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LONG CYCLES IN SPARSE RANDOM GRAPHS

B. Bollobas, T. I. Fenner and A. M. Frieze

ABsTRACT It is proved that if ¢ is a sufficiently large constant then
almost every graph of order n and size 3cn contains a cycle of length
at least (1—c% )n.

This note is a continuation of [4]. As in [4], we shall study the maximal
length of a path or cycle of a random graph G,,. As is customary, we
write G, for a random element of the probability space 4(n, p(edge) = p)
of all graphs with a fixed set of n labelled vertices, in which the edges are
chosen independently and with probability p. Furthermore, we say that
almost every (a.e.) G, has a property Q if the probability that a graph
G € %(n, P(edge) =p) has Q tends to 1 as n — . For ¢ >0 set

1-B(c)=sup{B=0:a.e. G,, contains a cycle of length at least Bn}.

It was proved by Ajtai, Komlés and Szemerédi [1] and by de la Vega
[9] that a.e. G, contains long cycles and B(c)<c,/c for some absolute
constant ¢o. On the other hand, results of Erdds and Rényi [5] imply that
B(c)=(c+1)e™ . In [4] it was shown that B(c) decays exponentially:
B(c)<c**e . As a consequence of our main result we find that, in fact,
—log B(c)~c as ¢ — oo,

THEOREM  There is a polynomial P of degree at most 6 such that a.e. Gucn
contains a cycle of length at least (1—P(c)e °)n. In particular,

B(c)<P(c)e ™ .

Proor We shall show that if ¢ is sufficiently large then P(c) = ¢® will do.
Our proof is based on the method used by Fenner and Frieze [6] to solve
a related problem and on the model of random graphs with a fixed degree
sequence introduced by Bollobas [2]. In fact, the present proof is rather
close to the proof of the theorem, due to Bollobas [3] and Fenner and
Frieze [7], that if k is a sufficiently large constant then a.e. k-regular
graph is Hamiltonian. Because of this similarity we shall not give all the
details of the proof. We shall start with a lemma enabling us to locate an
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appropriate large subgraph of a.e. G,. Then we shall show that this
subgraph is Hamiltonian for a.e. G

As is customary, we take V={1,2,...,n}. Consider a graph Ge
4(n, P(edge) = ¢/n)) and define

={xeV:d(x)<6 or d(x)=4c}.
Suppose we have constructed a sequence of sets U, Uy, . .., U;. Set
Ui, ={xeV-U;:|I'x)N U,|=2}.

If Uj,,=, stop the sequence. Otherwise let x;, be the minimal
element of U}, and put U;,; = U; U{x;.,}. Suppose the sequence stops
with U,# V. Let H be the subgraph spanned by V—U; and write h for
the order of H. Then every vertex of H has degree at least 6 and at most
4c, since every vertex x € V— U, has degree at least 7 in G and is joined
to at most one vertex of Us.

Lemma 1 Let £ >0. If c is sufficiently large then a.e. G, is such that

(i) Any t<n/(6c®) vertices of G, span at most 3t/2 edges.
(ii) Any t=<n/3 vertices of G, span at most ct/5 edges.
(iti) n—h<c®e °n.
(iv) The set W={x: (1—g)c<du(x)<(1+¢€)c} has at least (1—c™*)h
elements, and spans at least (1—¢)ch/2 edges.
(v) H has at most (1+¢)ch/2 edges.

ProorF The proofs of all the assertions are rather straightforward so we
shall not give all the details. For t<n/c the expected number of t-sets of
vertices spanning at least 3¢/2 edges is at most
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assertion (i) follows. The proof of (ii) is similar.

t

2.0 <2) () (-5

/A

I

Il

Since



5. LONG CYCLES IN SPARSE RANDOM GRAPHS 61

To prove (iii) note first that the expectation of |U,| is
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provided that ¢ is sufficiently large. It is easily checked that the variance

of |Ug| is O(n), so by Chebyshev’s inequality |U,| < (c/500)en for a.e.

G- Now if this last inequality holds and the graph satisfies (i) then

n—h=c% °n does not hold since otherwise for some j we have |Uj| =

lc®e™°n] <n/6c> and this set U spans at least 2j=3|U;| edges. Hence
(iii) follows.

Assertion (iv) follows from the fact that if ¢ is sufficiently large and (iii)
holds, then the degree sequence of H is close to the degree sequence of
Gt dg(X)=d(X)—1 for every Xe V(H).

