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Abstract

We consider the performance of a simple greedy matching algorithm MINGREEDY

when applied to random cubic graphs. We show that if λn is the expected number of

vertices not matched by MINGREEDY, then there are positive constants c1 and c2

such that c1n
1/5 ≤ λn ≤ c2n

1/5 log n.

1 Introduction

There have been a number of papers analysing simple greedy-type algorithms for finding
large matchings in graphs, e.g. Korte and Hausmann [6], Karp and Sipser [7], Tinhofer [8],
Dyer and Frieze [3], Goldschmidt and Hochbaum [5] and Dyer, Frieze and Pittel [4]. Most of
these deal with the expected performance of various algorithms on random graphs. In this
paper we discuss the algorithm MINGREEDY, given below. It is simple and can easily be
implemented in linear time.

We use the following notation in the description of MINGREEDY. ΓG(v) denotes the set
of neighbours of the vertex v in the graph G; often G is understood and the subscript is
omitted. G \ {u, v} is the graph obtained from G by deleting the vertices u and v, all edges
incident with them and, in addition, any new isolated vertices.
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MINGREEDY

Input G;
begin

M ← ∅;
while E(G) 6= ∅ do
begin

A: Choose v ∈ V uniformly at random from among the vertices of
minimum degree in G;

B: Choose u ∈ Γ(v) uniformly at random and set e = {u, v};
G← G \ {u, v};
M ←M ∪ {e}

end;
Output M as our matching
end

The performance of MINGREEDY, at least on random cubic graphs, is remarkably good.
In Theorem 1.1 below we prove that the number of vertices left unmatched is usually com-
paratively small, but it is instructive to see the algorithm’s performance in “practice”. We
have done a limited amount of computation and some results are given in Table 1. We have
compared it to two other greedy matching algorithms: GREEDY, which chooses an edge at
random from those available, and MODIFIED GREEDY, which randomly chooses a vertex
v and then an edge incident with it. The algorithms were run on random n-vertex cubic
graphs, up to n = 106. The difference in performance is quite dramatic. It makes good sense
to use an algorithm like MINGREEDY as a “front end” to an optimising algorithm.

n iM iR iV
102 1.2 12.0 11.8
103 2.2 116.3 102.2
104 3.5 1193.3 1049.9
105 6.2 11892.7 10472.1
106 10.4 119091.9 104546.8

Table 1: Performance of greedy type matching algorithms in 20 Monte Carlo runs, where iM
(respectively iR, iV ) is the average number of vertices left isolated when using MINGREEDY
(respectively GREEDY, MODIFIED GREEDY).

This paper is concerned with the performance of MINGREEDY on random graphs. For
a graph G we let λ(G) denote the expected number of vertices left unmatched by a run of
MINGREEDY1. Let Φn denote the set of 3-regular graphs with vertex set [n] = {1, 2, . . . , n}.

1MINGREEDY is a randomising algorithm and the expectation here is with respect to the algorithm’s

random choices
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Theorem 1.1 Let Gn be chosen uniformly at random from Φn. Then there exist constants

c1, c2 > 0 such that

c1n
1/5 ≤ E(λ(Gn)) ≤ c2n

1/5 ln n.

It seems likely that the ln n factor in the upper bound is unnecessary.

Note, in contrast to this result, that the algorithm which at every stage chooses an edge
randomly from among those available (analysed in [3]), is very likely to leave at least αn
vertices unmatched for some absolute constant α > 0. A similar estimate holds if, at every
stage, one chooses a random vertex v and then a random neighbour of v. These calculations
are borne out by the computational results in Table 1; it is crucial to the success of our
algorithm that we always choose a vertex of minimum degree.

We would like to extend Theorem 1.1 to random r-regular graphs and to sparse random
graphs but it seems difficult to carry through the analysis. It should be noted however that
MINGREEDY is likely to perform well. It is closest in spirit to Algorithm 2 of [7], which,
when run on sparse random graphs, usually leaves only o(n) more vertices unmatched than
the minimum possible. (This is a difficult proof and there is no estimate given of the o(n)
error term.)

2 Overview of the Proof

Our proof of Theorem 1.1 is rather long and so we now give a brief overview. For functions
f and g, we use f(n) ≈ g(n) to denote that f(n) = (1 + o(1))g(n) as n→∞.

Let t denote the number of iterations of the algorithm so far, i.e. the number of executions
of Step A, and let ni = ni(t) be the number of vertices of degree i = 1, 2, 3 in the graph
G(t) at the end of iteration t. (So n1(0) = n2(0) = 0, n3(0) = n.) Similarly, write m(t) =
1
2
(n1(t) + 2n2(t) + 3n3(t)) for the number of edges of G(t). Let ξ(t) denote the number of

new isolated vertices created at time t. Then the number of unmatched vertices at the end
is given by

λ(Gn) =
∑

t≥0

ξ(t).

Our ability to analyse the algorithm rests on the following fact.

Claim 2.1 Suppose that G = G(t) has ni vertices of degree i, i = 1, 2, 3. Then G is equally

likely to be any member of G(n1, n2, n3), the set of all graphs with vertex set V (G) and ni

vertices of degree i, i = 1, 2, 3.
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The claim allows us to treat the progress of the algorithm as a Markov chain M1 on
N3 (where N = {0, 1, 2, . . .}), the state at time t being (n1(t), n2(t), n3(t)). Analysis of M1

yields the following fact.

Claim 2.2 Conditional on n1(t), n2(t) and n3(t), the expected number ξ(t) of isolated ver-

tices created at iteration t is Θ(n1(t)/m(t)).

