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Abstract

We show that a random bipartite graph with n + n vertices and cn random edges, and
minimum degree at least two, has a perfect matching whp.

1 Introduction

To quote from Lovész [15], “the problem of the existence of 1- factors (perfect matchings), the
solution of which (the Ké&nig-Hall theorem for bipartite graphs and Tutte’s theorem for the
general case) is an outstanding result making this probably the most developed field of graph
theory”. Erdés and Rényi ([8],]9]) found a way to use these results for a surprisingly sharp study
of existence of perfect matchings in random graphs. For B,, ,, a random bipartite graph with
n + n vertices and m = n(Inn + ¢,) random edges, they proved [8] that

nlgréo Pr(B,,m has a perfect matching) = nll)n;o Pr(6(Bpm) > 1)
0 Cn — —00,
= e2° ¢,—>0
1 Cp — 00,

where ¢ denotes minimum degree. Of course minimum degree at least one is a trivial necessary
condition for the existence of a perfect matching. The Hall theorem turned out to be perfectly
tailored for use in combination with probabilistic techniques, pioneered by the authors several
years earlier, [8]. Even though Tutte’s theorem for the non-bipartite case is considerably more
involved, in [9] they managed to extend the analysis to the random graph G, a random
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general graph with n vertices and m = % (Inn 4 c,) edges, showing that

nli_}rgo Pr(G, m has a perfect matching) = nli)n;o Pr(6(Gpm) > 1)
0 Cp — —00,
= e * " cpoe
1 Cp — 00.

In both cases a perfect matching becomes likely as soon as one has sufficiently many random
edges for the minimum degree to be at least one with high probability (whp'). This has led
researchers to consider the existence of perfect matchings in models of a random graph in which
the minimum degree requirement is always satisfied. Perhaps the first result along these lines
is due to Walkup [19]. He considered a k-out model B, _oyt; of a random bipartite graph, again
with n 4+ n vertices V3 + V5. Here each vertex v € V; “chooses” k random neighbours in its
complementary class V3_;. Walkup showed that

0 k=1
lim Pr(B._out h fect matchi =
Jim r( ¢ has a perfect matching) {1 > 2

Frieze [10] proved a non-bipartite version of this result, the argument being based on Tutte’s
theorem and considerably harder. Very recently Karoriski and Pittel [13] have proven whp
existence of a perfect matching in what they called the B(; .-1)_ou: graph, a subgraph of
Bs_ oy, obtained from Bi_,,; by letting each of its degree 1 vertices select another random
neighbor in the complementary class. Observe that in all of these results [19], [10] and [13] the
number of random edges depends linearly on the number of vertices, and the minimum degree
has been raised to 2, in a sharp contrast with the case m being of order nlogn. Here is why.
When there are order nlnn random edges, there are few vertices of degree 1 and they are far
apart. In sparser models, with minimum degree 1, whp there will be a linear (in n) number of
vertices of degree 1, and some two vertices of degree 1 will have a common neighbor, which rules
out a perfect matching. In the case of random regular graphs it turns out that minimum degree
3 is required, Bollobés [3]: Let G, denote a random r-regular graph on vertex set [n], n even.
Then

0 r=2
lim Pr(G, h fect matching) = ’
Jim r(G, has a perfect matching) {1 r—lorr>3.

The case r = 1 is trivial since then G, is itself a perfect matching of [n]. G2 is whp a collection
of O(Inn) disjoint cycles and they will all have to be even for G5 to have a perfect matching.
The meat of the result is therefore in the case r > 3 and this follows from r-connectivity and
Tutte’s theorem.

Another approach was considered by Bollobas and Frieze [6]. Let Qfl?,,'f denote the set of graphs
with vertex set [n], m edges and minimum degree at least x. Let G‘,;L,Zn’j be sampled uniformly
from gg%’j. By conditioning on minimum degree 1, say, we will need fewer random edges to get
a perfect matching whp: Let m = %(Inn + 2Inlnn + c,).

0 cn — oo sufficiently slowly,
: 5> . 1_-c
Jim Pr(annll has a perfect matching) = < e~ 8¢ cn — ¢, (1)
n even Cn 3 00.

The restriction “sufficiently slowly” may seem out of place, but bear in mind that if m = n/2
then the probability of a perfect matching is 1. The precise threshold between n/2 and %nlnn

1A sequence of events &, occurs with high probability (whp) if limy, 00 Pr(&€n) = 1.



for the non-existence of a perfect matching was not determined. (Using the approach developed
in the present paper for the bipartite case, we have found that “sufficiently slowly” in (1) can be
replaced simply by m > n/2.) This work was extended in Bollobas, Fenner and Frieze [4] who
considered the probability that G32¥ has |k/2| disjoint Hamilton cycles plus a further disjoint
perfect matching if k is odd.

In this paper and [12] we continue this line of research. In [12] we considered the bipartite version
of (1). Let B2 denote the set of bipartite graphs with vertex set [n], [n], m edges and minimum
degree at least k. Let Bfl’zn'f be sampled uniformly from Bf%;f.

Theorem 1. Let m = §(Inn +2Inlnn + c,). then

0 Cp — —00, M >,
lim Pr(B’Z! has a perfect matching) = { e~ i€ ° ¢, — ¢, (2)
n—o00 ’
Cp — 00.

The probability on the RHS of (2) is the limiting probability that a pair of vertices of degree
1 have a common neighbor. Thus, the probability that a perfect matching exists is (close to)
1 when either m = n/2 or ¢, is large, and the probability is very small for m everywhere in
between, except ¢, not far to the left from 0.

If we consider Gfl’chl then we have to allow for the existence of small components which are
isolated odd cycles i.e. we will not have a “probability one” result. Also, for a change, we will
allow n to assume odd values as well. For a graph G = (V, E), let u*(G) denote the maximum
matching number. Slightly stretching, we say that G has a perfect matching if u*(G) = [|V|/2].

Let X(G) stand for the total number of odd isolated cycles in G. Clearly

2

1*(G) < v(G) == [W] .

Let ., X,, v, stand for pu*, X,v computed at G = Gi’zci. It was shown in [12] that

Theorem 2. Let ¢ > 1 be an absolute constant. Then

lim Pr(u; =v,) =1,

n—00

and X, is, in the limit, Poisson (\),

\ 11 1+0 o o
= —lo —— [ —
1%1-6"2 T e-1
and p satisfies
p_
7p(e 1):2c.
ef—1—p

In particular, as n — 00,
e >, if n even,

3
e A+ e, if n odd. ()

n,cn

Pr(G’22 has a perfect matching) = o(1) + {

Notice that ¢ = 1 corresponds to the random 2-regular (nonbipartite) graph, which typically has
©(logn) odd (isolated) cycles. Sure enough, the explicit term in the RHS of (3) approaches zero
ascl 1.



It was shown in Aronson, Frieze and Pittel [1] that whp a simple greedy algorithm of Karp and
Sipser [14] found a matching that was within O(n'/%) of optimal. Theorem 2 shows that the
Karp-Sipser algorithm is whp also 2(n'/%) from optimal.

For integer k > 2 let graph G have property Ay if G contains |k/2] edge disjoint Hamilton
cycles, and, if k is odd, a further edge disjoint matching of size |n/2]. Bollobds, Cooper, Fenner
and Frieze [5] show that for k > 2, there exists a constant c; < 2(k + 2)% such that if ¢ > cx,
G825+ has property Ag. Thus the current paper deals with the property .A; and proves a sharp
result. It is reasonable to conjecture that the true value for cg, k > 2 is (k + 1)/2. Note that if
c¢=(k+1)/2 and cn is integer then Gfl’chfl is a random (k+ 1)-regular graph and this is known

to have A; whp, Robinson and Wormald [18].

Now we come to the result of this paper: The next natural question in this line of research is:
How many random edges are needed if we constrain the minimum degree of a bipartite graph to
be at least 2, so ruling out the possibility of two vertices of degree 1 having a common neighbour.

Theorem 3. Let ¢ > 2 be an absolute constant. Then

lim Pr(B%22 has a perfect matching) = 1.

n,cn
n—oo ’

If ¢ = 2 then we are dealing with 2-regular bipartite graphs and all such graphs have a perfect
matching. Thus the content of the theorem lies in the case ¢ > 2.

Remark 1. The theorem does not indicate what happens when ¢ = 2+ 0(1) and so it is an open

question to determine the smallest w = o(n) such that Bg’zzf1 +w has a perfect matching whp.

2 Proof of Theorem 3

We will use Hall’s necessary and sufficient condition for the existence of a perfect matching in a
bipartite graph.

The random graph Bg?fl has no perfect matching iff for some k > 2 there exists a k-witness.
Let R,C (rows,columns) be disjoint copies of [n]. A k-witness is a pair of sets K C R,L C C,
or K C R,L C C, such that |K| =k,|L| =k —1 and N(K) C L. Here N(K) denotes the set
of neighbours of vertices in K. A k-witness is minimal if there does not exist K' C K,L' C L
such that (K', L) is a k'-witness, where £’ < k. It is straightforward that if (KX, L) is a minimal
k-witness then every member of L has degree at least two in B, (K U L), the subgraph of B,
induced by K U L. Therefore the subgraph has at least 2(k — 1) edges. We can restrict our
attention to k < n/2 since for k£ > n/2 we can consider C \ L,R\ K. For 2 < k < n/2, let
Wik, denote the random number of minimal k-witnesses, such that B,(K U L) has p edges,
> 2(k —1). Actually, since k < n/2, we also have y < m —n.

