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Abstract

We give algorithms to find the following simply described approximation to a given
matrix. Given an m x n matrix A with entries between say -1 and 1, and an error parameter
¢ between 0 and 1, we find a matrix D (implicitly) which is the sum of O(1/€*) simple rank
1 matrices so that the sum of entries of any submatrix (among the 2™*") of (A — D) is at
most emn in absolute value. Our algorithm takes time dependent only on € and the allowed
probability of failure (not on m,n).

We draw on two lines of research to develop the algorithms: one is built around the
fundamental Regularity Lemma of Szemerédi in Graph Theory and the constructive version
of Alon, Duke, Leffman, R6dl and Yuster. The second one is from the papers of Arora,
Karger and Karpinski, Fernandez de la Vega and most directly Goldwasser, Goldreich and
Ron who develop approximation algorithms for a set of graph problems, typical of which is
the maximum cut problem.

From our matrix approximation, the above graph algorithms and the Regularity Lemma
and several other results follow in a simple way.

We generalize our approximations to multi-dimensional arrays and from that derive
approximation algorithms for all dense Max-SNP problems.

1 Introduction

One motivation for this paper comes from certain graph problems, such as the maximum
weight cut problem. Here we have a graph G = (V, E) and weights w : E - R. For SCV
the cut (S,9) is the set of edges with exactly one end in S. Its weight w(S,S) is the total
weight of its edges. The problem is to find a cut of maximum weight. It is easy to produce a
cut (in polynomial time) which has at least 1/2 of the weight of the maximum cut. Goemans
and Williamson [18] made a breakthrough by devising a polynomial time algorithm which comes
within a factor of .878 of optimal. This problem is Max-SNP hard; so from the PCP results of
Arora, Lund, Motwani, Sudan and Szegedy [7] it is known that if we have a polynomial time
approximation algorithm for every fixed factor less than 1 (or a Polynomial Time Approximation
Scheme - PTAS) then NP would equal P.

However, Arora, Karger and Karpinski [6] gave the an algorithm for this problem which produces
a cut of weight at least the maximum weight of a cut minus en?W where W is the maximum
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weight of an edge, and n is the number of vertices in the graph. This additive error bound
implies a PTAS for the case when G has 2(n?) edges, each of weight 1 (henceforth referred to as
the “dense case”). The running time of their algorithm is O(n®(/<")). Fernandez de la Vega [14]
independently gave an O(21/<"""" n2) time algorithm for the unweighted Max Cut and Maximum
Acyclic Subgraph problems with similar bounds. We give a constant time approximation scheme.

We describe a method of decomposing matrices into the sum of simple matrices plus an “error”
matrix. Ignoring the error matrix makes many problems easy to solve. In this way we obtain
algorithms which have running times 20/ <) 1in the probe model of computation (see Section
2.2). Our solutions are given implicitly and they can be quickly expanded to give explicit
solutions.

Algorithms with comparable running times to ours for the above problems have been obtained
earlier by Goldwasser, Goldreich and Ron through other means [19]. Sampling plays an important
role in all of the above papers. Goldwasser, Goldreich and Ron showed that by appropriate
sampling of a constant number of vertices one can determine with high probability whether a
graph has a cut close to a certain weight and in addition provide some auxilliary information
which implicitly defines the partition, enabling its quick construction later.

A second motivation for us comes from the Regularity Lemma of Szemerédi - a fundamental
result in Graph Theory. This lemma gives a partition of the vertex set of any graph into a
bounded number of pieces, so that the pieces satisfy some regularity properties — see Section 5.2
for a proper definition. While the original lemma was non-constructive, Alon, Duke, Leffman,
R6d] and Yuster [1] gave a polynomial time algorithm to find the partition. In an earlier paper
[16] we describe a related partition of the vertices with many fewer parts. This can be also
be put to algorithmic use in solving maximum cut as well as several other problems, with an
additive guarantee of error. In this context, we note that Duke, Lefmann and RGdl [12] used
another decomposition, different from ours and Szemerédi’s to approximate subgraph counts.
The number of parts in their decomposition is closer to ours than Szemerédi’s.

Using techniques from both these areas, we give here an algorithm for finding a natural approx-
imation to matrices stated in the abstract.

This approximation (applied to the adjacency matrix of graphs) helps us solve (in a uniform way)
the maximum cut and the other graph problems considered for example, in [19]. In addition, we
solve a version of the Quadratic Assignment Problem [9, 25] which contains the Minimum
Linear Arrangement Problem [17] as a special case.

We generalize our approximations to multi-dimensional matrices. Using this generalization, we
give approximation algorithms with an additive error guarantee for all Max-SNP problems.
(The class Max-SNP was introduced by Papadimitriou and Yanakakis [24]. We will briefly
explain the class in Section 7.)

Perhaps a central point of our paper is that all our algorithms are obtained from the matrix
approximation theorem with minimum effort.

We note that there has been fair bit of success in designing polynomial time approximation
schemes for certain graph problems (such as the Max Cut problem) on dense graphs, as mentioned
above and other problems like the QAP (Arora, Frieze and Kaplan [5]), the existence of such
schemes for general graphs would imply that NP=P by the powerful results of Arora, Lund,
Motwani, Sudan and Szegedy [7]. This mirrors the situation in approximate counting where
dense problems have sometimes been easier to attack — Annan [4], Broder [8], Jerrum and
Sinclair [22], Dyer, Frieze and Jerrum [13] and Alon, Frieze and Welsh [2]. We have not as yet

IThe O notation hides polynomial factors in log 1/e, log 1/8. & will be our probability of error.



found a way of using our decomposition for such approximate counting problems.

We also use our matrix approximation Theorem (applying it again to adjacency matrices of
graphs) to derive a constructive version of Szemerédi’s Regularity Lemma. In Section 5.1 we
show how to use the matrix approximation Theorem, another partition where the number of
parts in the partition grows more slowly than Szemerédi’s. In our partition the logarithm of the
number of parts is polynomial in 1/e whereas in Szemerédi’s only log* of the number of parts
is — necessarily so, Gowers [20]. Of course our partition does not have as strong a regularity
property as Szemerédi’s. However, the weaker conclusion is enough for certain purposes; in fact,
as we mentioned earlier, we may also derive our algorithms from this version, see [16].

2 Statement of Results

2.1 Notation

We will be mainly concerned here with matrices having rows indexed by a set R and columns
indexed by a set C, |R| = m and |C| = n. The ith row of M is denoted by M;. We use the
notation that for any vector € R™, and any subset S of coordinates, 2(S) =}, g 2;. For such
an R x C' matrix M we use several norms:

M — M. . .
|IM]|oo (m,r)rgxcl (i,9)|
[IM||r = Z M(i, 5)2. Frobenius Norm
(i,§)ERXC
Mllc = max |M(S,T)]|, Cut Norm
SCR,TCC
where
M(S,T) = Y. M(3,j).
(i,j)ESXT
We note that
Mz
Mlle < sup ML gy, W

seR"\(o} |1%llos

The lower bound follows from considering z € {0,1}". For the upper bound observe that
maximum of (the convex function) ||[Mz||; over (the polytope) ||z]||cc < 1 occurs at (an extreme
point) z € {—1,1}™

Given S C R, T C C and real value d we define the R x C Cut Matriz C = CUT(S,T,d) by

d if (i,5) € ST,
0 otherwise.

cli.i) = {
Note that a cut matrix has rank one.

2.2 Model of Computation

We will design algorithms that run in constant time. Since the data size for these problems is
unbounded, we must be precise about what we mean. We use the Probe model in which we



assume that given (i,5) € R x C' and matrix A we can in O(1) time determine A(i,j), by a
“probe”. Our results state that many problems can be implicitly solved using a constant number
of random probes. By implicitly, we mean that we obtain a short description of a solution, which
can be “expanded” explicitly in polynomial time, usually O(m +n) time. Our results will mostly
be stated in this model, which was introduced in [19].

2.3 Matrix Decompositions

A Cut Decomposition expresses a matrix A as
A=DD D ... DG L W. (2)

Here D® = CUT(R;,Cy,dy) for t = 1,2,...,s. Such a decomposition has width s, coefficient
length (d? + - -- + d2)*/? and error ||[W]||c.

Theorem 1 Suppose A is an Rx C matriz and suppose €, are reals in the interval (0,1). Then
in time O(e 126~ 1), we can, with probability 1 — &, find a cut decomposition of width O(e=*),
coefficient length at most v27||Al|s and error at most emn||A||c.

The next theorem claims a decomposition of smaller width. It takes longer to produce. In this
algorithm we can avoid the dependence on [|A||.

Theorem 2 Let A ¢, be as in Theorem 1. Then in time 26(1/62)/62, we can, with probability
1 -4, find a cut decomposition of width O(e=2), coefficient length at most \/27||A||r/\/mn and
error at most ex/mn||A||F.

If A is a symmetric matrix then it could be useful to have what we call a symmetric decomposition.
This is easily done. If A = DM + D®) ... 4+ D) 4+ W then we use the decomposition

DM (DMW)T D® (DT W+ WT
= + ot + + -
2 2 2 2 2
= DW 4+ D@ ... DD 1 D LW, 3)

The D) are not necessarily symmetric, but we use them in pairs indexed by 25 — 1 and 2j.
Note that -
[[Wllc < ||[W]|c.

Theorems 1 and 2 are proved in Sections 4.2 and 4.3.

2.4 Approximation Algorithms

Theorem 3 Max-Cut Let G denote the complete graph with vertex set V and edge weights
w:V XV = [1,1]. Then in time 200/<) 1og1/§ we can find a cut (S*,V \ S*) such that with
probability at least 1 — 9,

w(S*,V\ S*) > w(S,V\S)—en®

forallSCV.

(If the edge weights are in [-W, W] then by scaling we see that the error is at most eWWn?.)