We will see that, in a typical execution of the algorithm (except near the end of the
process), n3(t) and m(t) almost surely satisfy

n3(t) ≈
(

2

3

)3/2
(

m(t)3/2

n1/2

)

, (2.1)

and n1 is usually small compared to n2 and n3. The expected behaviour of n1 is “controlled”
by the size of n3 until m(t) ≈ m0 = n3/5. Indeed, conditional on n3(t) satisfying (2.1),
we can bound the progress of n1(t) by a random walk on N where the particle’s expected
distance from the origin is O(m(t)/n3(t)) for m(t) ≥ m0. Thus from Claim 2.2 we see that
the expected number of isolated vertices created before m ≈ m0 is O(

∑

m(t)≥m0
n3(t)

−1).
Hence the contribution to E[λ(Gn)] before m(t) ≈ m0 is

O





∑

m(t)≥m0

n1/2

m3/2



 = O(n1/5). (2.2)

When m < m0, we are near the end of the process and it is good enough for our purposes
to bound n1 by a symmetric random walk on Z (the set of integers) in which the particle
moves up or down by one when it moves, and stays where it is with probablity 1−O(n3/m).
Applying standard results on random walks, we obtain that for m < m0, E[n1] = O(n1/5).
Claim 2.2 now gives that the contribution to E[λ(Gn)] after m(t) ≤ m0 is O(n1/5 lnn), which
together with (2.2) yield the upper bound in the theorem.

To prove the lower bound we consider only those times when An3/5 ≥ m ≥ Bn3/5 for some
large constants A,B. We use coupling arguments to bound n1(t) from below by a random
walk, and to estimate the probability that this walk “reaches” its steady state before too
long. We then deduce that for some constants B < A we have E[n1(t)] ≥ ǫn1/5 for all m
between Bn3/5 and An3/5. This is enough to give the lower bound in the theorem.

We shall establish Claim 2.1 in the next section. The transition probabilities of the chain
are then described in §4. In order to bound E[n1/m] it is necessary to study the behaviour
of n3, which is done in §5. The lower and upper bounds in Theorem 1.1 are proved in §§6
and 7 respectively.
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3 The Graph Chain

We next establish Claim 2.1 by using induction on t. Since G(0) = Gn which is a random
member of G(0, 0, n), we need only establish that for x, y ∈ N3 and for G ∈ G(y1, y2, y3), the
number of triples in

IG = {(H, v, w) : H ∈ G(x1, x2, x3), v is of minimum degree in H,

w is a neighbour of v and G = H \ {v, w}}
depends only on x, y. But to construct a triple in IG, we

(a) choose v, w ∈ [n] \ V (G);

(b) choose v1, v2, . . . vℓ ∈ [n] \ (V (G)∪{v, w}), where ℓ = (x1 +x2 +x3)− (y1 + y2 + y3)− 2
is the number of new isolated vertices created in going from x to y;

(c) add appropriate edges incident with v, w, v1, v2, . . . vℓ to make a graph in G(x1, x2, x3).

The number of choices in (a),(b) (trivially) depends only on x, y and the same is true for the
number of choices in (c), which is fixed once the degree sequence of G is fixed. (Just observe
that if one chooses A as the set of edges in (c) and changes G without changing the degree
sequence then A remains a valid choice.) This verifies Claim 2.1.

4 The Degree Chain

In this section we derive the transition probabilities of the chain M1 whose state at time t
is n(t) = (n1(t), n2(t), n3(t)). We use the notation

p[x : y] = Pr(n(t + 1) = y|n(t) = x).

We shall require the configuration model of Bollobás [2] which is a simple and useful descrip-
tion of that used by Bender and Canfield [1].

Suppose we are given a degree sequence 1 ≤ d1, d2, . . . dν ≤ ∆. Let Wi = {i} × [di]
for i ∈ [ν] and W =

⋃ν
i=1 Wi. A configuration is a partition of W into µ =

∑ν
i=1 di/2

pairs. Let Ων be the set of all configurations, and let Fν be chosen uniformly from Ων .
Then let γ(Fν) be the multigraph with vertex set [ν] and edges {i, j} for each occurrence of
{(i, x), (j, y)} ∈ Fν for some x ∈ [di], y ∈ [dj].

The properties that we need of this model are that: first, conditional on γ(Fν) being
simple, it is equally likely to be any simple graph with the given degree sequence; second, if
∆ is an absolute constant (here of course ∆ = 3 would suffice), then

Pr(γ(Fn) is simple) = (1 + O(µ−1)) exp

{

−κ

2
− κ2

4

}

, (4.1)
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where κ = µ−1∑ν
i=1

(

di

2

)

. (Note that

E[λ(Gn)] = O(E[λ(γ(Fn))]),

where Fn is chosen uniformly at random from Ωn with di = 3 for all i ∈ [n]. Thus for proving
the upper bound in Theorem 1.1 we need only consider this multigraph distribution together
with a corresponding multigraph version of Claim 2.1.)

For x ∈ N3, let ν = x1 + x2 + x3 and µ = (x1 + 2x2 + 3x3)/2. Also, without loss of
generality, assume that di = 1, 1 ≤ i ≤ x1, di = 2, x1 < i ≤ x1 + x2, di = 3, x1 + x2 > i.
Now choose Fν randomly from Ων and apply one step of Algorithm MINGREEDY to γ(Fν).
For y ∈ N3, let Ey be the event that the multigraph remaining has yi vertices of degree i
(i = 1, 2, 3). We shall first prove that

p[x : y] = Pr(Ey) + O(1/ν). (4.2)

Note that from Claim 2.1, all we need to show is that

Pr(Ey | γ(Fν) is simple) = Pr(Ey) + O(1/ν). (4.3)

But

Pr(Ey | γ(Fν) is simple) =
Pr(γ(Fν) is simple | Ey)Pr(Ey)

Pr(γ(Fν) is simple)

and so we need only show

Pr(γ(Fν) is simple | Ey) = Pr(γ(Fν) is simple) + O(1/ν)

or
Pr(γ(Fν) is simple | D) = Pr(γ(Fν) is simple) + O(1/ν) (4.4)

where D is the set of pairs of points deleted from Fν in one step and D does not contain
loops nor multiple edges. But |D| ≤ 5 and (4.4) follows easily from (4.1).

