
=o(1).

This combined with (2.19) yields (2.18) and (2.17).
Next let a matched pair K, P be maximal if there does not exist P’ 2P
such that X, P’ is a matched pair. We note first that

if D, contains a matched pair K, P then D, contains a
maximal pair K, P’ where P'2P. (2.20)

Furthermore

K, P is maximal implies that if ve R=V,— KUP then .
there exists w e R such that {v, w} e E(D,). (2.21)

(Otherwise K, Pu {v} is a matched pair.)
We show next that at least one of the three following events 4, B, C
occurs if E (k) occurs with k, >k >n/20 and n is large.

A: “D, contains a vertex of degree exceeding log n”;

B: U¥Z%, Ea(k);

C: “D, contains a maximal pair K, P, n/20 < |K| <k,, and each ver-
tex of K is adjacent to at least |P| + 6(n) — |K| + 2 vertices of P.”

Assume that E,(k) occurs with k> n/20 and neither 4 nor B occurs. Let
k' =min{k >n/20: E,(k) occurs} and let K, P be a maximal pair with
|K| =k’ (see (2.20)). Suppose now that there exists v e K such that

IWI<|P|+d(n)—|K|+1  where W={weP: {v,w}eE(D,)}.
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Let P'=P— W and K'= N(P'). If A does not occur then
|K'| > |K| — |W|logn
= |K| — (log n)?
>n/20 — (log n)
Furthermore
|P'| =K'= (Pl —|W])—(IKI-1)

= —d(n).

Thus K’, P’ is a matched pair and so we have contradicted either the
definition of k' or the fact that B does not occur.

If a vertex v has degree at least log n then at least log n — 2 vertices have
v as one of their choices. Thus

2 [logn]—2
Pr(4)<n (“og :1 ~ 2)(;) =o(1).

Since Pr(B)=o0(1), by (2.16), we have only to prove that Pr(C)=o(1).
Thus let a maximal pair K, P be extreme if each vertex of K is adjacent to
at least |P|+ d(n)—|K|+2 vertices of P. Now since there are at most
2(| K] + | P|) edges joining K and P we find that if K, P is extreme then

2(IKl+|P1) = (I1P| + 6(n) — | K] +2)|K].
Putting ¢ = |P| + 6(n) — | K] =0 we obtain
1< (2—24(n)/IK1)/(1 - 2/|K]).
For n large, this implies 0 <7<2, as ¢ is integer. Now let

Ey(k, t)="“D, contains an extreme pair K, P with |K|=k
and |P|=k—4d(n)+1”

We need only show that

Pr( O C) E(k, t))=o(1).

k=kyt=0

Let us first consider the cases 1=1, 2. Then

R ! k\% 2(n—k—p)
Pr(Es(k, ) < pro— (—p) (1—5) (ks p)
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where p=k —d(n)+ ¢ and =,(k, p) = Pr(each vertex of a fixed k-set K is
adjacent to at least r vertices of a fixed p-set P | each vertex of P makes
both choices in K). Letting k = An and applying Lemma 2.5 we find that for
t=1,2

Pr(Es(k, 1)) <e®f(A)"

where

(1 _A)Z(l—u)
=2y 1
<e(1—3e"2)*

<(98)*  for 120<A<1/2.

S(A)= e (142(1—2%)+2(1=A)?)*

It follows that

Pr( O O Es(k, t)>=o(1).

k=kot=1

We are left with the events Es(k, 0) for n/20 <k <k,. Now

! k 2p 2(n—k—p)
Pr(Es(k 0) < ot — <;> (1 —’;’) (k. p) u(k, p)

where p =k —d(n) and for fixed disjoint k-set K, p-set P, R= V,—KUP,

u(k, p)="Pr(each ve R is adjacent to at least one other
vertex of R | there are no R — P edges).

Now, by Lemma 2.5,

s 3 (TS (-G e

In (2.22) we are summing over s=|S| where S is the set of vertices of R
which make both choices in K and

y = Pr(some fixed vertex of S is chosen by at least one ver-
tex in R— S| the vertices in R— S make at least one
choice in R and no choices in P)

=1 _ﬂn—k—p—s

< 1 _Bn-k—p
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where

B=Pr(ueS is not chosen by ve R—.S| v makes at least
one choice in R)

- =) 2 )
()
(==

Hence, after some manipulation,

Y < (1—e 2041+ O(8(n)/n)).
Putting k = An, s = un we see that for k<k,,

n—2k + 8(n)
Pr(Esk, 0))<e’™ % $(4, u)n

s=0

2 —20—yu
#(4, u)=(1_x)i(%><1+172/1__#>1 (120

and x=e"2((1—12)+2(1— A)?).

where

We will thus be finished if we can show that there exists a constant n<l
such that
oA u)<y for 1/20<A<4,<1/2,0<u<1-24 (2.23)

(We should really write 0<u<1—24+ O(5(n)/n). But this will follow
from (2.23), the continuity of ¢, and the boundedness of the range for A, u.)
Differentiating ¢ with respect to u shows that 0¢/0u=0 if and only if

21— 22)(1 =20 - 1)

TV PR —e Dy

Now
$(4,0)=(1-x)*

_ A1 —e 20-D)\(1-21)
$(%, u(2)) = (1 - x)? (1 +_l___u__)

_ (1 —e20-)\(-2
$(2, (1-24)) = (1 - x)? (‘W)
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and so
(4, W) <Y(A) = é(4, u(2))

=(1—x)’~(1+

A1 — 2= D)\ (1-22)
=55

for 1/20 <A< A;. We have not been able to construct any simple analytical
proofs that (1) <1 in our range of interest. Instead we offer two simple
computational proofs that the reader can check with the aid of a computer.

Computational Proof 1. It is easy to show, by crude estimations,
that yY'(1)<10 for .05<A<.5. Numerical computations yield x,=
Y(.05+.0001¢) <.996 for t=0, 1,..., 4500. The mean value theorem then
implies that /(1) <.997 throughout our range.

Computational Proof 2. Suppose we have .05<1,<1,<4,. Then sim-
ple monotonicity arguments show that within [4,, 4,]

VD)< 203 1)
=(1—e"(3-44,+2))
x (1= 2, + 21 —e~20=))/(1 = 24y)' =2

Now O(4,, A,; 4)=log ¢(4,4,; A) is linear in A. Hence
max(O(4,, 4y; 4a), O(4a, 445 4,)) < —¢

implies Y(1)<e™® for 1,<A<A,. We have only therefore to divide
the interval [.05,.5] into a sequence of intervals [uq, u,],
Curs 235 [y 11,] where po=.05 and p,=.5 and check that both
O, Hiy s 1) and O(u;, wiy 15 Miyq) are strictly less than zero for
i=0, 1,.., p— 1. This works if we take u,=.05+.002; for i=0, 1,..., 225.
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