We can prove a related theorem on the conductance of graphs. Suppose G(V, E) is an undirected
graph. Let us define the conductance of G denoted Cond(G) by

Cond(G) = min Cond(S)

where

{(u,v) :u€ S;veV\S}

ISI[V\ S| '
When the degrees of all vertices are equal, this coincides with the definition of Jerrum and
Sinclair [22].

Conds =

Theorem 4 Given a graph G and €,6 > 0, there is a O(nQO(l/ez) log1/8) time algorithm which
returns a real number T so that with probability at lesst 1 — §, we have

|Cond(G) — 7| <e.

We now consider the QAP. We focus on the Koopmans-Beckmann version of the QAP. Here
one is given a set of n items V' which have to be assigned to a set of n locations X, one per
location. We are given two m X n non-negative matrices T,D. Here T(i,4') is the amount of
traffic between item ¢ and i’ and D(z, ') is the distance between location z and z'. If item 4 is
assigned to location 7(7) for i € [n] the total cost ¢(w) is defined by

o(m) = Z > T(i,i)D(n(i), m(i")). (4)

The problem is to minimise ¢(w) over all bijections 7 : V — X.

A typical example is where a location is a room in a building (e.g. hospital) and each item is a
facility of some sort (e.g. operating theatre, intensive care unit etc.) and the total cost is the
sum over pairs of facilities of the product of traffic intensity and distance.

We will restrict our attention to the case where the n locations are the points of a finite metric
space X with metric D. We assume that
1. diam(X)=1 i.e. max, , D(z,y) = 1. (This can be assumed w.l.o.g. by scaling).

2. For all ¢ > 0 there exists a partition X = X; U Xo U ---U Xy, £ = £(€), such that
diam(X;) <, for 1 < j < £. We call this an € — re finement of X.

Furthermore this partition is computable in time polynomial in n and 1/e — for the cases
we have in mind, this will be insignificant compared with that required by the rest of the
algorithm.

We call this the metric QAP.

The Minimum Linear Arrangement problem [17] where X = {0,1/n,2/n,...,1} is a special
case. Partition X is just [1/e] intervals of length roughly equal to €, each containing roughly en
points.

Similiarly, if the points are in [0, 1]¢ then we divide this into [1/ e]d subcubes in the natural way.
Here diam(X) < d'/2 and we need to scale to get the precise formulation.

We will also assume that T(i,:") < 1 for all 4,4' and this can be achieved by scaling. Let 7*
denote the permutation which minimises c.



Theorem 5 There is a randomised algorithm algorithm for the metric QAP which, with proba-
bility at least 1 — &, produces a permutation w. such that c(n.) < c(n*) + en? and which runs in
expected time ¢(€)log1/d for some function ¢.

We next look at the related Maximum Acyclic Subgraph Problem. Here we are given a
(weighted) digraph D with adjacency matrix T and the problem is to find the maximum (weight)
subset of the edges which induces an acyclic digraph.

Theorem 6 Let D be an edge weighted digraph with arc (i,j) having weight T(i,j) where

||T|lwc < 1. There is a randomised algorithm which in time 2001/¢%) 1og 1/6, can with proba-
bility ot least 1 — 9§, find an edge set E C E which induces an acyclic subgraph and

T(E) > T(E*) — en?,

where E* is the optimal solution.

Theorems 3 — 6 are proved in Section 3.

2.5 Graph Partitions

The research that led to this paper was sparked by our realisation that given a decomposition
promised by Szemerédi’s Regularity Lemma, we could easily get a good approximation to Max-
Cut (Theorem 3). We then realised that we did not really need such a fine partition and that a
partition adequate for Theorem 3 can be computed more easily.

In Section 5 we describe Szemerédi’s partition as well as our weaker Pseudo-Regular partition.
We then show how to use our matrix decomposition algorithms to find such partitions.

2.6 Higher Dimensional Matrices

In Section 6 we will consider higher dimensional matrices. We will extend our notion of a cut
decomposition. We will prove (Theorem 11) that a recursive application of our 2-dimensional
algorithms can be used to yield good decompositions in higher dimensions.

This will lead us naturally to consider hypergraph versions of the partitions discussed in Section
5. We will show how to construct regular partitions of hypergraphs. This has recently been
achieved by different methods in Czygrinow and Rédl [11].

Finally, using our higher dimensional matrix decompositions we will show in Section 7 how to
obtain a PTAS for a dense instance of any optimisation problem in MAX-SNP.

3 Combinatorial Problems

3.1 Max-Cut

In this section we prove Theorem 3 and show how to use the matrix approximation to find
approximately the maximum weight cut in a graph G(V, E). This illustrates the method used
for all problems. In Section 7, we use the same method generalized to multi-dimensional matrices
to solve approximately any general Max-SNP problem; but it is easier to understand the method
in the simple setting of Max-Cut in graphs first.



We take the matrix A with A (i, ) equal to the weight w(z, §) of the edge (i, j). We use Theorem
2 to implicitly find cut matrices DM, D@ ... DO s = O(1/€?) with D® = Cut(Ry, Cy,d;)
such that with probability at least 7/8
A — (DM +D® +... + DO)|| < en||A]|r/10 < en?/10. (5)
This takes time 20(1/€*).
Suppose (S, S) is a cut in the graph. Then, A(S, S) is the weight of this cut and (5) implies
|A(S,5) — (DW + D® 4 ... £ DO)(S,5)| < en?/10. (6)

But, D®)(S,5) = d;|S N R:||S N Cy| and so

ZD(t) (S,8) = Zdtftgt (7
=1 =1
where
fi=|SNRand g =|SNCy| fort=1,2,...5. (8)

We let v = [en/(9v27)], (see our bound on the coefficient length of the decomposition), and we
consider approximations to f;, g; defined by

Fo_ ft _ |9
= |L]n a2 ©)
We see using the fact that |di| < v/27,
Z | frgeds — figedy| < \/ﬁs(Zun +17) < 3v27vns. (10)
t=1

We see from (6), (7), (8) and (10) that the values f;,g;, 1 < t < s almost determine the weight
of the corresponding cut. Thus our problem is reduced to finding the best values for f,g and a
corresponding cut. Now each f; and g; take on one of only O(1/€®) values and so we can afford
to enumerate all O(1/€e)2* possible values of f,g, try to find a cut for each and take the best
cut found. Finding a cut for a given set of values f, g is an integer program which we replace by
its linear relaxation.

Max-Cut Algorithm

Let P be the coarsest partition of V (with at most 22% parts in it) such that each Ry, C; is the
union of sets in P. We explicitly construct a representation of P. We (i) construct a decision
tree which has a leaf for each P € P such that for any v € V' we can determine P containing v
in O(1/€?) time and (ii) for each R;, C; we make a list of those P which are its subsets.

Let K = {0,1,2,...,[10v/27s/€]}. For each (f,g) € vK?® we define the following integer
program: for each P € P, zp represents the unknown |S N P|.
IPs ;: find an integer solution to

0 < zp < |P] YVPeP
fi < Z Tp < fi+v 1<t<s
PCR,
g < Y (Pl-zp) < Gi+tv
PCCy



Let LPf; denote the linear relaxation of this problem. This program is feasible whenever f,g
are derived from a set S as in (8) and (9) — take zp = |[SNP|, in which case Y pp, TP = [SN Ry
etc.. -

If LPy ; is feasible we round down each zp to the nearest integer (below it) to get yp. Then, we
have for each ¢, the upper bound on ), p zp is still satisfied i.e. Y pcp yp < fi +v. Also

we have B
> yp>fi—2%.
PCR;

Similary we have

9:< Y (IPl—yp) < g +v+2%.
PCC,

After finding the yp, we take any S* = S*(f,g) with |S* N P| = yp for all P € P (such S*’s
exist as P is a partition). We have

[|[Re N S*| — fi] <v+2% <2v
ICs N S*| = ge| < v +2% < 2w,

for n high enough, since 228 € 20(1/¢"),

This implies that (arguing as in (10)), for each feasible set of f;, g;, we can find S* with
|Z|RtﬂS*||Ct05'*|dt—Zﬁgtdt| S 5\/271/”8. (11)
t=1 t=1

So, taking the best S*(f,g) as (f,g) runs over vK2*, we see from (6), (10) and (11) that we get
a cut which is at least the maximum minus 8v/27vns + en?/10 < en? as claimed. We manage
this with probability at least 7/8. By repeating O(log1/d) times and taking the best cut found
we obtain our theorem. |

All subsequent algorithms use this strategy. So when we say ”compute a decomposition sat-
isfying ...” we implicitly mean compute one with probability at least 7/8. Repetition of the
decomposition plus optimisation O(log1/§) times is used to improve the probability to 1 — 4.
We will not always say this explicitly in what follows.

3.2 Conductance

In this section we prove Theorem 4. Let €; = €/8 and assume e is sufficiently small. Let d(v)
denote the degree of vertex v and for § C V' let d(S) = >, g d(v). We first estimate all the
degrees. For this we pick an independent sequence vi,vs, ... ,vr of randomly chosen vertices,
T = 64logn/ei. Let d'(v) = nB,/T where B, is the number of i such that v; is adjacent to v.
B, has distribution Bin(T,d(v)/n) and so (see Corollary A.7 of Alon and Spencer [3])

Pr(|d (v) — d(v)| > e1n/8) = Pr(|B, — Td(v)/n| > Te1/8) < n2.

So assume that
|d'(v) —d(v)] < en/8  VveV.

Case 1: There is some v € V with d'(v) < €;n. Then, d(v) < en/4 and so with S = {v}, we get

[{(u,v) :u € S;veV\S}
ISIVA S|

<¢/3,



whence we may output 7 = 0 and stop.
Case 2 d'(v) > e1n, Yv € V. Now for any S C V with |S| < €2n/2, we have

d(S) < d(s) —|S)? {(u,v) :u e S;veV\S} _ d(S)

1—c¢ < < Condg = < 1+4+€).
I =e)T5 < TS5 s ST\ S ng] (Lt e
We then have that,
a(s) a(s) )
— < < < .
(1-¢) nls| = Conds < (1 + €;) nlS[’ V|S| < ein/2

So, ming, S|<e2n/2 Condg can be found with error at most € by just arranging the vertices in
increasing order of (estimated) degrees and examining the vertices in this order. (We will not
give the simple details.)