We next write down the transition probabilities p[x : y]. Now many of the transition
probabilities are small (i.e. O(1/m)) and do not have a significant effect on our analysis.
We will only give transition probabilities up to this level of accuracy. Suppose that n(t) =
x and thus 2m = x1 + 2x2 + 3x3. Let pi = ixi/2m for i = 1, 2, 3. The following table
gives the significant transitions. There is an O(1/m) term to be added to each probability.
Any transitions not mentioned will have total probability O(1/m) of occuring. (These are
associated with triangles close to the chosen edge.) The probabilities in the table are only
accurate for m sufficiently large. (Once m is small the remainder of the process cannot effect
the number of uncovered vertices very much.) In Table 2 below, the first row corresponds
to the initial state, the next seven rows correspond to cases where there are no vertices of
degree one and the last ten rows cover the cases where there are! vertices of degree one.

These probabilities are derived by using (4.2). For example consider the transition from
(x1, x2, x3) to (x1 − 2, x2 + 1, x3 − 2). Here v in Step A is of degree 1 and u is of degree
3, which accounts for one factor p3 in the transition probability. The other 2 neighbours
of u are of degree 1 and 3 respectively. This accounts for the factor 2p1p3. The remaining
probabilities can be checked in the same manner.
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x y p[x : y]
(0,0,x3) (0,4,x3 − 6) 1
(0,x2, x3) (0,x2 + 2, x3 − 4) p4

3

(0,x2, x3) (1,x2, x3 − 3) 3p2p
3
3

(0,x2, x3) (2,x2 − 2, x3 − 2) 3p2
2p

2
3

(0,x2, x3) (3,x2 − 4, x3 − 1) p3
2p3

(0,x2, x3) (0,x2, x3 − 2) p2p
2
3

(0,x2, x3) (1,x2 − 2, x3 − 1) 2p2
2p3

(0,x2, x3) (2,x2 − 4, x3) p3
2

(x1, x2, x3) (x1 − 1, x2 + 2, x3 − 3) p3
3

(x1, x2, x3) (x1, x2, x3 − 2) 2p2p
2
3

(x1, x2, x3) (x1 + 1, x2 − 2, x3 − 1) p2
2p3

(x1, x2, x3) (x1 − 1, x2 − 1, x3 − 1) 2p1p2p3

(x1, x2, x3) (x1 − 2, x2 + 1, x3 − 2) 2p1p
2
3

(x1, x2, x3) (x1 − 3, x2, x3 − 1) p2
1p3

(x1, x2, x3) (x1 − 1, x2, x3 − 1) p2p3

(x1, x2, x3) (x1, x2 − 2, x3) p2
2

(x1, x2, x3) (x1 − 2, x2 − 1, x3) p1p2

(x1, x2, x3) (x1 − 2, x2, x3) p1

Table 2: Transition probabilities for the chainM1

We continue by computing the expected number of new isolated vertices created in a
single transition (conditional on the present state of M1 being x). Denote this by ι(x).
Except in rare cases (i.e. of probability O(1/m)) isolated vertices are produced only when
x1 > 0. The following table gives the number created in each case. (The case numbers refer
to the row numbers of Table 2.)

9 10 11 12 13 14 15 16 17 18
0 0 0 1 1 2 0 0 1 0

Table 3: Number of isolated vertices created in transitions ofM1

Observe that with probability 1, the number of isolated vertices created in each transition
equals O(1). Hence, we obtain from the above table that

ι(x) = 2p1p2p3 + 2p1p
2
3 + 2p2

1p3 + p1p2 + O(1/m)

= p1(p2 + 2p3) + O(1/m)

= p1 + p1(p3 − p1) + O(1/m),

and hence that

E[λ(Gn)] ≤ 2
∑

t≥0

E

(

n1(t)

m(t)

)

+ O





∑

t≥0

1

m(t)




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= 2
∑

t≥0

E

(

n1(t)

m(t)

)

+ O(ln n). (4.5)

In studying the lower bound, we will show, for suitable t0 < t1, that p1 is negligible when
compared with p3 whenever t is between t0 and t1. This gives

E[λ(Gn)] ≥ (1− o(1))
t1
∑

t=t0

E

(

n1(t)

m(t)

)

− O(ln n). (4.6)

5 Behaviour of n3

Note that for each edge {u, v} removed by MINGREEDY, one of the end-points, say u,
is picked from the vertices of minimal (but non-zero) degrees, or u is determined from a
previous edge removal. The other end-point v is chosen randomly from the neighbours of u.
Now since almost all cubic graphs are connected, each decrease in n3, except for the first edge
removal, is accounted for exactly once as the end-point v whenever v is of degree 3. (Here, we
regard n3 as function of the number m of edges in the current graph.) Now consider the edge
removal when the current graph has n3 vertices of degree 3 and m edges. The probability
that the end-point v in the edge removed is of degree 3 equals 3n3/(2m)(1 + O(1/m)) (from
applying arguments similar to those used in showing (4.2). Thus the rate of change in n3

with respect to m should be approximately

dn3

dm
≈ 3n3

2m
,

which gives the approximation stated in (2.1). These ideas are made rigorous by the following
lemma.

Lemma 5.1 For any fixed ǫ > 0,

Pr

(

∃t such that m(t) ≥ n1/2 ln3 n and n3

√
n
(

3

2m

)3/2

− 1 ≥ ǫ

)

= O(n−2).

Proof. We note first that MINGREEDY destroys edges of G sequentially. Let h =
⌊n1/4⌋, and for i = 0, 1, 2, . . ., define

mi =
3n

2
− ih.

Let zi be the number of vertices with degree three in G at the first time when m ≤ mi, and
let Ei be the event that

zi

√
n
(

3

2mi

)3/2

− 1 = O





i−1
∑

j=0

n3/8 ln1/2 n

m
5/4
j



 . (5.1)
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We shall show that for i such that mi ≥ n1/2 ln3 n,

Pr
(

∃j ≤ i such that Ēj
)

= O(i/n4) (5.2)

(All big O terms in this section are uniform over i.) Equation (5.2) is trivially true for i = 0.
Assume as induction hypothesis that equation (5.2) holds for smaller values of i. Suppose
next that mi ≥ n1/2 ln3 n. We need to show that

Pr0(Ēi) = O(1/n4), (5.3)

where Pr0 is the probability conditional on Fi = E1 ∩ . . . ∩ Ei−1. Let

∆zi = zi−1 − zi.