Let now m = cn where ¢ > 2 is a fixed constant and let B = B3Z2. A direct application of Hall’s
theorem has resisted our efforts. Along these lines we can only manage

Lemma 1. There exists an € = €(c) such that,

Pr(AK CR: |K|<en and |N(K)| < |K|) = O(n™").

However this lemma can be used in the proof of the following: Let u*(G) denote the size of a
maximum matching in G.



Lemma 2. Fort > 1, m ~ ¢n, ¢ = e1(n) > 0 and w = Klogn for some sufficiently large
K = K(c),

If Pr(u (Bf;z w) >n—t)>1—¢ then
(log n)®

Pr(p*(Biz2)>n—t+1)>1—e + 7

We also prove

Lemma 3. If m ~ cn then

Pr(u*(B322) <n—0(n*) <n™".

n,m/ —

With these two preceding lemmas we can easily prove Theorem 3. Let m ~ cn and let m, =
m—rw, r=0,1,..., An*®. Then

Pr(u* (B22) <n 1) <n~ + (0(n) - 1) (87 (4

This is proved by downwards induction on r with the base case 7 = An*4® (for some constant
A > 0) being verified by Lemma 3 and Lemma 2 providing the inductive step. Theorem 3 is the
case 7 = 0 of (4).

3 A result from [12]

‘We define functions )
z R z
ft(z):ZE:e _ZE (5)

for ¢t > 1.

Let the v;-tuple ¢ = (c1,...,¢,,) and the vo-tuple d = (d,...,d,,) of nonnegative integers be
given. Introduce N¢ a(v, i), ¥ = (v1,v2), the total number of bipartite graphs with p edges, and
degree sequences a;,i € [v1], bj, j € [vo] such that a; > ¢;, (i € [11]), and b; > d;, (j € [r»]). Of
course, Ne,a(v,pu) =0if p <37, ¢;, or p < 325 dj. So we assume that p > max{}’; ¢;,>; d;}-

Then let

= [ fe()and Ha(y) = ] f4,v (6)

i€v1] J€[va]

We introduce the following notation: we write A <, B in place of A = O(B) when the expression
B is long. We believe that it enhances readability.

Lemma 4.

(a) Suppose that vi,v2 = O(u) and p = O(v;logv;), i = 1,2. Suppose that p=! <, ri,ry =
O(log ). Then

Nea(v,p) <p (1/11/2:-1!7-2)1/2 GC((:ll)gdu(M)‘ -
(b)
B2~ (/fj’( 1)/2> F(c) ®)

where p satisfies pf1(p)/f2(p) = ¢ and F is an explicitly given function.



3.1 Proof of Lemma 1

‘We show that

> EBapu—0, (9)

2<k<em
2k<p<m

for some € > 0. Here E, j , is the expected number of the minimal k-witnesses (K, L), |K| =
k,|L| = k-1, N(K) = L, with p edges. We know that every vertex from L has at least two
neighbors from K.

Picking z € (0, p), we use (7) with r; = 72 = 2z to bound N7, the number of such bipartite graphs
on K + L. We use (7) with r; = ro = p to bound Ns, the total number of feasible bipartite
graphs that remain after deletion of all vertices belonging to K.

Using (8), we then obtain

~ WG fa(z)?* ! p2relk—Dp

E, <y E* = . . 10
ko =b Link,p kz(zz) 221 fz(p)%*l ( )
Consequently
* — 22
En,k,u+1 _ 13 +1 R ,0_2 < % p<pi= I_?mj (11)
e M (1) 2273 p < (117
Therefore, if k£ < 0.57,
max{p,2.2k}
Y Brku<s B (12)
p=2k

Furthermore, using (10) for the k in question and pu = 2k, mfy(p)/n = p(e? — 1),

B} k12041 4 (n— k)2 .fg(z)Z . pleP
E; kok T (m=2k) 2t fa(p)?
2)\ 2 2 2
- a0 (55) (whom)
14+ 0(2)
1+ p2/12
< 1,

provided that z is chosen sufficiently small. So

/2
ZE;,mk <t Epoa= O(n*m™*) =0(n"),
k=2

and, invoking (12),
/2 max{f,2,2k}

> Y Engu=0(m). (13)
k=2

= n=2k

Let us now bound E, i, for the same k’s, but p > max{f,2,2k}. To bound N; this time, we
choose r1 = ro = p/k. In particular, r; > 2.2, thus bounded away from zero, just like the optimal
r, the root of rf1(r)/ f2(r) = p/k. (For p = 2k, the root would be zero!) Using fo(u/k) < e#/*
and the notation <, to hide a polynomial factor in n, we get

Bk <p exp(nJ(rE,y)), T = k/n, Y= /-”/'n'a (14)



where
P

zpe e
J(z,y) =2H(x) — cH(y/c) + 2ylog — + xlog ——
(z,y) (z) (y/c) ” APE
and (z,y) € D,
D = {(z,y)le <7,y >max{y,2.22}},
e 2
i = W, Yy = 3_p2
Notice at once that, for (z,y) € D,
L@,y) = 2(~loga+log(l— o))+ L +log
=(Z = 2(—logz+log(l—=z = tlog——
7y g g T gf2(p)2

> 4logz ' +0(1) >0,
if z is small enough. For such a z, J(z,y) increases with z for every y, as long as (z,y) € D. In

addition, the equation
222
Jy(z,y) =In ( ) =0
() (c—y)y

has two roots y(z) > 0,
1
v = e+ \/F — ag72R),
as z < 1/2 and p < ¢, and y_ = O(z?) = O(2?), y+ = ¢ — O(z?). In particular, y*(z) :=

)
max{7y,2.2z} € (y—,y+), if z is sufficiently small. Furthermore, as a function of y, J(z,y
decreases on [y_, y+], and increases on [y, c|. Therefore,

max{J(z,y) : (@,y) € D} = max{J(@,y" (a)), I (,)}-

If y*(z) = 2.2z, then

J(z,y) = 2zlog(l/z)—2.2zlog(l/z)+ O(z)
= —0.2zlog(1/z) + O(z)

2
< —0.05%2 log(1/2).

If y*(z) = 7, so that z < y/2.2, then

J(z,y) = 2zlog(l/z) —7ylog(1/7) + O(y)
< (% - 1) Flog(1/7) + O(7)

2
< —o.oscpi2 log(1/2).

Finally
J(z,¢) = —2(c — z)log(1/z) + O(1).

Therefore, for z sufficiently small,

2
1
max{J(z,y) : (z,y) € D} < —0.05cpi2 log 2 < 0.



From (14) we get then
2

Eppu <™, a=-004",
p

so )

7/2 \

* 1

X Y Bue<e™ o =003% 1log -

k=2 P‘Zmax{ﬁ7272k} p z
Combining this with (13) and the definition of & in (11), we prove (9) with € = %. O

3.2 Bipartite Model

We now describe the graph model we will use for the remainder of our analysis. It is a bipartite
version of the “random sequence model” considered in Section 2 of [14]. Let g > 1 and the
disjoint sets R,C be given. R and C have meaning of a row set and a column set respectively,
and p a number of edges. For x € R* and y € C*, we define a multi-bipartite graph Gy as
having a vertex set R + C, and the edge set E(Gxy) = {(@¢,y¢); 1 < £ < p}. Then the degree
of i € R (j € Cresp.) in Gxy equals dx(i) = [{£ € [p] : x¢ =1}| (dx(j) = {€ € [1] : ye = 7}
resp.). Define

RY ={x€R':de(i)>1,ic R}, C4 ={yeC":dy(j)>1,jeC}

That is RY,, say, is a set of all x such that every i € R has positive degree in x. For v =
(Ul,R7 V1,¢)Vry Vo) /—”)7 let

Bro(v) ={(x,y) € RS, x C&, :
there are v;, 5 indices of degree 1 in R
there are vg indices of degree > 2 in R
there are vy . indices of degree 1 in C
there are ve indices of degree > 2 in C'}

Thus Bg,c(v) is the set of all multi-bipartite graphs G,y without isolated vertices, and with
the specified numbers of (light) vertices of degree 1, and of (heavy) vertices of degree 2 at least,
separately among the row vertices and the column vertices.

We let
V1 = V1, + V1,c and v = vy + Ve.

Thus we consider B}22 to be the simple graphs among the collection Bg,c(v™) where |R| =

|C| =n and v(™ = (0,0,n,n,m).
We now discuss the distribution of the degree sequence of Gxy. Fix x,y and let R; = {i € R :
de(i) =1}, C1 ={j € C: dy(j) =1}.
Lemma 5. Suppose that (x,y) is chosen uniformly at random from B o(v). Then & = {dx(?) :
i€ R\ Ri},§={dy(j): j€C} is distributed as

(Z,Z')=({Z:: i€ R\ Ri},{Z}: j € C\Ci}).

Here Z; are independent copies of Po(\;> 2) conditioned on ZiER\Rl Z; = p—vi,n, Z; are
independent copies of Po(X\'; > 2) conditioned on Ejeo\cl Z; = p—u1,0, and Z, 7' are mutually
independent. The parameters A > 0, X' are arbitrary.