Now we deal with sets S with e€2n/2 < |S| < n/2. For this, we start by finding an approximation
D to A so that for all S C V', we have

|A(S,5) - D(S, )| < ee2n?/3. (12)
For any S C V, let
. _D(SV\S)
Condg = ———+
SISV S

Then for these large S, we have, from (12),
|Conds — Condg| < e,

so it suffices to find the minimum of Condg . This is done in a manner similar to the maximum
cut problem in time 20(1/¢%).

3.3 Quadratic Assignment

In this section we prove Theorem 5. Our assumption about the metric allows us to define, for any
€ > 0, an £(€) x £(e) matrix D, such that if z € X; and 2’ € X;s then |D(z,2') — D(j,5')| < 2e.

We start by applying Theorem 2 and decomposing
T:T(l) _|_T(2) +...+T(3) + W

as a sum of cut matrices T) = CUT(R;,C;,d;) and ||W]||c < en?, € = €/(803) where
£y = £(€/16). Thus for a bijection 7 : V' — X we have

e(m) =D Y TW (i, ))D(x (i), 7(5)) + A (13)
k=11i,j=1
where

n

Ay = ) D((i), 7 (5))W(i, 4)

,j=1

Lo
= Z Z (De/S(p7 (I) + erri,j)w(i7j)a
P,q=1 w()€Xp
m(j)€EXq



where |err; ;| < €/8.

Now note that ‘szzl erri,jW(z’,j)‘ < en?/8 and

Lo Lo
S Y Do aWi i) < 3 WeE(X,), 7 (X,)

p,q=1 m(i)€Xp p,q=1
m(j)E€EXq
< GlIWlle
< o
- 8

Thus A; < en?/4.

We compute an €;-refinement of X, €;

€/(8,/7s) (A somewhat similar idea was used in ([5])).
Then let SZ(”) =771(X;) for 1 <i <€ =1{(e1). In which case we can write

s n s I3
SN W6 D@6, a() =Y Y delRe 0 S0k 0 S D, Gy 5) + Ay
k=14,j=1 k=1 4,j=1 (14)

where |Ay| < 2v/27se1n? < en? /4. We use the fact that |dx| < v/27, the bound on the coefficient
length of the decomposition.

We let v = |en/(121/27¢s)| and
ofp = IR N S| /v] and yTy = [|Ce N S| /v Vi k.
So,

8

¥4 s ¥4
SN R0 S1CkN ST D 6, 0) = v Y S diaT iyl + As (15)

k=1 i,j=1 k=1 i,j=1
where |Asz| < 3v/27vlsn < en?/4.

As we vary m each of z7,,yT, takes on one of O(£/€?) values. So, as in the case of max-cut we
try all O((£/€®)2%*) choices for the vector (27 kY7 y) and take the best “feasible” one.

In a similar manner to that in Section 3.1 we implicitly compute the coarsest partition P, |P| < 4°
such that each Ry and Cy, is the union of members of P. We introduce variables \; p, P € P,1 <
i < £ and for each trial vector (&; x,7;,x) we check the feasibility of the linear system

Eip < Z Aip < Gkt Vi, k
PCRy,
Nik < Z Aip < miktl Vi, k
PCCy (16)

IA

¢
UXil/v) < Y e LIXil/v] +1
i=1
Assuming feasibility in (16) we round down a solution A; p to integer values y; p and choose any
bijection which maps between u; pv and (u; p + 1)v members of P to X; for every ¢, P. In this
way, we find a solution 7, such that for any other solution 7, ¢(7.) < ¢(7)+3nv+A;+As+ A3 <
c¢(m) + en? and this proves Theorem 5.

10



3.4 Maximum Acyclic Subgraph

In this section we prove Theorem 6. Let v = |en/2| and X = [n]. Let X1, Xa,...,X, be
a partition of X into sets of size v or v 4+ 1 such that if i < j then maxX; < minX;. We
re-formulate the problem as one of finding a bijection 7 : V' — X which maximises

e(m)= Y T(zy).
(z,y)EE
(z)<m(y)

We define a distance matrix D by

— 1 xeXiayer7i<j7
D(z,y) = { 0 otherwise.
We then observe that "o
e(m) =) T(i,i")D(x(i),x(i") + A,
i=1i'=1

where |A| < en?/2. Comparing with (4) we see that we can proceed as in the previous section.
The reader might be troubled by the fact that D does not define a metric. However this is
not essential. All we need to be able to do is define a good approximating matrix D and here

A

D(l,j) = 1i<j will suffice.

4 Computing Decompositions

4.1 Existence

In order to help motivate the more technical constructive proofs, we first give a simple non-
constructive version of our decomposition theorems.

Theorem 7 Suppose A is a real m X n matriz with rows R and columns C. Then
there exist cut matrices DM, D) . DG DO = CUT(Ry, Cy,dy) for 1 <t <s <1/
such that if

WO =A - (DO +D? ... + DO)

then

[W(S,T)| < e/|S||T|||AllF VSCR,TCC. (17)
VSCR,TCC.
Proof Assume inductively that we have found ¢ < 1/€? cut matrices

DY) = CUT(Rj,Cj,dj), 0<j<t (D(O) = 0)7

such that W = W) gatisfies
W[5 < (1= €*)||Al[%-

We show that either (17) holds, proving the theorem (with s = t) or else we can find a decompo-
sition with # 4+ 1 matrices that also satisfies (17). By inspection, (17) precludes ¢t > 1/€? and the

11



theorem is proved. So assume that there exis R,T C C such that [W(S,T)| > ev/|S| |T|||A|| -
Let Riy1 = S,Cry1 =T and dipq = W(S,T)/(|S||T|). Then

IWED |G — W7 = |[W =D |5 — [W]]5
= > (Wi, )) = de)® = Wi, 5)?)
1€Rt4+1,j€Ct41
= —|Ruy1||Cryaldi i,
W (Rys1,Crp1)?
|Ret1] [Cral
—€*||Al|%-

IA

The theorem follows. O

Remark: For m = 1 the theorem says that we can write an arbitrary real n-vector a as the
weighted sum of < €72 0-1 vectors and an error vector w for which |w(S)| < ey/n|al for all
S C [n].

4.2 First Algorithm

Proof of Theorem 1. We assume that ||A||cc = 1. The general case is dealt with by scaling.

At a general stage, for some ¢t > 0, we will, with sufficently high probability, have found cut
matrices D, ...D® such that W® = A — (DM + ... + D®) satisfies

()2 364t 2
WO < (1- 220 ) 1Al (18)

We will prove this by induction on ¢. It is clearly true for ¢ = 0 and for general ¢ there are 2
possibilities:

(i)
[W(S,T)]| < ey/mnSIT]| (19)

foral SCR, TCC.
In this case the conditions of Theorem 1 are satisfied.

(ii) 35 C R, T C C with [W(S,T)| > e\/mn|S[[T|.

We will show that in case (ii) we can find a ¢ + 1’st cut matrix so that (18) holds. Thus after at
most 6400/ (3e*) iterations we will find ourselves in case (i).

Assume then that (19) is not satisfied and let W = W), We will describe a procedure which
finds a pair Ryt1,Ciy1 with

|W(Rt+1, Ct+1)| Z ezmn/40. (20)

The pair Ry, 1,Cyy1 will then be used to define D¢+,

12



We have for any subset S of the rows and any subset T of the columns,

(Z ZW(u,v))2

ueSveT

2
EDY (Z W(u, v)) Cauchy-Schwartz

ueS \veT

151> > W(u,0)W(u,v")

ueSvv'eT

EDY (Z W(u,v)W(u,T)) .

veT \ueR

W(S,T)?

IA

Defining

v) =Y W(u,0)W(u,T),

u€eS

we see that
W(S, T)

2 )z =g

veT
Also, it is easy to see that for each v, we have f(v) < m|T|. So if

_ _ W(S,T)?
0={vec:isez mﬂW|}
then W(S,T)? _ W(S,T)?
|QIm|T| + |T| 2|S|’|T| > |§|
and so
W(S,T)*
Q| > ST (21)

Now choose a pair S,T which violate (19). From (21) we see that for this S,T we have
Q| > €°n/2.

Fix attention on this pair S,T and on a v in @. Define a function G = G, : R — 2% as follows:

G(l/):{ {u€ R: W(u,v) >v} ifv>0

{ue R:W(u,v)<v} ifr<o0 (22)

It is easy to see from a = fol lz<qdz etc. and v € Q that

0
emn/2 < f(v / W(G®),T) dll—/ W(Gv),T) dv.
-1
Thus for v € @, if v is chosen uniformly at random from [-1,1]

E,([W(G(v),T)]) > e*mn/4.

Note next that |[W(G(v),T)| < vmn||W||r < mn Vv (using the inductive assumption (18) to
bound ||W]||r < ||A||lr < /mn). Let

9 = Pr((W(G(v),T)| > e2mn/8).