Recall that for each edge {x, y} removed by MINGREEDY, one of the end-points, say x,
is either chosen randomly from vertices of minimum degree or determined by a previous
edge removal, while the other end-point, say y, is a degree three vertex with probability
p3 + O(1/m). Then conditional on Fi and for mi ≤ m ≤ mi−1, the probability that the
vertex y in an edge removal is of degree three is

p =
3zi−1 + O(h)

2mi + O(h)
= zi−1

(

3

2mi

+ O

(

h

zi−1mi−1

))

= zi−1





3

2mi−1
+ O





n3/4

m
5/2
i−1







 .

Thus, if ∆′zi is the number of degree three vertices that appear as vertices y in the edge
removals during the period when m decreases from mi−1 to mi, then using Chernoff bounds,

Pr0

(

| ∆′zi − hp |≥
√

12hp lnn
)

= O(1/n4).

However, ∆zi = ∆′zi +η, where η denotes the number of degree three vertices that appear as
vertices x in the edge removals. Now η is at most one plus the number of components of Gn.
Hence we may assume for all i that η ≤ 10, which incurs an error probability of O(1/n4).
Since hp→∞, we have that

Pr0

(

| ∆zi − hp |≥
√

12hp lnn
)

= O(1/n4),

giving with conditional probability 1− O(1/n4) that

∆zi

zi−1
=

3n1/4

2mi−1
+ O





n

m
5/2
i−1



+ O





√

√

√

√

n1/4 lnn

mi−1zi−1





=
3n1/4

2mi−1

+ O





n

m
5/2
i−1



+ O





√

√

√

√

n3/4 ln n

m
5/2
i−1





=
3n1/4

2mi−1
+ O





n3/8 ln1/2 n

m
5/4
i−1



 .
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As zi = zi−1 −∆zi, we have with conditional probability at least 1−O(1/n4),

zi = zi−1 −∆zi

= zi−1



1− 3n1/4

2mi−1
+ O





n3/8 ln1/2 n

m
5/4
i−1









= zi−1

(

mi

mi−1

)3/2


1 + O





n3/8 ln1/2 n

m
5/4
i−1









=
1√
n

(

2mi

3

)3/2


1 + O





i−1
∑

j=0

n3/8 ln1/2 n

m
5/4
j







 .

This completes our proof of (5.3) and hence of (5.2). Next, we note that for mi ≥ n1/2 ln3 n,

i is at most N = ⌊3n−2n1/2 ln3 n
2h

⌋ and that 3n
2h
−N = n1/2 ln3 n

h
+ O(1). Hence the error term on

the right hand side of (5.1) is at most

n3/8 ln1/2 n
∑

0≤j≤N

1

(3
2
n− jh)5/4

=
n3/8 ln1/2 n

h5/4

∑

0≤j≤N

1

(3n
2h
− j)5/4

= O(n1/16 ln1/2 n)
∑

3n
2h

−N≤j≤ 3n
2h

1

j5/4

= n1/16 ln1/2 nO
(

1

n1/16 ln3/4 n

)

= o(1).

This shows that for any fixed ǫ > 0,

Pr

(

∃ i such that m = mi ≥ n1/2 ln3 n and n3

(

3

2

)3/2
(

n1/2

m3/2

)

− 1 ≥ ǫ

)

= O(1/n3).

Similar arguments can be used to complete our proof of the lemma. 2

6 An Upper Bound for E[n1]

In this and the following sections, we would like to estimate E[n1] when the current G has
m edges. Let tm be the first time when m(t) ≤ m. Note that m−m(tm) is bounded by an
absolute constant. The big O and small o terms in this and the next sections are uniform in
m. We find an upper bound for E[n1(tm)] in this section.

From Table 2, we have the following transition probabilities for n1(t) (where ∆n1 =
∆n1(t) = n1(t + 1) − n1(t) and Pr1 is the probability conditional on n1(t), n2(t), n3(t)).
When n1 = 0 and n2 6= 0,

Pr1(∆n1 = i) =

{

(

3
i

)

p4−i
3 pi

2 +
(

2
i

)

p2−i
3 pi+1

2 + O(1/m), if i = 0, 1, 2, 3,

0, otherwise,
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and when n1 6= 0,

Pr1(∆n1 = 1) = p2
2p3 + O(1/m),

Pr1(∆n1 = 0) = 2p2p
2
3 + p2

2 + O(1/m),

Pr1(∆n1 = −1) = p3
3 + 2p1p2p3 + p2p3 + O(1/m),

Pr1(∆n1 = −2) = p1p2 + 2p1p
2
3 + p1 + O(1/m),

Pr1(∆n1 = −3) = p2
1p3 + O(1/m),

Pr1(∆n1 = i) = 0, if i 6= 1, 0,−1,−2,−3.

Note that when both n1 = 0 and n2 = 0, we have

Pr1(∆n1 6= 0) = O(1/m),

Pr1(∆n1 ≤ 3) = 1.

In particular, we may assume that no vertex of degree 1 is created in the first iteration of
MINGREEDY; that is, n1(1) = 0. Observe also that the O(1/m) terms in the transition
probabilities depend only on the current state ofM1.

Let

α(x) = x− 2x2 + x3 = (1− x)2x,

γ(x) = x− x2 + x3 = x3 + (1− x)x.

We next consider a process X1(t) with initial state X1(1) = 0 and transition probabilities
defined below.

