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In this note we consider the problem of counting the number of bases
of a matroid. The problem is of practical significance as it contains graph
reliability as a special case. This is a #P-Hard problem and the main focus
in recent research has been on trying to approximate the number of bases.

The main result of this paper is that it is impossible to get a good ap-
proximation in deterministic polynomial time if the matroid M is given to us
by an independence or basis oracle. Thus our result has the same flavour as
those of Elekes [5] and Baranyi and Fiiredi [1] on the problem of computing
the volume of a convex body given by a membership oracle.

It should be noted that the main thrust of recent work on approximation
for #P-Hard problems has been on randomized algorithms, in particular the
Markov chain approach initiated by Broder [2]; see Dyer and Frieze [3], Féder
and Mihail [6] for examples of this approach to counting matroid bases. It
is to be hoped that randomisation can triumph in this case as it does for
computing the volume of a convex body — Dyer, Frieze and Kannan [4] or
Lovész and Simonovits [8].

We need very little from the theory of matroids, but see Welsh [12] or
Oxley [9] for any of the basic definitions we use. Our computational model
is that of Robinson and Welsh [11]. We assume that we have an oracle which
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answers questions about a specific matroid M = (F, B) where E denotes the
groundset and B denotes the set of bases of M. Specifically, if S C F then
one probe of the oracle will tell us if S is independent and if it is provide a
basis B € B containing S.

We consider algorithms whose only knowledge of M is obtained through
probes. We call these Matroid Oracle Algorithms. Now it is well known that
such algorithms can be used to optimise very efficiently and it is always the
hope in a matroid problem that there is a Matroid Oracle Algorithm which
can be used to solve it. Here we have a negative result, which we express in
two ways. In the proof below we assume that n is sufficiently large to justify
any of the inequalities used.

Theorem 1 Let |E| = n and let A be a deterministic oracle algorithm which
outputs a number B approrimating the number of bases of a given matroid
M = (E,B). Suppose A makes k = 2°™ probes. Then A can only guarantee

that
9~ Un/(ogk)) B < g < U/ (ogk)) 3|

In particular

(a) If A makes only a polynomial number of probes then its estimate can
only be guaranteed accurate to within 2%/ (logn)?) |

(b) Suppose that A always computes an a-approrimation [ to |B| where
0 < « is a constant. Then in the worst case A requires 2™ probes.

Proof: For a finite set X let X*) denote the set of k-subsets of X.
Fact 1: Suppose H = {Hy, Hy, ..., H,} C X®) and

|HiNHj| <k—-2for1<i<j<p. (1)

Then there exists a matroid with groundset X whose set of bases is precisely
X®\ . (It is in fact straightforward to check that this collection of sets
satisfies the basis axioms of a matroid.). This was observed by Piff and Welsh
[10] in their proof that the number of matroids on a ground set of size n is
doubly exponential in n.

Fact 2: Using the same notation as Fact 1, if | X| = m then there is a
collection H satisfying (1) with p > (Lmn/lz J) /(2m). This was shown by Knuth
[7] in a paper that sharpened the lower bound of Piff and Welsh.
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Now back to the proof proper. Let s = [logyk + 3log,log, k + 10]
and r = |n/s|. Partition E = {1,2,...,n} into E; U E, U --- U E, where
s<m;=|E;| <s+1forl<i<r. Let M be the partition matroid where
a set I C F is independent if and only if

|E; NI < |m;/2] for 1 <i<r. (2)

We can now state the policy followed by the oracle: When given input
I our oracle will answer NO if (2) fails to hold and otherwise will say YES
and provide some B D I satisfying (2) with equality. (B can be chosen
arbitrarily.)

Suppose that our algorithm A makes k positive probes and learns bases
Bl,BQ,...,Bk. Let Di,j = EZﬂB] for 1 S ) S r, 1 S j S ]C, and let Dz =
{Di,D;g,...D;r}. Using Fact 2 choose a set H; = {Hy,Hs,...,H,} C
E(Lm’m) with p > (Lm m)/(?m,) which satisfies (1). Let H; = #\ D;. Using
Fact 1 we know that there is a matroid M; with groundset E; which has
E{mi2D\ 4. as its set of bases.

Now notice that A cannot distinguish between the two matroids M and
the direct sum M = @;_, M,, since the oracle gave answers to A’s probes
consistent with either matroid. But M has

=1 ()
bases, and M has at most

i ((m%) (1-5m) *’“)

bases. Thus A can not guarantee to be more accurate than within a factor
\/ 1t/ & of the true number of bases. But

BT 1 k
; g(l N T ))- ®)

Lmi/2]

Now our choice of s implies that £ < (L 7o J) /(4m;) and so (3) implies

<H(

This completes our proof. O

) — o Ar/s) — ~Un/(logk)?)



One might be tempted to think that one of the main difficulties that A
faces is in finding the exact partition of F into F; U FyU---U E,.. This is not
so. One can decompose a direct sum of matroids into its components with a
polynomial number of probes.

Observe also that at least for part (a) the number of different possible
matroids 2™ that the oracle chooses from is “not much larger” than the
number 2°) that the algorithm could possibly distinguish between.

Acknowledgement. We are grateful to Dominic Welsh for his pointers to
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References

[1] I. Béardnyi and Z. Fiiredi, Computing the volume is difficult, Proceedings
of the 18’th Annual ACM Symposium on Theory of Computing (1986)
442-447.

[2] A. Z. Broder, How hard is it to marry at random? (On the approzima-
tion of the permanent), Proceedings of the 18’th Annual ACM Sympo-
sium on Theory of Computing (1986) 50-58. Erratum in Proceedings
of the 20’th Annual ACM Symposium on Theory of Computing (1988),
p. 551.

[3] M. E. Dyer and A. M. Frieze, Random walks, totally unimodular matrices
and a randomised dual simplex algorithm, Proceedings of second IPCO
conference, Carnegie Mellon University, (1992) 72-84.

[4] M. E. Dyer, A. M. Frieze and R. Kannan, A randomised polynomial time
algorithm for approximating the volume of convex bodies, Journal of the
Association for Computing Machinery 38 (1991) 1-17.

[5] G. Elekes, A geometric inequality and the complezity of computing vol-
ume, Discrete and Computational Geometry 1 (1986) 289-292.

[6] T. Féder and M. Mihail, Balanced matroids, Proceedings of the 24’th
Annual ACM Symposium on Theory of Computing (1992) 26-38.

[7] D. E. Knuth, The asymptotic number of geometries, Journal of Combi-
natorial Theory (A) 16, (1974) 398-400.

4



[8] L. Lovéasz and M. Simonovits, Random walks in a conver body and an
improved volume algorithm, to appear in Random Structures and Algo-
rithms.

[9] J. G. Oxley, Matroid Theory, Oxford University Press, 1992.

[10] M. J. Piff and D. J. A. Welsh, On the number of combinatorial geome-
tries, Bulletin of the London Mathematical Society 3, (1971) 55-56.

[11] G. C. Robinson and D. J. A. Welsh, The computational complezity of
matroid algorithms, Mathematical Proceedings of the Cambridge Philo-
sophical Society 87, (1980) 29-45.

[12] D. J. A. Welsh, Matroid Theory, Academic Press, New York, 1976.