13



Then for v € Q,
e€mn/4 < E,(|W(G(v),T)|) < 0mn + (1 —6)e*mn/8

which implies § > €?/8 or in other words that given v € Q, if we pick v at random in [-1,1],
with uniform density, then we have

Pr ({W(G(v),T) > €mn/8 and v > 0} OR {W(G(v),T) < —e’mn/8 and v < 0}) > €*/8.
(23)

Define

Pw(R) ={ze€C: W(R',z)>0} Nw(R) =C\Pw(R) VR CR
Pw(C) ={ueR: Wu,C) >0} Nw(C") =R\Pw(C') VYC'CC. (24)

Equation (23) implies the following;:

Lemma 1 If3S C R, T C C with |W(S,T)| > ex/mn|S||T| and we pick v at random from C
and v at random (with uniform density from [—1,1]), then with probability at least €*/16, we
have

W(G(v), Pw(G(v))) > €mn/8 OR W(G(v), Nw(G(v))) < —€*mn/8. (25)

O

We propose to use this lemma as follows: pick v,v at random as above. Check whether (25)
holds. (While T' was unknown, both Pw(G(v)) and Nw(G(v)) are known once v,v are.) If
not, we repeat the trial a certain number of times. Whence we can argue that the probability
of failure in all trials is low. Once we have v, v satisfying (25) we can take R;y; = G(v) and
Ciy1 = Pw(G(v))) or Nw(G(v))). Then we can argue as in the proof of Theorem 7 that the
Frobenius norm of our error matrix drops significantly. The catch is that checking whether
[W(G(v), Pw(G(v)))| > e2mn/8, takes O(n?) time if naively done. We use sampling to do an
approximate version of the check in time O(e '26~') below.

Steps 5-10 choose a random v, v and try to see if (25) holds. R = G(v) is represented by RNU for
a small random subset U. C is defined as in (26) below. It is important to realise that R, C' are
not explicitly computed. The value of W(R, C) is estimated by W = mn|W(RNUy, CNW1))|/¢>.
Here Uy, V7 are also small random subsets. This is done rq times and the best R, C are re-checked
in Step 11. If |I¥| is large enough then we take steps (12,13) to ensure that |R| > m/3,|C| > n/3.
This is used in the proof that the coefficient length of the decomposition is small.

We describe the algorithm and prove its correctness later. The constants in the algorithm are:
o ty = [2500e4].
p= [1056_4 10g(67‘080t05_1)] .

® rg = [326_41.
o 50 = [log,(3ted 1)1.
o g = 30pro.

q' = [30psotod 1] + [2 x 1088 In(12s0t0/d)].

First algorithm to find a cut decomposition of A

14



1 Fort=20,1,...tg — 1 do:

2 Set W) = A — (DM +D® 4+ ...+ DW),
3 For s=1,2,...5¢ do:
4 Forr=1,2,...r¢ do:

11

12

13

14

5 Pick a v from C uniformly at random.

6 Pick v uniformly at random from [—1,1].
7 Pick random subsets U, U; of R independently with |U| = p and |U;| = gq.
8 Pick a random subset V; of C independently with [Vi| = gq.
9 R+« G(v) and

~ { Pw(RNU) ifvr>0

M 2
Nw(ROU) ifv<0 (26)

10 Compute the following estimate W = mn|W(RNU,C N V)|/¢* of
W(R, (). Go to the next r.

Let R, C refer to the largest value of || found in the last execution of loop

4-10.

Choose new random subsets Uy C R, V1 C C, |Uy| = |[Vi1| = ¢’ and recompute

W with ¢’ replacing g.

If [W| < €2mn/9 goto the next s, unless s = sq, in which case go to 15.

Compute the estimate p for |R|: p=m|RNUi|/q.

If p > 2m/5 goto 13, otherwise

Estimate W(R,C) by Wi = mnW(U1,C N V1) /g

If W1 > €2mn/19 then R < R, W < W; and p < m, otherwise

R« R\R, W « mnW(Ul,Vl)/q'2 — Wi and p < m — p.

Compute the estimate % for |C|: & =n|C NVi|/¢.

If k > 2n/5 goto 14, otherwise

Estimate W(R, C) by Wy = mnYV(R NUL, V) /g

If W5 > €2mn/39 then C + R, W < W, and & < n, otherwise

C+ C\C,W < mnW Uy, V1)/¢* — W, and k « n — k.

Rt+1 «— R, Ct+1 — é, dt+1 «— W/pli and

D(H—l) < CUt(Rt+1, Ct+1 .dt+1)

and go to the next ¢, unless ¢t =ty in which case FAIL.

15 Terminate with D™ + D® 4+ .. D® as the approximation to A.

The proof of correctness is based on the following sequence of lemmas. They show that the
estimates are accurate enough with high enough probability.

Lemma 2 Suppose W is an m X n matriz with set of rows R and set of columns C. FixY C R.
Suppose U is a random subset of R of cardinality p. Then

Ey(W(Y, Pw(UNY))) > W(Y, Pw(Y)) -,/ %HWHF. (27)
Eu(W(Y, Nw(UNY))) < W(Y, Nw(Y)) + %HWHF. (28)

15



Proof We prove (27) only, as the proof of (28) is almost identical. Let Z = Pw(Y) and

Z' = Pw(UNY). We write
W(Y,7) = W(Y, Z) - W(Y, By) + W(Y, By),

where

B = {2z€C: W({%,2)>0and WU NY,z2) <0},

B, = {z€(C: W(,z)<0and WU NY,z) > 0}.
Now if X, = WU NY,z2), Wa(2) = ,cy W(u,2)? then

X, = Z w(uaz)lueU
u€Y

and so
E(X,) = %W(Y, 2) and Var(X,) < %Wg(z)

Hence, for any £ > 0,

pWa(z)
mg?2

Pr (‘X _ %W(Y, z)‘ > g) <

If z € By then X, — (p/m)W (Y, 2) < —(p/m)W (Y, z) and so applying (30) with £ = pW (Y, z

we get that for each fixed z,

mWs(2)

P B)) < ——.

B < R, 2

Thus,
i mWa(z)
< - 7
E ( Z W(Y, z)) < Z min {W(Y, z), W, 2) }
zEB1 {zeC: W(Y,z)>0}

< mWa(z)
- p

{zeC: W(Y,z)>0}
By an identical argument we obtain
mWa(z)
E(Z W(Y,z)>z— 3 s
2€B, {2€C: W(Y,2)<0} p

Hence, (using the Cauchy-Schwartz inequality),

BW(Y,2) > W(,2) - 3 | 28 > Wi 2) - /22 W

zeC

This proves (27) and (28) is proved similarly.

(29)

O

We use the lemma with ¥ = R=G(). Let Z=Pw(Y)if v >0and Z = Nw(Y) if v < 0, and
let Z' = C (as in Step 9 of the algorithm). From Lemma 2 and the Markov inequality applied

to the non-negative random variable W (Y, Pw (Y)) — W(Y, Pw (U NY)) we see that

Pr (W(Y, Z)-W(,2') > 2, [ ||W||F) < 1/2,  whenv >0,

and similarly

16
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Pr (W(Y, Z) - W(Y,2') < -2, /%HWHF) < 1/2, whenv<O0.

To aid the analysis, we define some events for each execution of the loop of Steps 4-10:

E, = {W(R,Pw(R)) > e*mn/8}

E, = {W(R,Nw(R)) < —€*mn/8}

Es = {W(R,Pw(RNU))>W(R, Pw(R)) — 2v/mn/p|[W||r}
E, = {W(R,Nw(RNU)) < W(R,Nw(R))+ 2\/mn/p|[W||r}

Then

PI‘((El A E3) \% (EZ A E4)) Z PI‘(El A E3) + PI'(_|E1 A E2 A E4)
= PI‘(Eg | El)PI‘(E]_) + PI‘(E4 | _|E1 A E2)PI‘(_|E1 A Eg)

> PrE)/2+ (G- Pr(E) /2

= /32 (33)
for each execution of the Steps 4-10.

In the above calculation Pr(E; | E;) > 1/2 follows from (32) — E; does not condition the random
set U. Similarly, Pr(Ey | ~E1 A E2) > 1/2. Then Pr(—E; A E3) = Pr(E; V E;) — Pr(E;) and
Pr(E; V E3) > €*/16 from Lemma 1.

The above shows that with sufficient probability, we “see” a pair R, C for which |[W(R, ()| is
large. We will now argue that with high probability, the estimated value [mnW (RN Uy,C N
V1)/¢*| and the real one — |W (R, C)| — are close so that we make no mistake. For this, we will
need the definition of two other events.

B = {%W(RmUl,Pw(RmU)n%) W(R, Pw RﬁU‘ \/ ||W||F}

Eez{m

The lemma below will bound the probability of Es, Eg.

(R AU, Nw(RNU) N 13) = W(R, Nw (R0 U))‘ > 7||W||F} .

Lemma 3 Suppose Uy, V; are random subsets of R, C respectively with |Uy| = |Vi| = q. Then,

for any fixred X C R and Y C C' we have
3p
> 2w ) < 2. (39

Proof Fix X C R,Y C C and consider the random variable

r(‘W(X,Y) WX N, Y NT)

Z=WEXnU,YnW) =Y Y &,

zeX yeyY

where

§:c,y = W($7 y)l-’/EEUl 1y€V1 .
Thus for all z,y, E(&,,) = ¢*W(z,y)/mn and hence
W(X,Y)

B(2) = mn

17



Now
E(Z2) =514+ 852+ 53+ 54

where
(12 2
S = %Zyw(x;y)
_ =1
52 = mnn—l Z W y)W(y)

_ q—l 2
= mnn_l (ZW —§W(x,y)>
S; = q_l (ZWXy —ZW(w,y)2>

S = q_(ql)‘nz_l) > Wy W'y)

m(m - ,
z#£z' y#y

= m(nfz_(ql)_ng_ ) (W(X, V)P =) W(a,Y) =) W(X,y)’+ ZW(x,y)z) :
z Y z,y

D> W(z,Y)? <nl[W|[} and Y W(X,y)* < m||W|[3.
x Y
Hence,

var(7) < 2% w2
- mn F

and so for any £ > 0 we have

Pr((|Z - iW(X Y)| > €W ) < 3¢° . (35)
mn ’ - ~ mn&?
To obtain (34) we put £ = W in (35). O

Consider an execution of Steps 4-10 i.e. a fixed ¢t,s. This will be considered successful if
(Ey A E3) V (Ea A Ey) occurs at least once and E5 V Eg never occurs. In this case the values of
R, C passed onto Step 11 will satisfy

|[W(R,C)| > emn/8 and |W — W(R,C)| < 3mn/./p. (36)
We see from (33) and Lemma 3 that

4\ o
Pr(Steps 4-10 are successful) > (1 - (1 - %) > (1 - 31;£)

> 1/2.