Proof Since x, y are mutually independent, it suffices to consider x only. Assume without
loss of generality that R\ Ry = [vg]. Let s = 4 — vy 5 and

Sz{fe[s]”R: Z z‘,-:sandVi,xi22}.

1<i<vg

Fix £ € S. Then, by the definition of x and Z = {Zi}icton)s

L = s! s!
Pr(z=¢) = <§1!§2!...gv!) / (ZS wl!a:g!...wv!> '
e

On the other hand,

. . 2Ei z
Priz=¢) >, zi=s) = | Il G / DI | e e

1<i<vg 1<i<vg

_ ((e# =1 —z) "ry® (e*—=1—2)""z2*
- ( 51!62!---&)3! )/ (; iEl!.’EQ!....’EvR! )

= Pr(x=¥§).

To make the most out of this underlying independence, we set A = 25, A’ = 2., where

B — ViR ZR(eZR — 1) K—U1c ZC(BZC — l)
Vr fr ’ Ve fe

where f(z) = fa(z) = €* — 1 — = and we have abbreviated fr = f(zgr), fo = f2o(zc). We will
also use z, the root of

)

p—v  z(e*—1)

v f(z)

Lemma 6. Suppose that vpzy — o0 and a is such that a*(vgpzg)~! — 0. Then

_ 1+ O((1 + a?)(vazr)™1)

P Zi—p—vin—
r Z [ H—Vir— G (27rvRVar(Z))1/2 )

1€R\ Ry

where Z = Po(zgp; > 2). An analogous estimate holds for the column set C.

Proof This follows immediately from Lemma 21 in the appendix. O

Notice that Var(Z) = ©(zz). Using Lemma 6 with a = 0, we see that the probability of the
conditioning event is of order (vgzz)~'/2 > ©(n~'/2). So, a qs® event expressed in terms of Z
remains a gs event when Z is replaced by #. The same relation holds between Z’ and ¥.

In particular, since
Pr(Po(zp; > 2) > logn) = O(n~08106™)

we have that for (x,y) chosen uniformly from B R,C(u(m)),
Pr(max{A,,A,} > logn) = O(n~eglogn)) (15)

where Ay = max;jcr{dx(j)} and Ay = max;cc{dy(j)}.

2 A sequence of events £, is said to occur gquite surely (gs) if Pr(€,) =1 — O(n~X) for any constant K > 0.



Lemma 7. Suppose (x,y) is chosen randomly from By (™)) where R = C = [n],m = cn.

6>2

n,cn*

(a) Conditional on being simple, Gx y is distributed as B

(b) Pr(Gx,y is simple) ~ exp (—ﬁ) where —gl(,ejl_jg =c.

Proof
(a) If Gx,y is simple then it has vertex set [n] + [n] and m edges. Also, there are (m!)? distinct
equally likely values of (x,y) which yield the same graph.

(b) If we condition on the degree sequence dy,dy then given max{A,,A,} <logn,

PI‘(Gx’y is simp]e) ~ e—>‘(‘7lx))‘(dy)/2

where if a = (a1,az,...,a,) then A(a) = 2 3" | a;(a; — 1), see for example [16]. Now

p

E(nA(dx)) = E(nA(dy)) ~ L p—

and this is true conditional on the gs event max{Ax, Ay} < logn.

Now the random variable nA(dx) is the sum of independent random variables and it is easy to
> nfl/B) < n_¢

show concentration around its mean. Thus for example Pr (‘)\(dx) - 1=
for any constant a > 0 and the lemma follows.

3.3 Proof of Lemma 2

Let w = [Klogn] for some large constant K > 0. Consider the bipartite graph I" with vertex
set B,‘i,zj_w + Bj2? and an edge (G, H) iff

E(G) CE(H) and E(G) \ E(H) is a matching.

Consider the following experiment SAMPLE:

e Choose G randomly from Bfﬁs—w

e Add a random matching M, disjoint from E(QG) of size w to obtain H € Bg?,g.

This induces a probability measure Q on beyz,,%. Let dr denote degree in I'.

Lemma 8.

G e B’22 implies

nm—w

(n?

w 2
_m'—2wn) < dp(G) < (n >
w! w
Proof The RHS is obvious. For the LHS let us bound from below the number of ordered
sequences eq, €g, . .., €, of w edges which are disjoint from F(G) and form a matching. Observe
that after choosing ej,ea,...,e; we rule out at most m — w + 2in choices for e;11. (The m — w
edges of G plus the further < 2in edges incident with ey, es,...,€;). Thus there are always at
least n? — m — 2wn choices for ;1. Dividing by w! accounts for removing the ordering. a

10



Thus for n large and G, G’ € B’Z2

n,m—w?

- 1‘ <= (16)

We now consider the degrees dr(H) for H € Bfl’znf.

For H € Bfl’z,g let E5 (H) be the edges of H joining vertices of degree at least 3. If e € E(H)\E(G)
then other edges of H incident to e must already be in E(G). So, if (G, H) is an edge of I" then
E(H)\ E(G) C E>(H).

Lemma 9. Let
ple — 1)

0 = c 'p?, where m =c.
If H is chosen uniformly at random from th?”% then qs
()
A(H) <logn.
(b)
|Es (H) — 6n| = O(n'/?log n).
Proof Let x,y be chosen uniformly from By (v(™). Part (a) follows from (15) and Lemma

7. Now to part (b). Let W be the number of pairs (z;,y;), ¢ < m such that dx(z;), dy(y;) > 3.
We know that, conditioned on simplicity, W = E~ (H). We see that

My, 3My 3
= = < ]_
E(W) ; (17)
where
mx3=m—2{j € R: dx(j) =2} and my3 =m —2|{j € C: dy(j) =2}|

Now, in the notation of Lemma 5,

The sum in (18) is of independent random variables and it is straightforward to show enough
concentration around the mean to prove that

< n'?logn gs.

> Zi—2l{i: Zi=2}—np
i=1

It then follows from Lemmas 6, 7 that

1/2

Mmx,3 — np| < n'/?logn and similarly |my 5 — npl <n’“logn gs. 19
el y7

Suppose now the condition (19) holds, which we call the event £;. Then &; holds gs. It follows
from (17) that
E(W | &) = 6n+ 0(n/?logn), 6:=c 1p? (20)

Assume &; holds and fix x completely and fix y up to a random permutation. Call the conditional
probability space ¥. We appeal to the Azuma-Hoeffding inequality to show that in ¥, W is
tightly concentrated around its mean. The A-H inequality applies since transposing any two

11



elements of a permutation of y may change W by at most 2, see Appendix C. So, for every
u >0,
2
Pro(|W — Eg(W)| > u) < 2e%/Ben),

Removing the conditioning on & we obtain
Pr(|[W — E(W | &) > u) < Pr(£%) + 2¢~%/en),
So, substituting u = n!/?logn and using (20), we see that
|W — 0n| < An'/?logn qgs,

if the constant A is sufficiently large. Recalling that W = E-(H) on the event &, and that
Pr(&) is of order n!, we have proved the part (b). O

Now let B be the set of H € B‘s>2 satisfying the conditions of the above lemma i.e.
e The number of edges joining two vertices of degree > 3 is in the range 6n + An'/2logn
for some constant A > 0.

e The maximum degree A(H) < logn.

According to the lemma 3 ~
IBSZ2\ B| < |Bln™¥, VK >o0. (21)
Note next that

Lemma 10.

H € B implies

(6n — An'/? log‘n — 2wlogn)¥ < dp(H) < (9n + An'/2log n> .

w! w
Proof The upper bound is obvious. As in Lemma 8, for the LHS let us bound from below
the number of ordered sequences ej, e, ...,e, of w edges which are contained in E- (H) and
form a matching. Observe that after choosing ey, es,...,e; we rule out at most 2iA choices for
€i+1- Thus there are always at least On — An'/?logn — 2wA choices for e;+1. Dividing by w!
accounts for removing the the ordering. a
So for H,H' € B,

dr(H) 2Awlogn

-1 < —>2= 22

dr(H') = fnl/2 (22)

Finally, for H € B322 \ B, H' € B,
dr(H) (%) 2
dp(H') S (6n—An1/2log n—2wlog n)« < 9 ’ (23)
w!
as the total number of ways to delete a matching of size w from H € B‘s>2 (Z’) at most.
Let Go € BJZ._, be fixed. By (16), if H € B2? then
Q(H) = Pr(SAMPLE chooses H)
1 1
sz < >
Biin—wl  (c,merm) dr(G)
_ 1+O(w2/n) 5 dT(H) (24)
Boon_.,|  dr(Go)’
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From this relation, (22), and (23), it follows that

5 1 Q(H 3Awlogn
H,H' € B implies ‘Q((H’)) -1 < oz (25)
. . H 3c\”
HeB22\B,H €B implies g((H,)) < (g) (26)
Furthermore, invoking also
> dr(@)= ) dr(H),
GeB)Z HeBSZ2
and picking H' € B, we obtain (see (16), (22)):
, 5>2
do(H') _ (|, 3Awlogn |Brim—ws| (27)
dr(Go) Ont/? |B|
Combining (21), (24), (26), and (27), we get: for every K > 0,
QBB < qur) () n B
140w /n) drlIT) (36)° o
|Bf52_w| dr(Go) \ 0
= O((3¢c/8)*n~2K)
< nK, (28)
Since Q(B3>2) = 1, from (28) and (25) we deduce that, for H € B,
1 1 4Awlogn 1 1 5Awlogn
‘Q(H) - |Bfl,273| = |B;5L’Zw2b| x Onl/2 X 1—n-K — |Bg’zw2h| x Onl/2 (29)

This means that on the graph set B the probability measure Q is almost uniform. It is worth
repeating that Q is induced by picking a random G € Bfl,sz_w, and adding to G a random

matching M of cardinality w which is disjoint from E(G).