Pr1(∆X1 = 1) = α(p3) + O1(1/m),

Pr1(∆X1 = 0) = 1− (α(p3) + O1(1/m))− (γ(p3) + O2(1/m))ζ(X1),

Pr1(∆X1 = −1) = (γ(p3) + O2(1/m))ζ(X1),

Pr1(∆X1 = i) = 0, if i 6= 1, 0,−1,

where ζ(x) = 1 if x > 0 and zero otherwise. Note that when n1(t) = 0, Pr(n1(t+1) ≤ 3) = 1
and that when n1(t) 6= 0, we have (ignoring the O(1/m) terms)

Pr1(∆n1 = 1) ≤ α(p3),

Pr1(∆n1 ≤ −1) ≥ γ(p3).

Thus, the big O terms O1(1/m) and O2(1/m) in the transition probabilities of the process
X1(t) can be properly defined so that when n1(t) 6= 0,

Pr1(∆n1 = 1) ≤ Pr1(∆X1 = 1),

Pr1(∆n1 ≤ −1) ≥ Pr1(∆X1 = −1).

It follows that n1 and X1 can be coupled so that n1 is stochastically at most X1 + 3 for all
t. Next, let X(t) be a process, with X(1) = X1(1), having the same transition probabilities,
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but without the big O terms, as those of X1(t). Note that the big O terms in the transition
probabilities of X1(t) can only effect, with probability 1 − O(1/nA) for any A > 0, at
most ln2 n transitions in O(n) transitions of X1. Now at each time t, conditional on X1

having taken a transition not effected by the big O terms, we may couple X and X1 so that
|X(t) −X1(t)| ≤ |X(t− 1) −X1(t − 1)| (because of the reflecting barrier at the origin). It
therefore follows that for all t = O(n),

E[X1(t)] = E[X(t)] + O(ln2 n).

Thus, E[n1] = E[X] + O(ln2 n). Since we have a fairly accurate estimate of n3 as a function
of m (and hence an estimate of p3 = 3n3/2m), we proceed to find a bound for X and hence
one for E[n1].

Lemma 6.1 For m ≥ n1/2 ln3 n and for any fixed ǫ > 0,

E[n1(tm)] ≤ (1− p)2

p
+ O(ln2 n),

where p = (1− ǫ) (2m/3n)1/2
.

Proof. Consider a random walk X ′ with transition probabilities as follows. We write
α′ = α(p), γ′ = γ(p).

Pr(∆X ′ = 1) = α′,

Pr(∆X ′ = 0) = 1− α′ − γ′ζ(X ′),

Pr(∆X ′ = −1) = γ′ζ(X ′).

Note that the steady state distribution π′ of X ′(t) satisfies the following equations:

π′
0 = (1− α′)π′

0 + γ′π′
1,

π′
i = α′π′

i−1 + (1− α′ − γ′)π′
i + γ′π′

i+1, i ≥ 1,

π′
i = 0, i < 0.

These can be solved, giving

π′
i = 0, i < 0,

π′
i =

γ′ − α′

γ′

(

α′

γ′

)i

, i ≥ 0, (6.1)

with expectation
∑

i iπ
′
i = (1 − p)2/p. We shall assume that X ′ starts with its steady state

distribution π′, and hence the distribution of X ′ equals π′ always.

We shall show later that if for all t ≤ tm

p3(t) ≥ (1− ǫ)

(

2m(t)

3n

)1/2

> p, (6.2)
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then for all t ≤ tm and for large n,

X(t) ≤ X ′(t) in distribution. (6.3)

It follows from Lemma 5.1 that (6.2) holds with probability 1− O(n−2), and since n1 ≤ n,
we have

E[n1(t)] = E2[n1(t)] + O(1/n)

≤ E2[X(t)] + O(ln2 n)

≤ E[X ′(t)] + O(ln2 n) = (1− p)2/p + O(ln2 n),

where E2 is the expectation conditional on p3 satisfying (6.2). This proves the lemma.

We shall use induction to prove (6.3). This is trivial when t = 1. Assuming it is true for
t, we shall bound the distribution of X(t + 1). Define a random variable Y = X ′(t) + ∆Y ,
where the distribution of ∆Y is as follows. Writing p3 = p3(t), define

Pr(∆Y = 1) = α(p3),

Pr(∆Y = 0) = 1− α(p3)− γ(p3)ζ(X ′),

Pr(∆Y = −1) = γ(p3)ζ(X ′).

We shall show that
X(t + 1) ≤ Y ≤ X ′(t + 1) (6.4)

holds in distribution. The first inequatlity comes from the fact that we can couple X(t)
and X ′(t) so that X(t) ≤ X ′(t) (this uses the induction hypothesis). For the case where
X(t) = X ′(t), we see that ∆X(t) = ∆Y in distribution; for the case X(t) < X ′(t), we use
the fact that ∆X(t) and ∆Y can be coupled so that ∆X(t) ≤ ∆Y + 1. The first inequality
thus holds for both cases. To show the second inequality, we consider the distribution π of
Y . Writing α = α(p3(t)), γ = γ(p3(t)), α

′ = α(p), γ′ = γ(p), we have the following equations

π0 = (1− α)π′
0 + γπ′

1,

πi = απ′
i−1 + (1− α− γ)π′

i + γπ′
i+1, i ≥ 1,

πi = 0, i < 0.

Hence for i ≥ 1,

πi = π′
i

(

γ′α

α′
+ 1− γ − α +

γα′

γ′

)

= π′
i

(

1 + (γ′ − α′)
γ

α′

(

α

γ
− α′

γ′

))

. (6.5)

Note that the functions α(x) and γ(x) are such that for all x ∈ [0, 1],

γ(x)− α(x) ≥ 0,
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and
d

dx

α(x)

γ(x)
=

−1 + x2

(1− x + x2)2
≤ 0.

It therefore follows from (6.2) and (6.5) that for i ≥ 1,

πi ≤ π′
i,

giving that for i ≥ 1,
∑

j≥i

πi ≤
∑

j≥i

π′
i.

As πi = π′
i = 0 for i < 0, the distribution π is smaller than π′. This shows the second

inequality in (6.4), and so our proof of the lemma is complete. 2

Lemma 6.1 gives that for m ≥ n1/2 ln3 n,

E[n1(tm)] = O((n/m)1/2).