So the probability that none of the R, C' etc. passed to Step 11 satisfy (36) is at most 27% <
6/(3to)-

We next observe that it follows from Lemma 3 that with probability at least 1 — §/(3to) all
of the estimates W made in Step 11 and W;, W made in Steps 12,13 are accurate to within

Vmn/p||W||r < e2mn/10000.

We now consider the accuracy of the estimates p, k in Steps 12,13.

18



Lemma 4

- )
Pr(lp — |R|| > €'mn/3000) < ——
680t0

. §
Pr(|k —|C|| > €*mn/3000) < Socta

Proof We need only deal with p,x as produced in the first statements of Steps 12,13.
Applying the results of Section 6 of Hoeflding [21] (sampling with replacement) we see that for
any £ >0 B

Pr(||R| — mp/d'| > ém/q') < 2exp{—2¢?/q'}.

Putting £ = e*¢’ /3000 we see that

- )
Pr(||R| —mp/q'| > ¢'m/3000) < :
680t0

Similarly,

Pr(||C| — nk/q'| > €'n/3000) < d .
680t0

We summarise what we want from Lemma 2, 3 and 4.
Lemma 5 For each fized t, with probability at least 1 — 26/3to:

o If3S,T with |W(S,T)| > emn then the algorithm returns Ryy1,Cry1 with

2

2mn
W (Rit1,Cr1)| > 640

If the algorithm returns a pair Ryy1,Ciy1 then (37) holds.

- 2
W — W (R 1, Ciy1)| < 565

4
|Rita] > 55 |p — | Retall < 5555

4
|Ct+1| > %,IH— |Ct+1|| < %'

O

From Lemmas 5 and 4 we observe that with probability at least 1 — § the following holds
throughout the algorithm:

W(Bi1,Co1) 4| o L
w - 10

‘|Rt+1||0t+1| _ 1‘ <1
PK — 10

In which case, if

W(Rty1,Ciy1)

dirq =
T R [Coa

then dp41 = dip1 — Jt+1 satisfies

|8e41] < |diga]/2. (39)
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Finally note that

D> (W =D (6, 5))> = > W(i,j)* = > ((W(6,4) = dir = 8141)* = W(i,5)%)
4,J %, 1€R:4+1,j€C41
= —|Ria1l|Ciqaldi 1 + |Res1l|Ceqa |67, (40)
< =3|Rey1|Crr|d7y /4

—3W(Rs 41, Ci11)* /(4| Rit1||Crpa )
—3¢*mn /6400, (41)

IN

which establishes (18).

We now deal with the coefficient length of the decomposition. Arguing from (39) and (40) we
see that

W = DEHD|E — ||[W[3 —|Res1] |Crya|des1(digr — 41)

< —|Res| [Coraldiy /3.
Consequently,
1 ¢ 2 2
S IR (Cud? <A (42)
t=1
Our bound on the coefficient length follows from |R;| > m/3 and |C¢| > n/3. O

4.3 Second Algorithm

Proof of Theorem 2. At a general stage, for some ¢ > 0, we will, with sufficently high
probability, have found cut matrices DM, ... D® such that W® = A — (DM + ... + D®)
satisfies

3%t

W < (1- 32 Al (43)

We will prove this by induction on ¢. It is clearly true for ¢ = 0.

In the following we let W = W), We will describe a procedure which either determines that
[[W]|c < es/mn||A||F or finds a subset Y;y; of R and a subset Z;11 of C such that

W (Pw (Zt11), Pw (Yey1))| > ev/mn||A||p /4. (44)

The idea of the algorithm is as follows: Suppose W(S,T) is large and positive for some S, T.
We choose random p-sets U C R,V C C. By enumerating all subsets of V' we will eventually,
(without knowing it) come across V! =T NV. Let S’ = Pw (V'). By enumerating all subsets of
U we will come across U' = UNS'. Let T' = Pw (U'). We show that W(S',T") is likely to be
large. This is Steps 5-7. Step 8 checks the best looking pair U’, V' found in Steps 5-7. Steps 9
and 10 boost the sizes of our guesses S’,T' for Ry1,Ciy1. This is needed to prove a bound on
the coefficient length of the decomposition.

The constants in the algorithm are:
[ ] tO = [_% .

o 1o = [log,(3t0/9)]
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e p=[10% 2 + 2log, 1/4].
o q = 30p2P.

Second algorithm to find an approximation to A

1 Fort=0,1,... ,tg — 1 do:

2 Set W) = A — (DY + D@ + .. . DW).
3 Forr=1,2,... ,r9 do

4 Independently choose random subsets U,U; C R, V,V; C C with |U| = |V| =p
and |Uy| = V1] =¢.

5 ForallU' CU and V' CV
6 Compute an estimate W = mnW (Pw (V') N Uy, Pw (U') N V1) /q? of

W (Pw(V'), Pw(U"))
7 Search for Ry, Cyy1 giving a large negative value of W. Analogous to 5-6
but with Pyw replaced by Nw etc.

8 Let U',V',R « Pw(V"),C = Pw(U") (or R < Nw(V"),C = Nw (U")) refer
to the largest value of [I¥| found in the previous execution of loop 5-7.
Choose new random values for Uy, V7 and recompute W.

If |W| < 3ey/mn||A||r/4 then go to the next r, (unless r = 7o, in which case
go to Step 12) otherwise

Compute the following estimates p, k for |Pw (V')| |Pw (U")| respectively:
pm{uelU:W,V') >0} /pand & « n|{v eV : W{U',v) > 0}|/p.
[Remark: we now boost the sizes of R, C — needed to prove our bound on the
coefficient length of the decomposition).]

If W < 0 then go to 11, otherwise

9 If p > 2m/5 go to 10, otherwise
Estimate W(R, C) by Wy = mnW (U,C NV1)/q>.

If W, > 3ey/mn||A||r/8 then let R =R, W = W, and p < m,
otherwise let R = R\ Pw (V"), W = mnW (U, V1) — Wy and p = m — p.

10 If K > 2n/5 go to the next ¢, otherwise
Estimate W (R, C) by Wy = mnW (RN Uy, V1) /¢
If Wy > 3ey/mn||A||p/16 then C «+ C, W + W and &k « n,
otherwise C' « C'\ Pw (U"), W + mnW (U1, Vi) — W and & < n — k.

Set Rt+1 «— R, Ct+1 <~ é, dt+1 = W/(plﬁ:) and

D(t+1) < CUt(Rt+1, Ct+1 .dt+1)

and go to the next ¢, unless ¢t =ty in which case FAIL.
11 Similar to 9,10.

12 Terminate with D®) +D® 4+ .. . D® as the approximation to A.
The proof of correctness is based on the following sequence of lemmas:

Lemma 6 Suppose there exist S C R, T C C such that |W(S,T)| > ey/mn||A||r. Then with
probability at least 3/4 we have

(W(S",T")| > [W(S,T)| — ev/mn||A||F /100 (45)
where S'= Pw(T'NV) and T' = Pw(S'NU) or S' = Nw(T' NV) and T' = Nw(S'nU).
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Proof Let S, T maximise W(S,T'). Then
Euyv(W(S,T)-W(S',T') = Ey(W(S,T) - W(S",T)) + Ev(Ey(W(S', T) - W(S", T") | V)).
It follows from Lemma 2 and (43) that
Ev(W(S,T) - W(S',T)) < +/mn/p||A|lF,

Ey(W(S",T) - W(S"T) | V) < +/mn/pl|Allr,

and so
Eu,v(W(S,T) - W(S',T")) < 2¢/mn/p||Al|F.

Now W(S,T) — W(S',T") > 0 and so by the Markov inequality

Pr(W(S,T) - W(S',T') > 16\/mn/plAll¢) < 1/8.
A similar argument deals with large negative values of W (S, T)). |

We observe next that at some time during the enumeration of the subsets of U,V we will have
U'=UnS" and V! =V NT. We say that the loop Steps 5-7 is successful if (45) holds for these

valuess U' =UNS, V' =V NT and
mn
</ lIAllF
p

for all X = Pw(U"),Y = Pw (V') and for all X = Nw(U’"),Y = Nw(V'). Applying Lemmas 3
and 6 we see that

W(X,Y) - %W(X NULY NTA)

2P
Pr(Steps 5-7 are successful) > Z (1 - 3197)
> 1/2.

So the probability that none of the R, etc. passed to Step 8 satisfy (45) is at most 277 <
0/(3to).-

We next observe that it follows from Lemma 3 that with probability at least 1 — /3 all of the
new estimates W made in Step 8 and all of the estimates W;, W5 made in Steps 9,10,11 are
accurate to within \/mn/p||A||r < ey/mn]||A||r/100.

So with probability at least 1 — §/to the outputs Ryy1, Ciy1, p, & satisfy

W(Rt11,Ceq1)| = evmn|[Allr/8

R C,
| t+1|’| i1 > 13 (46)
m n

p K
P g B ] < 03
‘ | Rey1] ‘ ‘ |Ceta ‘
We deduce that (39) holds for dy;1 as defined in (38).
From which it follows that

2 (W =DE)(i,))* = 3 Wi, j)* < -3¢ Al[7/192.

4,3
This verifies the inductive hypothesis (43).

The bound on the coefficient length of the decomposition is proved as in the first algorithm. In
particular, (42) still holds. m|
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4.4 Maximising |W(S,T)| approximately

We can easily modify the second algorithm to find a pair S,T that approximately maximises
W (S, T)|.

Theorem 8 Let A,¢€,6 be as in Theorem 2. Then with probability at least 1 — & we can in time
20(1/€) 182 find S C R, T C C such that

|A(S,T)| > |A(X,Y)| — es/mn||Al|F VX CR)Y CC.
Proof We simply execute Steps 3-11 once (i.e. taketg = 1). If max|A(X,Y)| = amn,a > €

then with probability at least 1 — ¢ we can find S,T with |A(S,T)| > (a — €)y/mn||A||r — in
our proof we show that we make an additive error of at most e/mn||A||r.