Now let Prj; denote probability w.r.t. a graph chosen uniformly from Bfff,[ and let p*(G)
denote the size of the largest matching in G. We want to prove, using the near uniformity of Q,
that Pr,,(u*(G) =n) = 1,if m =cn and ¢ > 2.

From the previous part we know that there exists & = a(c) such that

Pr,, o(N(S)| > |S|: VS Cn],0<|S|<an)>1- % (30)

for some v = y(c). (Here S is a set rows, or a set of columns.)

Now, given G € Bi,zr?sz such that p*(G) € [n — t,n) and the event in (30), fix some matching

M of size n — t and let & be a row vertex and y be a column vertex not covered by M.

Suppose G does not contain a matching of size n —t + 1, i.e. p*(G) =n —t. Let A be the set
of row vertices reachable from x by an alternating path w.r.t. M, and let B, the set of column
vertices, be defined analogously for y. (Of course, the sets A and B depend on the choice of
a maximum matching M. To achieve uniqueness, we assume that M is the lexicographically
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first among all maximum matchings.) Each such path is of even length, and we include z into
A, and y into B, as corresponding to the paths of zero length. There does not exist an edge
connecting A and B, since otherwise we could use the resulting path between z and y to get, in
a standard way, a larger matching. (Therefore if any of the w edges added to G in SAMPLE join
A to B, p*(G') > p*(G) for the new graph G'.) Furthermore, for every row vertex in A, all its
column neighbors must be covered by M, since otherwise there would exist an alternating path
connecting = and an uncovered column vertex, and there would exist a larger matching M’. This
implies that N(A) consists of all column vertices on the paths from z, so that |N(4)| = |A4|—1,
as z is the only vertex in A not covered by M. Similarly, |N(B)| = |B| — 1. Then necessarily
|A| > an, |B| > an. So if G is such that the event in (30) holds, then—conditioned on G—the
probability that none of the w added edges of SAMPLE join A to B is at most

Y I 2\ @
1_(om w) < 1> Sl,
n? 2 n

if we pick K in w = [K logn] sufficiently large. Therefore, if H € Bg?,,% then

2
Qu*(H)<n—t+1) < Prp oW (G) <n—t)+ % +(1-a2/2) < E(m—w,t)+ %;
Em—w,t): = Pry_w(G)<n—1t)=1—Pr,_,(u(G)>n-t).
So 5
QU{u*(H) <n—t+1}A{H € B}) < &(m —w,t) + %
and then, using (29),
. 2 Awl
Pr,,({u*(H) <n—t+1}A{H e B}) < ({(m —w,t) + l) (1 n M)
n Onl/2
and
" 2 5Awlogn _K
6Awlogn
< &(m-w,t) + “oniz
(where n~% bounds Pr,,(H ¢ B)). i
3.4 Proof of Lemma 3
We now go back to our analysis of the graph Gy y.
In our analysis below we will only need to consider graphs for which
v1 <p n32 < n% <y g, ve <. (31)
ZryZc < 3c. (32)

We next look at the expected number of vertices of a given degree in G,,. We use the notation
Vi,x, X = R, C to denote the set of vertices of degree of degree k in X and vg,x = Vi, x]|.

Lemma 11. For verticesi € R\ Ry,j € C\ C1, and 2 < k,l < logn,

Pr(de(i) = k) = k‘f;iR (1+o<%>) (33)
Prde(i) = by () =0) = e (1e0 (L8l L8l)) gy
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Proof Since x,y are independent, it is enough to prove (33). Using Lemma 6,

Pr (K =kand >, Y;=vp—vin— k)
Pr(d«(i) =k) =

Pr (Y,- =kand ) ;Y] :vR—vLR)

2% 140(k*(vrzr) ")
frE! (2w (vg—1)Var(Y))1/2
1+0((vrzr)~Y)
(2mrvg Var(Y))1/2

2k (log v)?
= W (HO(TﬂR ))

O
Thus we can write that for 2 < k < logn,
k 2
Ux 2 (logw)
E = 0] 35
(vk,x) Wi, + ( o (35)
kL 2 2

VRVcZp 25 v(logv)?  wv(logv)
E o 36
(vk,nve,0) K fnfo ( | 2o (36)

We prove Lemma 3 by considering the following algorithm for finding a matching in a graph
G. Tt is a technical modification of one described first by Karp and Sipser [14]. We apply the
algorithm to the bipartite multigraph G = Gy y where (x,y) is chosen randomly from B . (v(™)
ie. R=C = [n],v;y = 0,v = 2n,m = cn. In the light of Lemma 7, we need only show that
the following algorithm KSGREEDY finds a matching of size n — O(n-%?) with sufficiently high
probability.

KSGREEDY

begin
M « 0;
while E(G) # 0 do
begin
A1l: If G has vertices of degree one in R and C, choose one, z say, randomly
from R if vz < vo and randomly from C otherwise.
If v1,r =0 or vy, = 0 and v; > 0 choose z randomly from the set with
vertices of degree 1.
Let e = {x,y} be the unique edge of G incident with x;
A2: Otherwise, (no vertices of degree one) choose
e = {z,y} € F randomly

G+ G\{z,y}
M+ MU {e}
end;
Output M
end

The reason for choosing a vertex of R when vy < v in Step Al is that we must try to ensure that
|vr — vc| does not grow too large. This is because |vg — vc| is a lower bound on the number of
isolated vertices that will be created from now on. The choice of R in this case reduces |vy; —vc|,
in expectation.

KSGREEDY is defined on graphs. Formally, we need to define its action on pairs of sequences
X,y. As in [1] we use ’s to denote deleted edges i.e. if z; = a,y; = b and the algorithm requires
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the removal of edge (a,b) then we make the assignments z; = y; = . Thus at a general step of
the algorithm we are left with a pair of sequences x,y from ([n] U {x})™ which satisfy z; = %
iff y; = x for i € [m]. The sets R,C are defined by R = {j € [n] : i such that z; = j} and
C ={j € [n] : i such that y; = j}. The edges of this extended definition of Gy are simply
{(zi,y:) : =; # *}. The next step in analogy to the argument from [1] is relate the evolution of
Gx,y to a Markov chain on v. So let ©(0) = (0,0, n,n,cn) and let v(t),t > 0 be the sequence of
states seen during KSGREEDY. The following lemma can be justified by arguments similar to
those used for Lemma 3 of [1].

Lemma 12. The random sequence v(t), t =0,1,2,..., is a Markov chain.

Proof See Appendix A. a

We shall for convenience introduce a stopping time S where

S— min{t > 0: |v(t) —v(t —1)| > logn) if such t exist
n otherwise

Note that
Pr(3t: |v(t) —v(t —1)| > logn) = O(n~¥) (37)

for any constant K > 0. This follows from (15).
Note that ¢t < S implies that

e+ 1) - (0 =0 (“E"). (39)

v

S is our generic stopping time for the first occurrence of one of some unlikely events. As we
proceed, we will find other unlikely events and we will update S accordingly, with just a remark.
Also, in the next section we work under the asumption that t < S.

3.4.1 One step parameter changes

‘We now consider the the expected change in v due to one step of KSGREEDY.

Notice that
2 < 20—
v

)

the fraction being the average degree of a heavy vertex. Now a simple calculation shows that
with probabilty 1 — O(n™%)

5>2
n,m

no vertex subset of B;~7 has average degree more than 3m/n. (39)

Given d, the property P = {G : no vertex subset of G has average degree more than d} is mono-
tone increasing. Let two states v and v’ be such that the transition probability p(v'|v) is positive.
Let G be chosen uniformly among all Gy, such that v(x,y) = v. One step of KSGREEDY ap-
plied to G produces a subgraph G’ = Gy 5. We know that Pr(v(G’) = v'|G) = p(v'|v) > 0, and
that, conditioned on v(G') = v/, the graph G’ is distributed unformly. Thus, for p(¢'|v) > 0,
we can couple two random graphs G and @', distributed uniformly on the set of all graphs
with v(x,y) = v and v(x,y) = v’ respectively, and such that G' C G. This means that
Pr(G(t) € P) > Pr(G(t+1) € P), t > 0. Using (39)), we get: for every t > 0, with probability
1-0(n™%)
no vertex subset of G(t) has average degree more than 3m/n.
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Hence, with probability 1 — O(n~2) the last event holds for all ¢ simultaneously. So we will
proceed assuming that
z < 3ec. (40)

Next let v
v =~(v) = |vg —ve| +v; and 6, = o

A simple estimation, under the assumption that 6, = o(1), yields

2m—v1 M — Ve

- — 4+ —=| < 8ch,.
VUg v Vg

v Vg

_ ‘m(vR —vs) U1 Vi

Let g(z) = 2(e”-1)  We know that g assumes values (0 — v1,x)/vx at zx, X = R,C, and

e?*—1—x

u — vy)/v at z. en calculations yield that g'(x :ue ,3|. It tollows
2 Th lculati ield th ! ze f2 —l-e 1,3]. It foll

(e*—1—x)2
immediately that there exists a constant c¢; such that

|2 — 2|, |2 — 2 < c16s.