Hence, if m ≥ m0 = n3/5, then E[n1(tm)] = O(n1/5). The next lemma shows that E[n1(tm)] =
O(n1/5) holds when m < m0 too.

Lemma 6.2 E[n1(tm)] = O(n1/5) for all m ≤ m0.

Proof. As argued in Lemma 6.1, the assertion in this lemma follows if we can show that
for all m < m0,

E[X(tm)] = O(n1/5). (6.6)

Given p3, consider a random walk Z with transition probability defined as below.

Pr(∆Z = 1) = (α(p3) + γ(p3))(1− ζ(Z)/2),

Pr(∆Z = 0) = 1− α(p3)− γ(p3),

Pr(∆Z = −1) = (α(p3) + γ(p3))ζ(Z)/2.

Write t0 = tm0
. We consider the processes X and Z after time t0. Suppose Z(t0) = X(t0).

As α(p3) ≤ γ(p3) for all p3 ∈ [0, 1], we can couple the processes X(t) and Z(t) for all t ≥ t0
so that Z is stochastically at least X. Hence (6.6) follows if

E[Z(t)] = O(n1/5), ∀t ≥ t0. (6.7)

Since Z is a symmetric random walk with a reflecting barrier at Z = 0, the reflection
principle shows that

E[Z(t)] = E[|Z ′(t) |]
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where Z ′ is the same symmetric random walk as Z but without the reflecting barrier. Next,
let Z ′′ be a random walk with the same transition probabilities as those of Z ′ but with
Z ′′(t0) = 0. Then it is clear that Z ′(t) = Z ′′(t) + Z ′(t0) and so

E[|Z ′(t) |] ≤ E[|Z ′′(t) |] + E[Z ′(t0)]

= E[|Z ′′(t) |] + E[X(t0)].

Let M be the number of moves that Z ′′ makes after t0 until the end of algorithm MIN-
GREEDY. Then we have

E[|Z ′′(t) |] = O(E[
√

M ]),

giving that
E[Z(t)] = O(E[

√
M ] + E[X(t0)]). (6.8)

We next estimate M . Let m1 = n1/2 ln3 n and m2 = n2/5. We write

M = M1 + M2 + M3,

where M1 (respectively M2) is the number of moves that Z ′′ makes when m is between m0

and m1 (respectively between m1 and m2), and M3 is the number of moves when m ≤ m2.
Then clearly

M3 ≤ n2/5.

To estimate M1, note that with error probability O(1/n2), we can assume that for fixed
ǫ > 0, p3 ≤ (1 + ǫ)(2m/3n)1/2 = O((2m0/3n)1/2) = O(n−1/5) for m between m0 and m1.
Thus

E[M1] =
∑

(α(p3(t)) + γ(p3(t)))

= O(n3/5n−1/5) = O(n2/5).

For M2, we note that according to Lemma 5.1, when m = m1, n3 is of order n1/4 ln5 n and
n3 decreases as m decreases. Hence when m is between m1 and m2, we have

p3 = O(n1/4 ln5 n/n2/5) = O(n−0.14),

and so

E[M2] =
∑

(α(p3(t)) + γ(p3(t)))

= O(n1/2n−0.14) = O(n2/5).

As M1 and M2 are sums of independent Bernoulli variables with probability of success
α(p3(t))+γ(p3(t)) (when the sequence p3 is known), they are concentrated near their means.
Hence, we see that

M = O(E[M1]) + O(E[M2]) + M3 = O(n2/5),

almost surely. This gives that
E[
√

M ] = O(n1/5).
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Equation (6.7) now follows from (6.8) and the fact that E[X(t0)] = O(n1/5). This completes
our proof of the lemma. 2

We are now in a position to prove the upper bound in the theorem. Using (4.5), we have

E[λ(Gn)] ≤ 2
∑

t≥0

E[n1(t)/m(t)] + O(ln n)

≤ 2
3n/2
∑

m=1

E[n1(tm)/m] + O(ln n)

= 2
3n/2
∑

m=1

E[n1(tm)]/m + O(ln n)

= O(n1/5)
3n/2
∑

m=1

1/m + O(ln n)

= O(n1/5 ln n).

7 A Lower Bound for E[n1]

Let B ≥ 3000 be a constant, and let mB = Bn3/5. Write tB be the first time at which
m(t) ≤ mB. Fix a constant A > B and a small constant ǫ > 0. (The numbers A, ǫ will be
chosen later.) Let mA = An3/5. Define tA as the time immediately after m ≤ mA. Hence
tA = tmA

and tB = tmB
. Let N = ⌊ǫn1/5⌋ and r = (ǫn1/5 +3)/mB ≈ ǫn−2/5/B. We shall find

a lower bound for E[n1(tB)] by considering a random walk with reflecting barriers at 0 and
N as follows.

Suppose for now that the sequence p3(t), t ∈ [tA, tB] is known. Consider a random walk
W (t), t ∈ [tA, tB] with initial state W (tA) = 0 and transition probabilities given below. With
functions α, γ and ζ as defined before and writing α = α(p3) and γ = γ(p3),

Pr(∆W = 1) = αζN (W )

Pr(∆W = −1) = γζ(W ),

Pr(∆W = 0) = 1− αζN (W )− γζ(W ),

where ζN(x) = 1 if x < N and zero otherwise. Associated with W is a process U where
U(tA) = 0 and U is decreased by 3 with probability 9r at each step. We claim that if the
processes n1,W and U are “suitably” defined in a probability space, then

n1(t) ≥W (t) + U(t), t ∈ [tA, tB]. (7.1)

Equation (7.1) holds for t = tA trivially. Assume that (7.1) holds for t. We want to show
that it holds for t + 1 also. Now if n1(t) ≥ N + 3, then (7.1) holds for t + 1 as W ≤ N and
∆n1 ≤ 3 always. Thus, we assume that n1(t) < N + 3 and like to show next that if W and
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U are properly defined, then ∆n1 ≥ ∆W +∆U . Note first that if n1(t) < N +3, then p1 ≤ r
from our definition of r. From the transition probabilities of n1 , we see that (ignoring the
O(1/m) terms)
Case 1 ∆n1 = 1 with probability at least 2p2