5 Partitions

As previously mentioned, an earlier paper [16], was concerned with the algorithmic uses of
a certain partition of the vertex sets of graphs and hypergraphs. We now show how such a
partition can be recovered quickly from our matrix decomposition.

Let G = (V, E) be a graph with n vertices and let A be its adjacency matrix. For disjoint sets
A,B C V let e(A, B) denote the number of edges between A and B. The density d(A, B) is

defined by
_e(A,B)
1B = LA

We let d(A, A) = e(A, 4)/(14)). A disjoint pair 4, B C V is said to be € — regular if for every
X C A with | X| > ¢|A| and Y C B with |Y| > ¢|B|, we have

ld(X,Y) — d(A,B)| < e.

5.1 Pseudo-Regular Partitions

Let P = Vi,...,Vj be a partition of V. Let d;; = d(V;,V;). For X CV and I C K =
{1,2,... ,k} welet X; = |J;c; Xi where X; = X NV;. For disjoint subsets S,T of V' let

Ap(S,T) = e(S,T) = Y Y diglSillTyl.
icK jeK
The term d; ;|5;||T;| would be (approximately) e(S;,T;) if the pair V;,V; were e-regular. So
Ap(S,T) measures the total deviation from regularity.
A partition P is e-pseudo-regular if

|Ap(S,T)| < en? for all disjoint subsets S,T of V.

Notice that we do not insist on the subsets being of (almost) the same size. This can easily be
enforced, at a small extra cost, see Section 5.1.1 below.

The reader will observe that if P is e-pseudo-regular then for every disjoint pair S,T C V, e(S,T)
is almost determined by the values |S;|,|T}|. Thus we can for example approximately solve Max-
Cut by choosing values for |S;|, |T};| which approximately maximise } ;. > cx dij|Sil|T| +
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Y ick @i,i|Si|Ti|. This was the approach taken in [16] viz. compute an e-pseudo-regular partition
and then proceed as indicated.

We show next how we can obtain such a partition from our matrix decomposition algorithms.

For a partition @ = Wy, Ws,... ,W, and V x V matrix M we define Mg by Mg(p,q) =
M(W;, W;)/(|W;||[W;|) for (p,q) € W; x W;. Thus for disjoint S, T

A(S,T) = e(S,T),
Ao(S,T) = D> dijlSilITyl,
i€K jEK
and so
A(S,T)— Ag(S,T) = Ag(S,T). (47)

S C V is said to be compatible with Q if S = Uiel W; for some I C K. A matrix M is said to
be compatible with Q if M(p, q) is constant over W; x W; for all i,j € K.

Lemma 7 (a) Let partition Q = Wy,Wa,... , W, be a refinement of partition P. If M is
compatible with P then

sup |A(Sa T) - AQ(SvT)| S 2 sup |A(‘5’7T) - M(Sa T)|
S, TCV S, TCV

(b)
|1A = Apllr < [|A —M||F.

Proof (a) Let m;; denote the common value of M(p,q) for (p,q) € W; x W;. Then for
disjoint S, T C V,

|Ag(S,T) = M(S,T)| = > (d(W;, W;) —mi)|S N Wil [T n W] (48)

2

Keeping S fixed we see that the extremal values of the RHS of (48) are obtained for 7' which are
compatible with Q. Indeed to maximise the sum we would put TNW; = W; if > (d(W;, W;) —
m;;)|SNW;| > 0 and TNW; = () otherwise. Similarly, for a fixed T' we should choose S which is
compatible with Q. But when S, T are both compatible with Q we find that Ag(S,T) = A(S,T)
and so

sup [Ao(S,T) — M(S,T)| < sup |A(S,T)—M(S,T)

S, TCV S, TCV
SNT=0 SNT=0

and (a) follows from
sup |A(S,T)— Ag(S,T)| < sup |A(S,T)—M(S,T)[+ sup |[Ag(S,T)—M(S,T)|.

S, TCV S,TCV S, TCV
SNT=0 SNT=0 SNT=0

(b) Now let m; ; denote the common value of M(p, q) for (p,q) € V; x V;. Then

IA-M[[z —[[A=Ap[F = Y > (A9 —miy)° ~ (Alp,q) - d(Vi, V}))")
4.J (p,9) EViXV;
= D_IVillVil(mi; = d(V;, V3))? (49)

0.

v
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Returning to the problem of computing an e-pseudo-regular partition, let D D@ . . D)
be cut matrices as defined in Theorem 2. Let Vi, V5,..., Vi, k < 4° be the coarsest partition of
V into subsets such that each R; or C; is the union of subsets of the partition.

Let D =D® + D® 4+ ... + D®) and note that D is compatible with P.
We claim that:

Partition V1, Va,...V} is 2e-pseudo-regular. (50)
Applying Lemma 7(a) with @ = P and M = D we see that

sup |Ap(S,T)| = sup |A(S,T)-Ap(S,T)| by (47)
s, s,

< 2 sup |}X(Sa13 _'I)(SaJU|
S, TCV
SNT=0

= 2 sup [W(S,T)|
S, TCV
SNT=0

IN

2en2,

and (50) follows.

5.1.1 Equitable Partitions

Let a partition P = V4, V5,... , Vi of V be equitable if ||V;| — |V;|| <1 for all 4, j. The decompo-
sition in Szemerédi’s theorem can be assumed to be equitable (see Theorem 9 below). We show
that equitability can be achieved at a small extra cost.

After finding an e-pseudo-regular partition P as described above we take each V; and partition
it into V; j, 1 < j < s; where |V; ;| = |en/(10k)| for 1 < j < s; and |V} ,,| < en/(10k) to obtain
a partition @ which is a refinement of P. Applying (50) and Lemma, 7(a) with M = Ap we see
that

sup |Ag(S,T)| <2 sup |Ap(S,T)| < 2en?.
st sTev

Now if R = |J;c g Vi,s; then [R| < en/10 and so if we equitably spread the vertices in R over the
other subsets of Q we will obtain an equitable partition Q', say, with sups,rcv |Ag (S, T)| <
SNT=0

3en?.

In some circumstances we want k to be at least a certain amount ky. In this case we simply

replace |en/k| by min{|en/k]|, [n/ko]}.

5.2 Szemerédi’s partition
Theorem 9 (Szemerédi’s Regularity Lemma) For every ¢ > 0 and integer m > 0 there

are integers P(e,m), Q(e, m) with the following property: for every graph G = (V, E) with n >
P(e,m) vertices there is a partition of V into k + 1 classes Vo, V1,... , Vi such that

o m <k < Q(e,m).

o [Vo| < en.
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o Vil =l =---=Vil.
o All but at most ek? of the pairs (V;,V;) are e-regular.

The partition alluded to in the theorem will be referred to as an € — RL partition. Vj is the
exceptional set. We avoided an exceptional set in Section 5.1.1 but find it convenient to use one
here. When discussing e-RL partitions, we will use equitable to denote the second two conditions.

As mentioned previously, Szemerédi’s proof is non-constructive but Alon et al show how to
construct an e-RL partition (with different values of P, Q) in time O(ay (€)M (n)). where M (n)
is the time needed to multiply two n x n 0-1 matrices.

We now give an alternative proof to [1] of

Theorem 10 An e-RL partition is computable in polynomial time. (We can in fact produce an
implicit description in time dependend only on ¢).

Proof We start with an arbitrary equitable partition P = (Vo = 0,V1,..., Vi) with k =
[1/€]. Given a partition P we define the (V \ V5) x (V' \ Vo) matrix A o P to be the submatrix
A — Ap obtained by deleting rows and columns corresponding to Vj.

We will show that if P is not e-RL then we can find a new equitable partition P’ with ke~ ! <
k' < k34%k¢—1 gubsets such that

|A o P'||% < ||A o P||% — €n?/100. (51)
The process stops after at most 100/¢” iterations.

Let I = {(i,4) : Vi, V; is not e-regular}. Suppose |I| > ek®. For each (i,5) € I we consider
the corresponding V; x V; submatrix A;; of A o P. We note that (i,j) € I implies ||A; ;||lc
3|(1—e)n/k]>. We use the second decomposition algorithm to construct a matrix D;,;
CUT(R,',]', Cl"j, 6i,j) such that say,

|Ai; — Dijll7 < ||Ai;

v

|Z — €%(n/k)?/100. (52)

Let D = E(i’j)el D;; and let @ = Wi, Ws,... ,W; be the coarsest refinement of P such that
each R; ; and C; ; are the union of members of Q. We observe that

(i) [|JAoP =DJ||% <||A o P|% — "n?/100.

(ii) |[AoQllr =[(AoP)—(AcP)ollr <||[AeP —D|r.

(iii) £ < k4*.

Inequality (i) follows from the fact that in every irregular pair V;,V;, we find S C V;, T C
Vi, |S],|T| > ev, v > | (1 — €)n/k] such that A(S,T) > €3v?/8. Subtraction of the corresponding
cut matrices reduces the Frobenius norm by at least 3¢°+%/192. Also, the non-zero parts of the

different cut matrices are disjoint from each other. Inequality (ii) follows from Lemma 7(b).
Inequality (iii) follows from the fact that each V; is cut into at most 4* pieces by this construction.

Q may not be equitable and so as in Section 5.1.1 we split each W; into sets W, ; of size
p = len/(kf)] and add a total < en/k elements to the remainder set. Consider a new partition
P’ consisting of the sets W; ; plus the remainder set. It follows from Lemma 7(b) that

|A 0P|l <[|AoQllF,
and (51) follows. O
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6 Multidimensional Extensions

In this section, we consider higher dimensional matrices. We apply our decompositions recur-
sively. Only the notation presents any real difficulty. Consequently we will be content to sketch
the proofs. Suppose r > 3 and X;, Xo,... X, are finite sets. An r-dimensional matrix M on
X1 x X x...X, is a map

M: X; xX5---x X, - R.