Thus with f = f2(z) we can replace (35) and (36) by

k 1 2
Blonx) = g+ 0 (s0togu+ E) (a)
v2zktt v(log v)?
E(”Uk’R”U[’c) = W —+ O <’U29U logv + %) (42)

In the following we will abbreviate the error terms to
1 2
=0 (Hvlogv—i— M) .
vz

In the analysis we will be able to concentrate on cases where
z>n"1 v =Q(nz%) and v = O(n?(logn)®). (43)

Thus
© = o(2*) throughout. (44)

Now we go through the steps of the algorithm and compute the expected changes in the param-
eters.

Case 1: Deleting a vertex z of degree 1 and its neighbour y. Assume that 2 € X and X =
{R,C}\ X.

Let v/ refer to the state after one step.

Lemma 13. Assume that logn = O((vz)'/?) and the conditions (81), (32) hold. Let T be the
event that KSGREEDY removes an isolated edge in this step. Then qs

(a) If T occurs then

! / ! 7 /
Vi,p =V,n— 1,010 =v1,c—1,m =m—1, v =V, Vo = Vo.
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(b) If T does not occur then

By |0) = wx—14 g +0
vix = UIx (45)
, 2%e?
E(vi|v) = v -1+ e +0 (46)
2,z
, B 2%
E(V, |v) = wx e —1) +06 (47)
E(vy|v) = vx—-1+0 (48)
2,z
E(y o, *e
(v |v) v (z_1)2+®
EMW, —v%|v) = v _v_+1_z27ez+® (49)
x X - X X (ez —1)2
E(y _ 1 ze?
Wiv) = n-1-"%_4e
1 2
E(wox|v) = O (@)

E(wx |v) = 0.

Here vo x is the number of isolated vertices in X (= R, C) that are created by the step and
we will let vo = vy, g + vo,c-

Furthermore, if lux — vx| > logn then

vy > vx implies v = v — vy. (50)
vx < vx implies v = v+ 2(v] — v1) + vo (51)
2,z
vy < vx impliess E(Y' |v) =~ —2 (1 — %) + 0. (52)
ez —

Proof Assume that X = R. We begin by conditioning on the degree sequence of x,y,
assuming that it meets the conditions (31), (32). As we know, under these conditions, gs the
maximum degree is at most logn, (15). So we proceed assuming that this maximum degree
condition holds. Now x,y are just mutually independent random permutations of the multi-sets

IT i ® and II jeo j%(9) | respectively. Suppose we delete & € R of degree 1 and its neighbour
i€ER
yeC.

If Z occurs, i.e. y € C; then 'Ull,X =uv,x — 1,0 =vx X =R,C and p/ = p — 1. We note that

Pr(y e ¢4 Ix,y)=v17’c=®,

so this case only contributes to the error term. Note also that (50), (51) hold in this case.
Let Z not occur, so that dy(y) > 2. Now for 2 < k < logn we have

o kvk,c

Pr(dy(y) =k [x,y) = m (53)

Add the event {dy(y) = k} to the conditioning on x,y, denoting the resulting conditioning by
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. Suppose y has k; ; neighbours (excluding z) of degree i that are joined to y by j edges. Then

o
wo= p—k
!
vl,C = vlio
7
Vip = Vir—l—kin+ g kii1
i>2
v, = wve—1
!
Vg = Ur— E kii—1— E ki
i>2 i>2
! — . .
Vo,r = E :km
j21
A = 0
vO,c -

Then we have
vp = Z kis
i>1
and
vi—vi=—-1—ki1 + Z kii1.
i>2

Assuming |vg — ve| > logn we have

o = v =1 =14+ ok + 250 ki ve <o

v — v+ 1= 0 kiic1 — 2isekii Ve < ve

and (50), (51) follow.

Note next that
(k—1)(vi,r — 1)

Bl | #) = = 0

Further, for max(2, j) <1i <logn,

(k—1)ivs, r (logn)? .
H) _l_z)kla_ u (1+O( Z )) i=1
( i,J | _ 1 - (log n)% .
Jk—1 @) (F) Jj=>2.
Thus from (53), (56) and (62) we get
E(vll,R | X, y) = UiLr— 1- E(kl,l | X, y) +E Zk’i,ifl | XYy
i>2
k k—1)2
= va—1+4) Vo (k= V2van | g
2 M M

Removing the conditioning on vertex degrees we get

E(!, = ~1
(thn | ¥) X i

2
ZpUg

[apt

kzEve

+6

(k—1)-

2 2 z
ZrRaVUrVc€™C

frfou?
4,2 =z
+0

= UI,R_1+ +0

z vTe
4f2,l1/2
2,z
z-e
= -1+ — - .
UI,R + (ez_l)z +®

U1,r — 1+
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The remaining quantities can now be filled in the same way using (53) and (54) — (58).

E(Wic|v) = v,0+0©
E(wp |v) = va— (B, |v)—(v1.—1)+6
2%e?
G
EW,|v) = v.—-1+6
kE(vg,c | V)
E(wy,|v) = Y ——"=> E(k;;|v)
k>2 H i>1
_ Z kE(vk o | v) ((k —1)(v1,r— 1) 40 ((10gn)2)>
s 7 p—1 Iz
_ 0 (m + (logn)Q)
©
Uz),c =0
kE(v v
B [v) = p-1-3 e lV) o
ks H T Ve
kzEvg
= p-1-) = (k—1)+6
k>2 Kl for
= u-— 1-— M + @
wfe
Z*ve*
= p—1- +0
2uf
- u-1- LI
er—1
Finally note that since |v' — v| = o(log n) gs, then we see that if |[vg — vg| > logn then v, — v/,
has the same sign as v — vy and we can use the equations (46) — (49) to get (52). O
Note that
2 (= Y
(ez _ 1)2 - ex/2 — g—2/2

1 2
2j>0 227 (2j+1)!

22 1
> min{ —, =
> m1n{48,2}, (63)
cf. Corollary 3 of [1].
So in Case 1, for v(t) € Wy, we have
21 21
E(v'l|u)<v1—min{z—8,§}+@<v1—min{;—0,§}, (64)

on using (44).

Remark 2. In what follows there is a proliferation of large related constants and the reader may
find it difficult to check where these constants come from. We will adopt the convention that the
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subscript of such constants is defined by the equation number where they are first used. In this

spirit Cgqa = 50.

Furthermore, introduce M = 2y — v1. Lemma 13 implies that

z 2z
E(M - M 1+ 25 + &5
( / |V): 1 2(2 1)24_@‘ (65)
EW —v|v) 1+ ﬁ
Case 2: Deleting a random edge when v; = 0.
Lemma 14. Assume that logn = O((vz)}/?) and v; = 0. Then
2%e?
E(vll,n|u) = W—i_@
2,z
) _ z%e
E(nlv) = (-1 +©
2z
E(v' = QL
(v1|v) (e — 1)2 +0
2%e?
EW,|v) = vg—1-— (e - 12 +0
2%e?
EW,|v) = vo—1-— (ez—1)2+®
22e*
E(’UI|V) = ’U—Z—QW-F@
EW,—v,|v) = vg—v:+0 (66)
4
B |v) = p-1-2—-— 10
e —1
log®n
E(worn|v) = O ( g ) (67)
I
log®n
E(we|v) = O ( g ) (68)
I
Furthermore
/ 2 Z 2
Pr(vi,>0|v) = ez_1+®:1—§+0(z)+®. (69)
2 2
Pr(vi,>0o0rv;,>0|v) = 1-— (1_ez—z—l) +0=1- ZZ—FO(z?’)—i—@. (70)
, , z z z 9
Pr(vi,>0andv;,=0|v) = ———|1-——=)+0=_+0(:")+0 (71)
e* —1 e 1 2
Proof We again condition on the degree sequence x,y. Choosing a random edge means

choosing a random z from x, and then an z’s random neighbour y from y. Given ke2, £ > 2,
let us add the event {dy(y) = k, dx(x) = ¢} to the conditioning on x,y, denoting the resulting
conditioning by #. Besides the numbers {k; ;} (see the proof of Lemma 13), let let = have ¢; ;
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neighbours (excluding y) of degree ¢ that are joined to z by j < i edges. Then

W= p—k—£+1 (72)
Ve = Z&,i—l (73)
i>2
UII’R == Z ki,i—l (74)
i>2
vlc = Ve — 1-— Zfz”i_l - Zei,i (75)
i>2 i>2
v, = wvp—1-— Z kii—1— Z ki (76)
i>2 i>2
Vo,r = Z k]‘,j (77)
jz1
UO,C = Zej,] (78)
jz1

Now (62) still holds and there is an analogous expression for the ¢; ;.

The rest of proof of the lemma follows the same pattern as that for Lemma 13 and is left to the
reader, who should notice how close the claim is to two applications of the previous case. a

Observe that (65) holds in this case too.

Note also that in both cases

v+ (logn)® ")2) . (79)

E(v0|u)—0( .

(The hidden constant here is denoted Crg.)

Remarkably, the equations involving vy, v}, v,v’, u, i’ are up to the error terms, identical to those
given in Lemmas 6 and 7 of [1].