2p3 ≥ α(p3)− 2p1 ≥ α(p3)− 2r;
Case 2 ∆n1 = −1 with probability at most γ(p3) + 2p1 ≤ γ(p3) + 2r;
Case 3 ∆n1 = −2 with probability at most 4p1 ≤ 4r and ∆n1 = −3 with probability at
most p1 ≤ r.
Thus, very crudely, we see that n1 and W can be coupled so that ∆n1 ≥ ∆W with probability
at least 1− 9r and ∆n1 ≥ ∆W − 3 always. (The big O terms in the transition probabilities
of n1 equal O(n−3/5) and are negligible when compared with r = O(n−2/5).) This establishes
(7.1). Note that

E[U(tB)] = −3(tB − tA)(9r)(1 + o(1)) ≥ −27r(A−B)n3/5(1 + o(1)) ≈ −27(A−B)

B
ǫn1/5,

and so for t ∈ [tA, tB],

E[n1(tB)] ≥ E[W (tB)]− 27(A−B)

B
ǫn1/5(1 + o(1)). (7.2)

We next bound E[W (tB)]. Let D be a probability distribution with support [N ], and let
WD(t) be a random walk with the same transition probabilities as those of W (t), but WD(tA)
has distribution D. Since W (tA) = 0, W and WD can be coupled so that WD(t) ≥ W (t)
for all t ≥ tA and that WD(t) −W (t) is non-increasing in t. Let T be the first time that
W (t) = WD(t). Then

W (tB) ≥WD(tB)χ({T ≤ tB}),
where χ({T ≤ tB}) is the indicator function for the event {T ≤ tB}. Since W ≤ N , we have

E[W (tB)] ≥ E[WD(tB)]−NPr(T > tB).

Let T ′ be the first time that WD = 0. Then clearly T ≤ T ′ in distribution as WD(t) ≥
W (t) ≥ 0. Thus,

E[W (tB)] ≥ E[WD(tB)]−NPr(T ′ > tB). (7.3)

According to Lemma 5.1, with probability 1−O(n−2), we have that for t between tA and
tB and fixed ǫ1 > 0,

(1− ǫ1)
(

2mB

3n

)1/2

≤ p3(t) ≤ (1 + ǫ1)
(

2mA

3n

)1/2

. (7.4)

The assumption of (7.4) only gives an extra factor of 1 − O(n−2) to our estimate of E[n1].

Let q0 = (1+ ǫ1)
(

2mA

3n

)1/2
and q1 = (1− ǫ1)

(

2mB

3n

)1/2
. We shall assume that (7.4) is satisfied.

We next define the distribution D and bound WD suitably. Write α′ = α(q0) and γ′ =
γ(q0). Consider a random walk W ′ with transition probabilities given by

Pr(∆W ′ = 1) = α′ζN(W ′),

Pr(∆W ′ = −1) = γ′ζ(W ′),

Pr(∆W ′ = 0) = 1− α′ζN(W ′)− γ′ζ(W ′).
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Note that here α′ and γ′ no longer depend on t and that the steady state distribution λ′ of
W ′ satisfies

λ′
0 = (1− α′)λ′

0 + γ′λ′
1

λ′
i = α′λ′

i−1 + (1− α′ − γ′)λ′
i + γ′λ′

i+1, i = 1, 2, . . . , N − 1

λ′
N = (1− γ′)λ′

N + α′λ′
N−1

λ′
i = 0, ∀i < 0,

from which we obtain

λ′
i =

1− (α′/γ′)

1− (α′/γ′)N+1

(

α′

γ′

)i

, i = 0, 1, . . . , N (7.5)

λ′
i = 0, ∀i < 0.

We assume that W ′(tA) has distribution λ′ and so the distribution of W ′(t) equals λ′ always.

Suppose now that WD(t) starts with distribution λ′ at time tA (that is, D = λ′). We
shall show by induction that WD(t) is at least W ′(t) in distribution. For this, we follow the
method used in showing X ≤ X ′ in distribution in our proof of Lemma 6.1. Assume p3

satisfies (7.4) and that WD(t) ≥ W ′(t) as our induction hypothesis. Let Y be the state of
a process which starts with distribution λ′ (which equals the distribution of W ′(t)) followed
by a one-step transition with transition probabilities as those of WD. We claim that

WD(t + 1) ≥ Y ≥W ′(t + 1). (7.6)

The justification for the first inequality here follows similar arguments as those used in
showing the first inequality in (6.4). To show the second inequality in (7.6), use λ to denote
the distribution of Y . Writing α = α(p3(t)) and γ = γ(p3(t)), we find that λi = 0 for all
i < 0 and for i between 1 and N − 1 we have

λ0 = (1− α)λ′
0 + γλ′

1,

λi = αλ′
i−1 + (1− α− γ)λ′

i + γλ′
i+1

λN = (1− γ)λ′
N + αλ′

N−1.

Note that, since q0 ≥ p3(t), we have α′/γ′ ≤ α/γ. Also

λN = λ′
N + αλ′

N−1 − γλ′
N = λ′

N + γ

(

α

γ
− α′

γ′

)

λ′
N−1 ≥ λ′

N ,

and by following (6.5), we have that for i = 1, 2, . . . , N − 1,

λi = λ′
i

(

1 + (γ′ − α′)
γ

α′

(

α

γ
− α′

γ′

))

≥ λ′
i.

As λ′
i = λi = 0 for i < 0, the distribution λ is at least λ′. This completes the induction step,

and so we conclude that the distribution of WD(t) is at least λ′. It therefore follows that for
t ∈ [tA, tB],

E[WD(t)] ≥
∑

i

iλ′
i =

1

1− (α′/γ′)
− N + 1

1− (α′/γ′)N+1
+ N.
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Since q0 ≈ (1 + ǫ1)(2A/3)1/2n−1/5 and (α′/γ′)N ≈ exp(−q0N), we have

E[WD(t)] ≥ n1/5

1 + ǫ1

√

3

2A
− ǫn1/5 exp(−(1 + ǫ1)ǫ(2A/3)1/2)

1− exp(−(1 + ǫ1)ǫ(2A/3)1/2)
.