If S; C X; fori=1,2,...r, and d is a real number the matrix M satisfying

d foree S; xSy---x .S,
0 otherwise

M) - {
is called a cut matrix and is denoted
M = CUT(S1,Ss,-..Sr;d).

We will show that we can usefully approximate any r—dimensional matrix as the sum of a small
number of cut matrices.

We need to extend some of the notation from 2-dimensional matrices to r-dimensional ones. For
S;i C X;,i=1,2,...r, we define

M(S1,S2,...,8r) = > M(e).

e€S1 XSa X+ XSy

We then let

||M||C = max{|A(51,Sg,... ,ST)| : Sz g Xz' for i = 1,2,... ,7‘}.

(L)

e€X1XXoX- XX,

M|

A cut decomposition of an r-dimensional matrix A has the same form as before, (2). The notions
of width, coefficient length and error are defined as in the 2-dimensional case.

We wish to extend both of our decomposition algorithms. Let A = [];_, | X;|. In the case of the
First Algorithm we assume ||A||cc < 1 and define p = A. For the Second Algorithm we define
p=AY2|A|lp.

Theorem 11 Suppose A is an r—dimensional matriz on X1 X Xo X -+ X X,.. We assume
that r > 3 is fized. Suppose €,5 are reals in [0,1]. We can with probability at least 1 — ¢
find a cut decomposition of error at most ep. Either (First Algorithm) the width is O(e*~47),
the running time is O(rOMWe=000827)§-1) and the coefficient length is at most C* for some
absolute constant C > 0, or (Second Algorithm) the width is O(€>~2"), the running time is
O(rOW =008, 1)90(1/€*) 52y qnd the coefficient length is at most CT||A|)%/A.

Proof Let B be the following (2-dimensional) matrix with rows indexed by Y1 = X3 x --- x
X, 7 = |r/2] and columns indexed by Y2 = Xpyg x --- x X,.. If i = (z1,...,24) € Y7 and
Jj=(zig1,---,2r) € Yy then B(4,5) = A(z1,22,...,%,). Applying a decomposition algorithm
we obtain

B=DWU +D® ... DG 4 W

where for 1 <t < s,
D® = CUT(R;, Cy, dy),
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S0
[Wllc < ep/2 and Y di < 27||A|[3/A. (53)
t=1

Each R; defines an #-dimensional 0-1 matrix R®) where R (zy,... ,z3) = 1 iff (21,... ,2;) €
R;. CW ig defined similarly. Assume inductively that we can further decompose

R® = D®L ... DEs) L W
C(t) — f)(t,l) 4t ]f)(t7§1) + W(t)
Here
D = CUT(Riuy,--- s Riwisdin)  1<tu<s,
D® = CUT(Riapt1s-- Reardra) 1<ta<3,
where
Rt,u,z g Xz 1 S i S rAa
Riai C Xipi 1<i<r—r,

IWOlle < e [T 1% and [WOlle < e TT 1Xil,
i—1 i=i+1

and €3 = ¢/ (K s(l]/ %) for some suitably large constant K > 0.
If # = 1 then R® is a 0-1 X;-vector and this is also a 1-dimensional cut matrix.

It follows that we can write

so s1 $1

A=Y Y > CUT(Riup,--- R Reaitts- - > Bear deyua) + Wi

t=1 u=1 =1

Here, for 1 <t < sp,1 <u<s1,1 <1< 3,

and for S=T1 x Ty, Ty =51 X --- X Sp, To = Spp1 X -+ X S,

Wi(S) = W(S) + Z & (WO (T)WO(Ty) + WO (T1)CO(Ty) + RO(T) WO (Ty)).
t=1
Hence

50
[Wille < [[Wllo +3eA) " |di|

t=1

S0 1/2
IW||c + 3e;Asp/? (Z d,%) .
t=1

In the case of the Second Algorithm we see that our bound on the coefficient length of the
decomposition implies

IN

Wille < [[Wllc + 18esy/*p
< ep/2+18623[1)/2p
<

€p. (54)
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We see that the coefficient length, (for the second algorithm), of our decomposition is

e 81 2 §1 2
2 2 2
S (o) (Set)
t=1 u=1 a=1
Assume inductively, that for some L > 0 we have

81 51
Zdiu < L2 and Zdﬁﬁ < [2(r—)-1

u=1 =1
Then the coefficient length of the decomposition is at most

27| All5

S0
L2r72 zdg < L2r72 A ,

t=1
(See (53). Putting C = /27 yields our bound on the coefficient length for the second algorithm.
The analysis for the First Algorithm is similar.

Note finally that the claimed running times and sizes of the partitions can be verified by induc-
tion. a

6.1 Hypergraph Partitions

We note next that the the matrix decomposition described above can be used to partition
hypergraphs as we did for graphs in Section 5. See Chung [10], Frankl and R6dl [15] and Promel
and Steger [26] for non-constructive versions of Szemerédi’s lemma in hypergraphs.

Let H = (V,E) be an r-uniform hypergraph, i.e. each e € E is of size r. For disjoint sets
Aq,Asy ..., A, we let e(Aq, As,...,A,) denote the number of edges e = {vy,v2,...,v,.} such
that v; € A;, 1 < ¢ <r. The density

e(AI;AZr" )A’I‘)
A, As, .. A = .
A Ao, A = A 1A,

A partition P = V1, V5,...,V;, of V is said to be e-pseudo-regular if for all disjoint sets
S1,52,...,5, CV we have

6(517527"'757')_ Z d(%17%27"'7wr)n|wtmst| SenT'

11,82,... ,ip t=1

This notion generalises what we have already seen in Section 5.1 for the case r = 2. Assuming
r is fixed, an e-pseudo-regular partition can be computed using Theorem 11 in an analogous
manner to that used for the case r = 2.

Similarly, we can compute an e-RL partition generalising the results of Section 5.2. Here, given
€, m we compute a partition P =V, Vs,..., Vi of V such that

o m <k < Qule,m).
o Vo] <en'.

o [Vil= V| = = [Vil.
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e All but ek” of the r-tples (Vi,, Vi, ..., V;,) are e-regular.
Here (V;,,Viy ..., Vi) is eregular if for all A;, CV;,, |A;| > €lVi], 1<t <,
|d(A,'1,A,'2 e ;Air) - d(v;'l,‘/i2 ,V;'r)| S €.

Both of the above results follow from the following two lemmas. The first is a generalisation
of ideas of Section 4.3. The adjacency matrix A of H is the V x V x ... x V 0-1 matrix with
A(vy,va,...,v.) = 1iff {vy,vs,... 0.} € E.

Lemma 8 Suppose W is an r—dimensional matriz on Ry X Ry X. .. R,.. Suppose a,d are reals in

[0,1]. Let p = +/|R1||R2|.-.|R:|- Then there is an algorithm which returns either the statement
that
IWlle < apl[W]|F,
or returns sets Z; C R;, 1 =1,2,...,r such that
W(Z, 2, 2,)| > ap|Wl|i /2. (55)

The algorithm runs in time polynomila in p,r,a~ 1,6~ and is correct with probability at least
1-54.
Proof Suppose that for some S; C R;,S> C Rsy,...S, C R,., we have
[W(51,82,...5:)| > ap[|W]||F.
Assume without loss of generality that in fact
W(Sl,SQ, e ST) Z Oép“W“F

We will construct Z,,Z,,...Z, in order, so that after Z;,Z,,...Z; 1 have been found, the
following event &_; holds with probability at least (1 — 2)i:

W(Z1,2s,...,Zi-1,Si,... ,Sr) > ap||W||r(1 = ).

Assume inductively that Z;, Zs, ... Z;_1 have been constructed so that this holds. We will now
see how to construct Z;. Let p = 4rfa~26—2. Pick at random a subset U of Z; X ... Z;_1 X Riy1 x
... R, with |U| = p. So, U consists of (r —1)-tuples. Let Q =UN(Z1 X ... Z;—1 X Siy1 X ...Sp).
@ is not known to us, but we will enumerate all subsets of U and one of them will be (). But
we first argue that if we had @ on hand, then, we may find Z;.

Let
L= {a € R; IW(Zl,ZQ,.. .Zi_l,a,5i+1,si+2,. Sr) > 0}

For each € U and a € R; define axx € Ry x - -- x R, by inserting a as the ith component. Let
axQ ={axz: z € Q} and let

L'={a€R;: W(axQ) >0}
We wish to argue that L' is “close” to L. To this end, note that

Ev(W(Z1,2,...,Zi 1,L',Siz1, ... ,Sy)) >
W(Zl,Zz,... 7ZZ.717L7SZ.+17"' 787-) - ﬁ”W”F.

The above inequality follows from Lemma 2 by taking R =Ry X ... R; 1 X Riy1 ... R, C = R;
andY = Zy x---xZ;_1xX8;41 %+ --xS,. Also, note that W(Z1,Zs,... , Z;—1,L',Siy1,...,5,) <
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W(Zy,Z5,... ,Zi 1,L,Sit1,-..,Sr) always by the definition of L. So by the Markov inequality,
it follows that

PI‘(W(Zl,ZQ,... ,Zi,I,LI,SH_l,... ,ST-) S W(Zl,Zz,... ;ZiflyLySi+1;--- ,ST) - ||W||F%)
<
a/p
< §fr

Since W(Zh Z27 s JZi717L)Si+17 s )ST) > W(Zb ZZJ s 7Zi717S’i7S’i+17 s JST')J by the def-
inition of L, we have letting Z; = L/,

Pr(&| & 1) >1— g

This completes the inductive proof.