3.4.2 Multi-step parameter changes

At this point let us try to summarise the (conditional) expected changes in the parameters
v1,7,71 as the algorithm proceeds. Here

Y = |vr — Vol

We need to show that v; does not grow large as v; determines the rate at which isolated vertices
are created. We also need to show that «; does not grow large so that we can for one thing
approximate zg, zc by z.

Let us first consider the case where v; > 0. There is a preferred side from which to choose
the vertex = of degree 1. This is the side with fewest vertices of degree 2 or more. v, is well
behaved. When v; > 0 the expected change in v; is negative and so it is relatively easy to show
that it is unlikely to get too large. -1 is not so well behaved. It has a positive expected change
when we are forced to choose x on the less preferred side. However, this expected increase is
compensated by the expected decrease in v;. This is why we introduce the parameter v which
is much better behaved than 7;. Indeed, if z is chosen on the preferred side then the expected
change in + is negative and if x is chosen on the less prefered side then the change is non-positive
(deterministically).

22



Now consider what happens if v; = 0. There is only a small chance that v{ = 0 too and the
expected increase in 7; while v1 remains zero turns out to be negligible. If v{ > 0 then we see a
rise in y (due to the rise in v1). One more step will show an expected decrease i ;. The rise in
v1 is handled by looking forward to the next time that v; = 0, see Lemma 18.

The main analysis of the chain (v(t)) is restricted to the times when v(t) € Wy or v(t) € Wi.
where for o = 0,1,

W, ={v: z>n"% v > Agnz?, v; < Bgyn®** (logn)3, v < Cgyn?*< (logn)*}. (80)
Here ag = .14, a; = .17 and Agg, Bgg, Cgo are large constants and Wy C Wj.
Note that (43) holds for v(t) € W;.
For 0 = 0,1 we introduce stopping times

_ {min{tgs: v(r) ¢ W,}

n if no such t exist

Now it follows from (70) that we can find K > 0 such that with probability 1 — O(n~5) there
is no sequence t,t+ 1,...,t + Klogn < n such that v1(r) = 0 for ¢t € [t,t + K logn]. So we
introduce another stopping time

S = min{t <8: vi(r) =0,7 € [t — Klogn,t]}.
' n if no such ¢ exist

Now S < &; with probability 1 — O(n~°) and so we replace S by

S := min{S, 51}
We will allow 7g, 77 to use this new definition of S in their definition.
Lemma 15. Lett be such that

v(t) e Wi and v1(t) =0

and
71(t) = ve(t) — va(t) > (logn)3.
Let

min{t < 7 <71 : vi(7) >0} if such T exist
tl
T otherwise

so that vi(1) =0 fort <7 <t.

Then
E(i(t' +1) =m(t) | v(t) < -B(¢)
where
IB(t) = —min{%,cma} 5 (81)

where Cg1 = 2Cq4 and Cgy, depends on c.

Proof We first observe that either S; < ¢t + Klogn or t' < ¢t + Klogn and then vo(7) —
ve(1) > (logn)® for t <7 <t + 1.

We next assemble the following facts, that hold for 0 < 7 — t < K'logn.
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Claim 1

2
Pr(t':T|t'>T—1,u(t)):1—(1— i ) +o i +0

where we can take z = z(¢).

We write

Pr(t' =7t >7—-1v(t) =
Y Pr(t =7 |t'>7-1Lu(r-1)=v)Pr(v(r — 1) =v | v(t))

ves
(82)
where S = {v: |v —v(t)| < K(logn)?}.
Now if v € S then
2 \2
PI‘(t/:T|tl>T—1,V(T)):1—<1—ez_1> +0 (83)
which follows directly from (70), since we are assuming that v;(7) = 0 and since |z(7) —
2
z(t)| =0 (@) (see (38)) and this quantity is o(2%). The claim follows from (82) and
(83).
Claim 2

po =En(r+1) —n(n) [t > 7 v(t)) = 0.

This again follows from (66) since we are again assuming that v1(7 — 1) = 0 and we know

that z(7) and z(t) are very close.

Claim 3
Pr(vi (') >0|v(t) = ——— 10
1= (1- %)
déf 73+ O
= 1- g + O(2?%).

This follows directly from (69) and (70) and the fact that z(¢') and z(t) are very close.

Claim 4

22e? def
W +6 = pa + 0.

This follows from (49) with X = R, since v (t') — vg (') > (logn)3.

E(vi(t' +1) = () [vr,e(t) > 0,v(t) = -1+

Claim 5

22e?

E(va(t' +1) = n(t) [v1,a(t) = 0,v(t) =1 - (= —1)2

+0=—ps+0.

This follows from (49) with X = C, since vs(t') — va(t') > (logn)>.
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Putting these facts together we get
E(n(t' +1) =m(t) | v(¢)) = O(©logn) + m3ua + (1 — m3)(—pa) + ©. (84)

Explanation of (84): The first term accounts for the expected increase in v, between t and
t'. Indeed from Claim 2 we have

t+Klogn

Em)-ml®)|v@) < Y Elnr+1) -m(m)les, | v(?) (85)
= O(élogn).

The term m3pu4 accounts for the expected increase 71 (t' + 1) — 41 (t') when vy (t') > 0 (this is
negative) and the term (1 —m3)(—p4) accounts for the expected increase 7; (¢’ +1) — v1(t') when
v1,a(t") =0.

Writing p = ;%7 < 1 we see that 73 = ﬁ >

N[=

E(i(t'+1) —n(t) | v(#)) = (1 - 2m3)pa + O(Ologn) < — min { 22: Css} - (86)

for some Cgg > 0 which depends on ¢. The lemma follows. O

We put these ideas to work in the next few sections.

3.4.3 Number of vertices left isolated

Let oy, Wy, Ts,i = 0,1 be as in (80).

The analysis is in two parts,t =1...,Tgand t = 7o+ 1...7;. The reason for this split will not
become apparant until the middle of proof of Lemma 19 and so the reader will have to take the
need for a split on trust.

Note that if v € W; then v2? > Agonz? > (logv)? and so the conclusions of Lemmas 13 and 14
are valid.

Fix o =0or 1 Now let X;, t =0,1,...,7, —1 be the number of isolated vertices created at time
t and let X; = 0 for ¢ > 7T,. Let also set v(t) = v(T, — 1) for t > T,. Then the random variables
X, satisfy

< BgoCron?® (logn)?

- p(t) ’

where | - denotes conditioning with respect to {v(7)}o<r<¢, and Crg is the hidden constant in
(79). Putting A\ = (logn) 2 and using AX; < (logn) !, e* < 1+ 1.5z, = | 0, we see that

Xy > 0; Xy <logn; E(X;|-)

E(eMt | ) <1+ 1.5AE(X, | ) < elOAEXel),

Therefore, introducing X = »,., X, and using the bound for E(X; | -) together with
>, E(m™1(t)) <logn, we have
E(e™) < exp(2BgoCron?* (logn)?).
Applying the Markov inequality, we obtain
3

PI‘(X > 3BSOC79n2°“’ (log ,n)4) < 6*3380079712‘1" (log n)4)\Ee)\X < 67380079’".2&‘7 (log m) (87)

This proves:
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Lemma 16.
At most Cggn? (logn)?* isolated vertices are created up to time T,, qs (88)
where Cgg = 3BgyChrg.
Our next task is to get a good estimate of v(7,) at the stopping time 7.
Lemma 17. With probability 1 — O(n=2)
v1(t) < Cggn®* (logn)? vt € [1,T5], (89)

where Cgg = 8Cey (and hence we can take Bgy = 8Cs4).

Proof Let A, = Cggyn?*(logn)®. First of all, by (15), gs the conditions v;(t — 1) =
0, v1(t) > 0 and ¢t > 1 imply that v;(t) < logn. In view of this, for t; < t, define the event

51(t1,t2) = {’Ul(tz) — Ul(tl) > ngn2a"(logn)3} n {Vt S [tl,tg), ’Ul(t) > 0}

Clearly then it suffices to prove that

Pr U 51(t1,t2) = O(n_z).

t1<t2<To
Define
vi(t+1)—vi(t) fwvi(t)>0andt<Ts,
V=9 .
Bao otherwise,
where,
1
=_ - . 90
a0 = G (90)
We notice upfront that, for ¢; < to < 7, and vy (t) > 0 for t € [ty, t2),
to—1
’Ul(tg) — Ul(tl) = Z Y{g
t=ty
Now, by the definition of T, |¥;| < logn for all t. Furthermore, if A = 2(122%)2 then
A1 i
E( |v(r),r<t+u) < 1+EQY)+Y. M
o~ 7!
< 11— XBgo + A*(logn)?
< 1. (91)

For t < T, (91) follows from the definition of Y;, Bgg, (64), and the definition of the stopping
time 7. For t > 7, (91) holds trivially. Thus, the occurrence of the event &; (t1,t2) N {te < T5}
implies

ta
Z Y, > A,. (92)

t=t1
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Now from (91),

ta ta
Pr <Z Y: > Ay | v(r), T < tl) < e MYE <H e | v(r),T < t1>
t=ty t=ty
< e M, (93)
Since the number of pairs (t1,12) is (5) = O(n?), the statement follows. O

To account for the unlikely failure of (89) we introduce a stopping time

S — min{t S 71 s (t) > ngn2a" (IOg n)3}
2T n if no such ¢ exist

and let
S :=min{S, S, }.