By choosing ǫ1 > 0 such that (3/2)1/2/(1 + ǫ1) = 1.22, we have

E[WD(tB)] ≥ 1.22n1/5

A1/2
− ǫn1/5 exp(−ǫA1/2/1.22)

1− exp(−ǫA1/2/1.22)
. (7.7)

To estimate T ′, we write α′′ = α(q1) and γ′′ = γ(q1), and let λ′′ be the distribution given
in (7.5) with α′, γ′ replaced with α′′, γ′′ respectively. Let W ′′ be the same random walk as W ′

but with α′, γ′ replaced with α′′, γ′′ and let W ′′(tA) have distribution λ′′ instead of λ′. Note
that as q0 ≥ q1, we have α′/γ′ ≤ α′′/γ′′, and it is not difficult to check that distribution λ′ is
at most λ′′. Hence, our previous argument for showing W ′ ≤ WD in distribution can be used
to show WD ≤ W ′′ in distribution. Next, let W1 be the walk whose transition probabilities
are as those of W ′′ but W1(tA) = N and without the reflecting barrier at W1 = N . A simple
coupling argument gives that W ′′ ≤ W1 in distribution. Let T1 be the first time that W1 = 0.
Then we have

T ′ ≤ T1 in distribution.

We next estimate T1. Let L be the time elapsed before W1 first gets to N − 1. Then we
have

T1 = L1 + . . . + LN + tA,

where L1, . . . , LN are independent variables identically distributed as L. Note that
(I) with probability γ′′, L = 1;
(II) with probability α′′, L = 1 + L′ + L′′;
(III) with probability 1− α′′ − γ′′, L = 1 + L′′′,
where L′, L′′, L′′′ are independent and identically distributed as L. Hence, writing M(z) =
E[zL] as the probability generating function of L, we have

M(z) = γ′′z + α′′zM(z)2 + (1− α′′ − γ′′)zM(z),

giving

M(z) =
−(z − α′′z − γ′′z − 1)−

√

(z − α′′z − γ′′z − 1)2 − 4α′′γ′′z2

2α′′z
.

Put z = exp(κq3
1), for some κ < 1/4 to be chosen later. Then

M(z) = 1 + (1−
√

1− 4κ)q1/2 + O(q2
1).

Since each step of MINGREEDY destroys at most 5 edges,

Pr(T ′ ≥ tB) ≤ Pr(T1 − tA ≥ tB − tA)

≤ Pr(L1 + . . . + LN ≥ (A−B)n3/5/5)
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≤ E[exp((L1 + . . . + LN ) ln z − (A−B)n3/5 ln z/5)]

≤ M(z)N exp(−(A−B)(ln z)n3/5/5)

≈ exp((1−
√

1− 4κ)Nq1/2− (A−B)κq3
1n

3/5/5)

≈ exp((1−
√

1− 4κ)ǫ(1− ǫ1)(B/6)1/2 − (A−B)κ(1− ǫ1)
3(2B/3)3/2/5).

Put κ = 0.249 and ǫ1 = 0.00001, we obtain

Pr(T ′ ≥ tB) ≤ exp(0.39ǫB1/2 − 0.027(A−B)B3/2). (7.8)

Hence, assuming (7.4), we have from (7.2), (7.3) and (7.7) that

E[n1(tB)] ≥ 1.22n1/5

A1/2
− ǫn1/5 exp(−ǫA1/2/1.22)

1− exp(−ǫA1/2/1.22)
−

ǫn1/5 exp(0.39ǫB1/2 − 0.027(A−B)B3/2)− 27(A−B)

B
ǫn1/5(1 + o(1)).

We now set A = B + B1/2, ǫ = 1.22x/A1/2, where x = 0.04. Then

E[n1(tB)] ≥ 1.22n1/5

(B +
√

B)1/2

(

1− xe−x

1− e−x
− x exp(0.5x− 0.027B2)− 27x(1 + o(1))√

B

)

≥ 10−4n1/5

(B +
√

B)1/2
, (7.9)

since B ≥ 3000. We have therefore showed the following lemma.

Lemma 7.1 For any constant B ≥ 3000, if m = Bn3/5, then

E[n1(tm)] ≥ 10−4n1/5

(B +
√

B)1/2
(1− o(1)).

Proof. Let E be the event that (7.4) occurs. Then

E[n1(tm)] ≥ E2[n1(tm)](1− O(1/n2)),

where E2 is the expectation conditional on E . It follows from (7.9) that

E[n1(tm)] ≥ 10−4n1/5

(B +
√

B)1/2
(1− o(1)).

2

To prove the lower bound in the theorem, we let B0 = 3600 and B1 = 3000. Write
m0 = B0n

3/5, m1 = B1n
3/5, t0 = tm0

and t1 = tm1
where tm is (as before) the greatest t
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such that m(t) ≤ m. Note that when t is between t0 and t1, we have n3 = Ω(n2/5) and
n1 = O(n1/5), which gives p3 > p1 almost surely. Then using (4.6), we have

E[λ(Gn)] ≥
∑

t≥0

E[p1(t)](1− o(1))−O(ln n)

≥
∑

t≥0

E[n1(t)/m(t)](1− o(1))− O(ln n)

≥
t1
∑

t=t0

E[n1(t)/m(t)](1− o(1))− O(ln n)

≥
t1
∑

t=t0

E[n1(t)]/m0(1− o(1))−O(ln n)

≥ t1 − t0
m0

10−4n1/5

(B0 +
√

B0)1/2
−O(ln n)

≥ m0 −m1

5m0

10−4n1/5

√
3660

(1− o(1))− O(ln n)

= Ω(n1/5).
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