For the algorithm, we will not be able to find Z;, Z,... until the end. At a general stage, we have
a set of 2i=V? “candidates” for Zi, Z,...Z;_1. For each of these candidate Z1,Z,... Z;_1,
we pick at random a subset U of Z; X ...Z;_ 1 X Rjy1 ... R, as above with |U| = p. Then we
enumerate the 2P subsets () of U. For each @, we construct an L' as above and take the L' to be
Z;. Thus each for each candidate Z;, Zs, ... Z;_1, we get 2P candidates Z1, Zs, ... Z;. At the end
we have 2" candidate Z, Zs,. .. Z,.. We have shown that with probability at least 1 — 4, one of
them satisfies the Theorem; so it suffices to take the candidate Z, Zs,. .. Z, with the maximum
W(Z,2Zs,...Z,.) as the answer.

O

In this proof we have avoided the probe model in order to make the proof less technical. It
should be clear that by doing more sampling we can make a constant time algorithm.

Lemma 9 If, in the notation of Lemma 8, (55) holds and D = Cut(Zy,Za,... ,Zy,d) where
d=W(Z1,22,...,2Z:)[(1Z1]|Z2] - - -|Zy]) then

2 2
Wiz~ W - Dy > Ve,

To find an 2e-pseudo-regular parttion of H we use Lemmas 8 and 9 to construct s < 4e~2 cut
matrices D@ = Cut(Z", 2§, ..., 28V, d;) such that [[A — (DD +D® +... £+ DO)||c < en’.
We then compute the coarsest partition P = Vi, Vs,... ,V; which is a simultaneous refinement
of Z](-i), 1<i<s,1<r. We then prove that it is 2e-pseudo-regular in an analogous manner to
(50). We can make it equitable as in Section 5.1.1.

To find an e-RL partition we follow the same approach as for the case r = 2. For a current
partition P = Vg, V4,..., Vi we consider the matrix A o P (defined analogously as for the case
r = 2) and its collection of V;, xV;, x - --xV;, submatrices A;, ;, ;.. Ifthetple V;,,V,,... ,V;,
is not e-regular then ||A;, i, . i llc > €[ (1 —€)n/k|" and then by Lemmas 8 and 9 (with
W = A i i and a = et (1 —€)n/k]"/||[W]||F) we can construct a cut matrix Dy, i, . 4.
which is zero outside V;; x V;, x --- x V; _and is such that

€2r+2nr
1A 0P =D is,....iv |l < 1A 0P| ~ ST

for € small.

So if P is not e-RL we can find a sum of cut matrices D such that

62T+37LT

5

|AoP —DIfF < ||[AoP|fF -
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We then, as in the case r = 2, find the coarsest refinement of P which is also a refinement of each
of the sets used in each of the cut matrices. We finalll make it equitable and produce P’. The
proof given for r = 2 can be generalised with only minor changes, since Lemma 7 can be extended
to general r. Then (57) implies that the process stops after at most 5¢=(27+3) jterations.

7 Max-SNP Problems

Let MAX-r-FUNCTION-SAT be the problem where the input consists of m Boolean functions
fi, f2, ... fm in n variables - V' = {uy,us,...up}, but where each f; depends on only r variables
(r fixed). The aim is to assign truth values to the n variables, so as to satisfy as many of the f; as
possible. It is well-known [24] that a Max-SNP problem can be viewed as a MAX-r-FUNCTION-
SAT problem for a fixed 7.

We may formulate the MAX-r-FUNCTION-SAT problem as follows: There are at most £ = 2
possible Boolean functions of r variables; we number them 1,2, ...¢. We will have ¢ r-dimensional
matrices A, AP A® on V x V x --- x V, with 0-1 entries to represent the data of the
problem. The matrix A® will have a 1 in the (i1,is,...4,) entry iff there is an f; among the
given functions fi, fo,... fi, which has as its arguments wu;, , u;,, - . - 4;, and is the pth function
of these arguments; for convenience, we then say that the type of this function f; is p.

Suppose for the moment we have in mind a fixed truth assignment 7' : V' — {0,1}. We will also
denote by T the set {u: T'(u) = 1}.

We may express each function in Disjunctive Normal Form. So based only on the type p of
a function f;, we can determine a subset @, of {0,1}" such that f;(u;1,u;z2,...ui,) is TRUE
under T iff

(T(ui,l), T(um), . T(u,,r)) € Qp.

For each r-tuple of variables, (u;,,ui,,---u;.) = e (say), we let T'(e) denote the r-tuple
(T(ui,), T (tiy),--.T(u;,)). Then we have

[{i : fi=1under T} = Z Z [{e : AP (e) = 1; T(e) = a}|. (58)

P a€Qp
For a € {0,1}", and 1 < ¢ < r, define
Sq(a) ={veV: TW) =a4}.

Let
S(a) = S1(a) x Sa(a) x --- x Sp.(a).

Then,

YD He: AP =1 T(e)=a}| =) Y AP (S(a)). (59)

P a€Qp P a€Qp

We will approximately maximize the right hand side of (59) and so approximately maximise our
actual objective, (58).

To this end, we find r-dimensional Cut matrices {Dgp) s p=1,2,...,6t=1,2,...5} where
s = 0e272") and such that

A® — (D + DP +... + DP)[|c < en”/(8 x 22 27), (60)
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where DY) = Cut(R}), R, ... ,R{),dP)).

t,r

Now,

Z Z A(P) Z Z ZD(P) +A1,

P a€Qp P acQ, t=1
where

|A;| < 2% 27en™/(822727) = en'/8.
Now,
P a€Qp t=1 P a€Qp t=1 q=1

Let

IR N Sy(a)l = fP(a)  for1<t<s;1<p<l;1<q<r;aec{01}".

Let K = C", our bound on the coefficient length of the decomposition, so that |d§p )| < K. Let

v =en/(8Ksf4") and
(p)
o)) = {ﬂJ v )

Note that f(p)( ) < n, and so, for each t,p,a,

|H t(’l;) Hggf;) | < nT‘ 127‘ v.
Then we have that

IPIDND | CICELARTID 3D P3| CANNE

P a€Qp t=1 P aEQ, t=1
where |As| < s4™n""lwK < en" /8.

Thus the number of functions f; satisfied by our assignment 7" is almost determined by the values
gt(’;) (a). We consider how to find the “best” set of values.

Now, each gé,z;) (a) has O(e!~?") possible values, so the total number of sets of values for all
gt%)( ) is O((1/€-2)2(™*) | (r is constant).

As in previous algorithms we enumerate all these sets of values. We argue that for each set of

such values, we can check (approximately) by a linear program in O((e!~ 2T)O(EZ_ ")) variables
if there is some set of feasible ft(p )( ) (feasible means that these values can be attained by for
some truth assignment 7') whose “round down” is the enumerated gt(fjl)(a). To this end, let P

be the coarsest partition of V (with at most 2%¢ parts in it) such that each Rgf’q) is the union of
some sets in P. We explicitly construct P. For each P € P, let zp = |T N P|; these are to be
determined.

It is easy to see that all the f; (p )( ) can be expressed as sums of these zp. So, given a set of

values of g(p )( ), we may write the following Integer Program with variables zp. (Note that if
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the g(p )( ) arise from some assignment 7' via (61) then {zp = |P N T|} will be feasible):

0 < zp < |P| VP eP

gl < Y wp < gNa)+v fort,p,q.awitha, =1
PCR)

gi@ < 3 (Pl-ep) < gf@+v fortp.gawitha,=0.
PCR{)

Consider the Linear Programming relaxation of this Integer Program. There are two possibilities:
(a) it is infeasible in which case the Integer Program is also infeasible; (b) there is a feasible
solution zp to the Linear Program. We round down each zp to the nearest integer (below it)
to get yp. Then, we have for each ¢,p, g, a, with S;(a) = T, the upper bound on ZPCRgpq) Tp is

still satisfied; and also we have

Z yp > g(P) 23
PCR()

Similary for ¢,p, q,a with S;(a) =V \ T, we have

> (Pl -yp) <" (a) +v + 2%
PgRE{’q)

So for any T* with |[T*NP| = yp for all P € P (such T™*’s obviously exist since P is a partition),
we have that
IR N Sy(a)| - g1ty (@) < v +2° < 2v,

for n high enough, since 2% = 90(e>727)

This implies that (arguing as in (62), for each feasible set of g(p )( ), we find a T* with the
difference between the actual number of functions satisfied by T* and the approximate value
given by g,gle) (a) is at most en” /2, so it suffices to compute the best gt(f;) (a) among the enumerated
ones which is found to be (approximately) feasible by the above.

8 Continuous Case

We finally give an existence result where m and n are infinite. Let f : [0, 1]> — R be a (Lebesgue)
measurable function and assume that

M= [ fwyidedy < oo

)

For measurable S,T C [0,1] we let

f(8,T)= f(z,y)dzdy.
SxT

Then define
[|fllc = sup |f(S,T)]|-
S.T

A function g is a cut function if there exist measurable S,T and real d such that

[ d (z,y) e SxT,
9(z,9) = { 0 otherwise.
We will use the notation ¢ = CUT'(S,T,d).
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Theorem 12 There exist cut functions fi, fa, ..., fs, 8 < 1/€% such that if

wy=f—(fi+fot-+ft)

then
lwslle < ellFll2- (63)
Proof Assume inductively that we have found cut functions
fi =CUT(S;,Tj,d;) 0<j<t (fo=0),
such that

[lwel[3 < (1= €28)]I£1]5-

Either (63) holds (with s = t) or there exist S,T C [0,1] such that |w.(S,T)| > €||f]|]2- Let
Sty1=5,Ti41 =T and d = div1 = we(S,T)/(|S||T)). (|S| denotes the measure of S). Then

w1 = [lwel /5 (i) = d = wilo,y))dady
X

—|S][7|d*

~wy(S, T)?
ISTIT|

—€*[|£115-

The theorem follows. O

IA

Final Remark: As a referee has pointed out, the approximation algorithms can easily be
derandomised. The matrix decomposition requires a constant number of probes and for each
probe there are a polynomial number of choices and so the space of choices is polynomial.

Acknowledgement: We thank three anonymous referees for their constructive comments.
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