Now to deal with ~.
Lemma 18. With probability 1 — O(n=2)
v(t) < 2Cggn?* (logn)* vt € [1,75]- (94)

(Thus we can take Cgo = 2Cssg).

Proof For ty < t3 let

&Ex(to, t2) = {7(t2) — 7(to) > 2Cssn®* (logn)*}

and also for tg < t; < tg let

53(t0,t1,t2) = {’Y(tl) — ’y(to) < ngn%“’ (log n)4 and
Y(t) = y(to) > Cggn?*= (logn)?*, t; < t <ty and y(t2) — Y(to) > 2Cssn>** (logn)*}.

Note that if t2 < T, and Ex(to,t2) occurs then E3(to, t1,t2) occurs for some t1 > to.

Pr U Es(to, t1,t2) | =0O(n2). (95)

0<to<t1<t2<To

Fix ty > t1 > to. If E3(to, t1,t2) occurs for some ty < 7T, then the sign of vg —ve does not change
between t; and ta. (If vg — vc drops to zero then we will have v = v; < Cggn?® (logn)3). We
will assume that vg(t1) — vo(t1) < 0 and introduce the stopping time

o min{t; <t <ty: vgr(t) > ve(t)
r= to if no such t exist

We define a sequence of times 79 = ¢1 < 7 < ... < 7p < Tp41 = tr as follows: 71 = min{#; <
7 < min{te, T3} : vi(7) = 0}. If such a 7 does not exist then we take 71 = ¢t;. Assume that we
have defined 7; with v;1(r;) = 0. Define 7} = 1 + min{r; < 7 < ¢7: v1(7) > 0}. If 7/ does not
exist then r = 4. If 7/ does exist then let 7* = min{r; <7 <+¢r: vi(7) = 0}. If 7} exists then
Tit1 = T;*, otherwise r = i. We now bound the change in v over these intervals.
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(a) We first consider v(71) — v(70). This is zero if 7, = 79 and so assume that v;(¢g) > 0. If
v1,r(t1) = 0 then (45) implies that vy z(7) = 0 for to < 7 < ¢;} and then (50) implies that
v(11) <7(70)-

So assume that v1,z(¢1) > 0. For 1 < u < n define

- —1 <
Y, = yi(t1 +u) —7(t1 +u ) t0+u,.7'1 (96)
—Bor otherwise
where 1
= 97
Bor Corn?as (97)
Now we have |Y,| < logn and (81) implies that
E(Y, |v(7), 7 <ti+u) < —Por.
So with A = ﬁ we can argue as in (91) that
E(eY |v(r), 7 <t; +u) <1.
We then argue as in (93) that for all 0 < T' < n,
T
Pr (Z Y, > 10(logn)3ﬂ9_71) <n5.
u=1
It follows that
Pr(y(n) —7(n0) > 10(logn)*f5;') < n™". (98)

(b) We now consider the random variables y(7;11) —v(7;) for i > 1. Fix 1 <i <r. (Wheni=r
parts of the argument may have to be omitted or modified in a trivial way). It follows from
Lemma 15 that

(99)
Suppose that vy x(7]) = k and v1,(7}) = £. Thus

v(m) = () = n(m) —m(n) +k+ L (100)
Next let 7{" = min{7 > 7] : vy, = 0}. It follows from (51) that

—2k — 20 < ~(1}") —y(7]) < =2k + Z;

where
!

Z; = Z vo(T)-

—_—
T=T]

This is because vg < ve and v1,x(7]") = 0 and v1,o(7]) < v1,c(7]) (by (45)). (The —2k in the
lower bound accounts for the possibility of Case a in Lemma 13).

Now (50) implies that
Vrig1) = () — Z;

where



So if
Ui = y(Tip1) = () — Zi + Z;

then
T; <y(r]) —m(m) + £ —k and |T;| < 5logn.

So
E(T; | v(7:)) < —Bo9 +© < —fo9/2.

Putting A\ = 25(5)%71)2 we can argue as in (91) that E(e*T | v(r;)) < 1. Putting I'; = 0 for
i=7r-+2,...,n we see that

r+1 n
Pr (Z T; > 125(log n)?’,Bg_gl) =Pr <Z r; > 125(logn)3ﬂ9_91) < e~ 1252 (log n)?Bog" _ =5,

i=1 i=1

(101)
But
r+1 r+1 r+1 r+1
Yrrpr) = () =Y Ti+ ) (Zi-Z) <Y Ti+)Y Z
i=1 i=1 i=1 i=1
and (88) implies that Z:ill Z; < Cggn?®* (logn)* gs. Therefore,
Pr(y(r,41) — v(11) > 2Cssn** (logn)*) = O(n™?). (102)
The lemma follows from (98) and (102). O

We now check the second condition of W, v > Aggnz?.

Going back to (65), we are left to consider the differential equation,

2 2 2.4 2
d_M _ 1+ vfn; + 1)4_7:2;2
dv 1+ Z::;;:

The solution of this was obtained in [1]: Here z* is the value of z at t = 0 and M* = 2m* = 2¢cn.

_ M*(ef 1)z = €et
Then (up to a v; error term)
_ 2mf(2)
 z(er—1)
2m*f(z) z £ef

So we define

. v " et
s nf(Z)eXp{/z 65(1+§)—1d£}

*

m # et
fo= mexp{/z Wdf}-

and
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Lemma 19. Let 7_1 =0. Then for 0 =0,1,

Pr ( max _|J;(v(1)) — Ji(v(To-1))| > n_a"/4> =0(n™%), i1=1,2.
T€[To—-1,To]

(v(t)). Let now K = (logn)? and define

Proof Now fix ¢ = 1 or 2 and let J(t) = J;(v
t<7T,. Let Q(t) =0 for t > T,.

Q(t) = exp{K(J(t) — J(T5-1))} for To_1) <

We consider only i = 1 since the other case is very similar. For ¢ > 7,, we obviously have
Qt)=Q(t—1)=0. For T, 1) <t <7, we can write

EQ(@t) | {r(5)}s<t) < QU~1)E {1}() - 1) <togn exp [K(J(t) — J(t —1))]| w(t — 1)} . (105)

Since v(t — 1) € W,, each of m(t — 1) and v(t — 1) is of order n!~2®< at least. The same holds
then for v(t) € B(v(t —1),logn) = {v : |v —v(t —1)| < logn}. Consequently v(t)z(t) is of
order n'=3% at least. Moreover, it can be easily verified that, uniformly for such v and i = 1,2,

Z,Yy =7v,m,
oJ 1
0~ o (E> , (106)
0%J 1

Let © = (v,m) i.e. drop all other parameters. Assuming v(t) € B(v(t — 1),logn), expanding
the exponential function, and viewing J(t) as a function of v, m only,

exp{K(J(t) = J(t— 1))} = [L + KVJ ()" ((t) — &(t — 1)) + O(K*(logn)*/(v2))],

(108)
e Klogn = o(vz). (109)
Consequently, equation (105) becomes
BQU{r(s)}e) < Qt—1) {1+ KVIO B - ot — Dlw(t - 1)]}
+0(Q(t — 1)K*(logn)?/(vz)?). (110)
Putting . .\
oo |1 A
o= 1|
and using Lemmas 13 and 14,
VIOTER(E) -t - 1|vit-1)] = VJit-1)T[F@t-1))+06]
= O(IvJ(t-1)e)
= 0 (1"ngne)> . (111)

(VJ(P) L F(P) since J(&) is constant along the trajectory of dir/dt = F(¥)!)
Therefore, for ¢t — 1 < 7, and hence for all ¢ > T,_1,

EQ(t) | {v(s)}s<t) < Q(t = 1)(1 + O(K (logn)©/(vz))) = Q(t — 1)(1 + O(n"*=~*(log n)*).
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So for any positive €, the random sequence

{R(®)} == {(Q +n"2)7Q(t)}
is a supermartingale.
Introduce a stopping time

T = min {71 <t <Tp: J(t) — J(To-1) > n’“”/4/2}, if such t exist,
1 7o, otherwise.

For the reminder of the proof of the lemma, we take o = 0. We will continue to use the subscript
o because we will return and finish the case o = 1 later. Let n, = 7, — To—1.

Now, applying the Optional Sampling Theorem (Durrett [7]) to the supermartingale { R(¢)} and
the stopping time 7; we get

E[Q(77)] E(1+n" %) - E[Q(To-1)] (112)
E(L+n" )" E[Q(To—-1)]
_ (1 +n7aa+e—2)n

1+0(1), as n — oo, (113)

IN A

for € sufficiently small.

Remark 3. Note that in the case o = 1 we have Ta; — 2 > —1 and we cannot argue that
(1 +nT@1te=2)n = 1 4 o(1). We will have to argue instead that whp n; = O(n'=2%0) and then
all we need is that Tan — 2 < 209 — 1.

Since P
E[Q(T))] > ™" /2. Pr{T] < T,},
we have
P _ _ —ac,/4 2 :P 4 — —’na"/4/2 .
r{, max [J(t) ~ I(Tom)] > n700l4/2) = Pr{T] < T} = 0(e™""*/%)
Analogously,
P i — J(Too1)] < —n /42 = O(e """ /2).
o, min_[J(t) ~ J(Toma)] < —n oel4/2) = O(e "2
So gs

t) — J(To_1)| < n=/4/2.
g, max () = J(To-1)| <n ™%/

It only remains to note the equation (37).
This completes the proof of the lemma for o = 0. a

At time Ty either (i) 2 < n=, (ii) 2 > 3¢, (iii) v < Agonz? or (iv) v1 > Bgon?®°(logn)? or (v)
v > Cgon?® (logn)?.

Possibility (ii) is ruled out by (39). (104) and Lemma 19 show that for ¢ € [0, Tg], v(t) ~ Aynz?
where

*

B * z 585
A—mexp{‘/o m‘“}'

This rules out possibility (iii) if we take
Aso = A/2. (114)
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Possibility (iv) is ruled out by Lemma 17 and possibility (v) is ruled out by Lemma 18. So we
can assume that at time 7y,

z &~ no*
v ~ Anz?

m =~ Anz®

2(To) = 2(To — 1) = O((log ) /v)

is the justification for (115), m &~ v comes from z = o(1) and

2m — -1

g 2m-u1 _ z(e ) _ (
v f(2)

So if we condition on (115)—(117) then we can go back to the proof of Lemma 19 at equation

(112) and take n; = O(n'~2%0) and now find that (113) holds. We have fulfilled the condition
laid out in Remark 3 and finish the proof of the lemma for the case o = 1.

1+ % + O(z2)> . (119)

We can therefore argue that at time 77, (115,116,115) hold with ag replaced by ;. The number
of isolated vertices that are created from 7; onwards is bounded by the sum of (i) >, 5 kve(71)
and (ii) the number x; of components of G(71) which are paths of odd length. Now gs

S kuk(T5) & o(T1)2(T5) /3 = O(n'=57) = O(n ).

k>3
The number of paths of odd length is bounded by the number of vertices of degree 1 which is
O(n201+o(1)).
This completes the proof of Lemma 3.

Acknowledgement I wish to express my sincere thanks to Boris Pittel. It would have been
entirely appropriate for him to be a co-author of the paper. For example, he proved Lemma 1
and we were originally going to publish this paper and the paper [12] as a single paper. It was
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A Proof of Lemma 12

For v = (v1,p,v1,0y U, Vo, m) let Z, = {(x,y) € ([n] U {x})*" with m pairs z;,y; # * etc..
Lemma 20. Each (x',y') € Z,, arises by a transition of KSGREEDY from the same number
D(v,v') of (x',y') € Z,.

Proof Case 1: v; > 0 and an R-vertex x of degree 1 is selected and its neighbour y is of
degree at least 2.

Let y be the C-neighbour of = in G« y and suppose y has k; ; neighbours of degree ¢ that are
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incident j < i times with y (multiple edges). Then

m’ = m-1- ijl’]
4,J

U1,c = Ui
7
Vi = Via—1l—kin+ E kii—1
i>2
o= 1
v, = ve—
!
Vp = Ugp— E kii_1— E ki
i>2 i>2

Given x',y’, our choices for x,y are determined as follows: Observe that always the number of
choices depends only on v,v'. Also let np = n — v} , — v, nc =n — v} o — v, be the number
of vertex labels missing from x’,y’. Each quantity below should be multiplied by the number of
choices of where to replace *’s by vertex labels.

e Choose z,y in nyne ways.

Choose the sequence k; ; such that the above equations hold.

Choose the labels for the ). k; ; new isolated R vertices in ( ks Tl“zz_i ) ways.

Choose the labels for the 3=, , k; ;1 vertices which become degree 1 in (,_ lvi'fz ) ways.

Now let

u= iji,j - Zkzz - Z kiii=m-—m'—1— Ziki,i — Z(l —Dkii1
,J

i>1 i>2 i>1 i>2

be the number of unaccounted for edges. These edges join y to vertices which remain of
degree at least 2. Assign labels to these edges in (v/,)* ways.
Case 2: v; > 0 and an R-vertex x of degree 1 is selected and its neighbour ¥ is of degree 1.
Here there are nzng times the number of choices of where to replace x’s by vertex labels.
Case 3: v1 =0

We add the parameters ¢; ; for the number of neighbours of z, other than y, which are of degree
1 and are incident j < ¢ times with z. We then have

4,J

!
Vie = E liioa

i>2
! f— ..
Ul,R - E kz,zfl
i>2
. b b
Ve = Vo — i,—1 — 1,8
i>2 i>2
!
vy = va— Y kiii1— Y ki
i>2 i>2

The number of choices for X,y can now be enumerated:
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e Choose z,y in npne ways.
e Choose the sequences k; ;, ¢; ; such that the above equations hold.

e Choose the labels for the . k; ; new isolated R vertices in ( Ky 71”22_; ) ways.

e Choose the labels for the ), ¢; ; new isolated C' vertices in (kl ’:Ck;i ) ways.

o Choose the labels for the Y-, kii—1 R vertices which become degree 1 in (kg):]l;:,;;,...)
ways.
e Choose the labels for the 2122 £; ;1 C vertices which become degree 1 in ( kz,:ji;:z,...) ways.

e Now let

H=m— m' —p— Z'Lkz,z - Z(Z - 1)ki,i—1 - Zz’&,i - Z(’L - 1)&"1'_1

i>2 i>2 i>2 i>2

be the number of unaccounted for edges. Let pu, = Zj<i72 jkij and pe = p— pg. Assign
labels to these edges in (v),)*#7 (v )*° ways. -

The rest of the proof of Lemma 12 is essentially identical to that of Lemma 3 of [1].

B Local Limit Theorem

Lemma 21. If ), Var(Y;) — oo and the c; are uniformly bounded, then

S _ 140(a*(vip1)™")
Pr (ZY; = ;U'+a/> = (271'Zi Var(Yi))1/2’

=1

if a%(v1p1)~! — 0. An analogous formula holds for Pr (Z] Z;=p+ a) .

Proof Let W =3, Y. As usual, we start with the inversion formula
1 " —iTe iy, Y
Pr(W=r1) = o | € E(e éi)dx
T

™

- —z-rzHE ng (120)

where 7 = p + a. Let

¥ =
! Zce+1 O(n1p1)

and consider first |z| > 21_5/ '2| Using an inequality (Pittel [17])
-R
[fe(2)| < fi(l2]) exp (—%) : (121)
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we estimate

1
2 |z|>275/12

1 s
p1(cosz—1)/(ce+1)
dr < o |m|>275/12 I I e dz

E (55)

e =03, (122)

IN

For |z| < 2;5/12, putting n = p1e'® and using Y-, p1f},(p1)/fer(P1) = 1, d/dz = ind/dn we

expand as a Taylor series around z = 0 to obtain

_m-:v—i-zlog (f” ¢ pl)) = —loz— %22 b (nf{%(i)?)

fee(pr)

=pP1
4ZD3("f{Zf )‘ | (123)

here 7j = p1€®, with & being between 0 and z, and D = n(d/dn). Now, the coefficients of

z?/2, z%/3! and z* are Var(W), O (Var(W)), O (Var(W)) respectively, and Var(W) is of order

%;. So the second and the third terms in (123) are o(1) uniformly for |z| < 21_5/12

= / + / + / : (124)
lo| <3, /12 1 J2 Js

1 o 2
/ - e tax Var(W)z“/2 dz
1 27 J\g|<n7®/12

1 241
= ———=+0 % , (125)
2 Var(W) 23/
/ _ ZDZ (plfcz(pl)) / 367Var(W)ac2/2 dz
2 f(p1) |o| <3y ®/12
= 0 21/ |z|3e=Var(W)a*/2 gy
|z|>%; /12

= O(e o=, (126)

(o > 0 is an absolute constant), and

/ - 0 21/ 4e—Var(W)z2/2dw
3 le|<2, /12

_ 0 (EL/) | (127)

Using (120)-(127), we arrive at

. Therefore

where

Pr(WzT)zmx [1+O(a2;1_1>].
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C Concentration of .

We need to prove the following result.

Let S be a set with |[S| = N. Let Q be the set of N! permutations of S. Let w be chosen
uniformly from 2.

Let Z = Z(w) be such that |Z(w) — Z(w')| < 1 when w’ is obtained from w by interchanging two
elements of the permutation.

Lemma 22. ,
Pr(|Z —EZ| >1t) <2 2/N,

Proof For a fixed sequence permutation (z1,Z2,...,2,) and 0 <i < N let
Zi(x1,22,..., ) =B(Z |w; = x;,1 < j <13).

Clearly the sequence Zy, Z1, ..., Zy is a martingale. To apply the Azuma -Hoeffding inequality,
we need to show that

|Zi(x1, 22y - . oy 25) — Zi(@1, T2, .. i1, 20)| < 1 (128)
for all i-tuples (z1,%a,...,2;) with distinct components, and z} # 1,...,7;—1. (Indeed, the
inequality (128) readily implies that |Z;11 — Z;| < 1.)

Consider
QG ={we: wj=2;1<j<i}
and
N ={we: wj=12;,1<j<i-1lw =z}

and the map f : Q; — Q) defined as follows. If w = z122...2;_1Z¥it+1 ...y~ and y; = z; then
fw)=z1Z2... T 1TiYiy1---Yj—1Z:Yjt1---Yn. Observe that f is a bijection and that

2 yiisyyn L) = Z(f(w)))
(N —i)!

| Zi(z1, 22, - ..y 23) = Zi(%1, T2, - ., 2)| = <1l
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