Assertion (v) is an immediate consequence of (iii). [J

Let us assume that the graph H= H(G,,) in Lemma 1 has vertex set
V(H)={1,2,..., h} and degree sequence 6<d,<d,<.. .<d, <4c. Let
# = #(G,,,) be the set of all graphs with vertex set {1,2,...,h} and
degree sequence (d;)f. Turn ¥ into a probability space by giving all
members of # the same probability. Note that all members of ¥ occur as
H = H(G,,) with the same probability. Hence a.e. G, is such that a.e.
element H of #(G,,) satisfies the conclusions of Lemma 1 with G
replaced by H in (i) and (ii).

Consider a graph G, which satisfies these conditions. In view of the
remarks above, our theorem will follow if we prove that for some & >0
and large enough ¢ almost every graph in ¥ is Hamiltonian.

The graphs in 3 are fairly close to being regular, so this assertion
resembles the theorem, proved in [3] and [7], that a.e. regular graph is
Hamiltonian. Hence it is no surprise that we can adapt the proofs in [3]
and [7] to the present case.

In order to study 9, we consider the model defined in [2]. Let
D, D,, ..., D, be disjoint sets with |D;|=d; and set

h h
D=UD, 2m:|Dl=Zdi-
1 1

A configuration C is a partition of D into m pairs, the edges of C. Let &
be the set of all N(m)=(2m —1)!'=(2m)!2"™/m! configurations. Turn &
into a probability space by giving all members of @ the same probability.
For Ce @ let ¢(C) be the graph with vertex set {1,2, ..., h} in which i is
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joined to j (i#]) if and only if C has an edge with one end-vertex in D,
and the other in D;. Then clearly ¥ < ¢(®P) and

l¢ ()| =]1d!

for every He .

Let Q be a property of the graphs in # and let Q* be a property of the
configurations in ®. Suppose that these properties are such that for He ¥4
and Ce ¢ '(H) the configuration C has Q* if and only if H has Q. All
we shall need from [3] is that in this case, if almost no C has Q*, then
almost no H has Q.

LEMMA 2 A.e. He ¥ is connected.

ProOF Let us say that He % has property Q if H is disconnected and
satisfies the conclusions of Lemma 1. Let Q* be such that C e @ has Q*
if and only if ¢(C)e ¥ and ¢(C) has Q. We shall show that almost no
Ce® has Q*.

Note that if Ce® has Q* then there is a set Uc{l,2,...,h},
1<u=|U|<h/2, such that C is the union of a partition of

X=U D
ieU

and a partition of Y=D—X. If X is odd, this cannot happen. Suppose
|X|=2x and |Y|=2y. Then 6u=<2x<4cu and 6(h—u)<2y=<dc(h—u).
The probability that C is the union of two such partitions is

(2x—1)!!(2y—1)!!<< 2x)! )”22(2(x+y))’”2$(6h>*”2‘

Rx+2y—-DI! \Q2(x+Yy))a 2x 6u

Hence the probability that C has Q* is at most

T ()E om0, o

w=1 \u/ \6bu

ReMark The simple proof above implies that if A is fixed and 6<d; =
d(n)<A4,i=1,2,...,n, then a.e. graph with vertex set {1,2,...,n}and
degree sequence (d;)7 is connected.

Let us continue the proof of the theorem. Put #,={H € ¥: H satisfies
the conclusions of Lemmas 1 and 2} and let Q be the property that
He ¥, and H is not Hamiltonian. Let Q* be such that Ce @ has Q* if
and only if ¢(C) has Q and let ®,={C: C has Q*}. To complete the
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proof of our theorem we shall show that almost no C has Q*. This will be
done by the colouring method introduced in [6] and used in [3]and [7].

Suppose that Ce ®,. Let Py be a longest path of H = ¢(C), say of
length I Since H is connected and not Hamiltonian, it does not contain a
cycle of length I Consider all red—blue colourings of the edges of C in
which there are exactly 3h red edges, the red edges join vertices of

E= U D,
ieW

and every edge mapped into an edge of Py is blue. Colour each element
of W with the colour of the edge incident with it. Denote by C® the
subconfiguration of C formed by the blue edges and denote by H® the
corresponding subgraph of H.

By making use of the properties guaranteed by Lemma 1, one can show
that there are many colourings of C for which B = H" is such that

lUUTs(U)=3 U

whenever U={1,2,..., h} and |U|<h/9. Combining this with the lemma
of Pésa [8], which is often used in the search for Hamilton cycles, one can
prove the following crucial lemma. The proof, which is an exact analogue of
the proofs in [3] and [7], is omitted.

LemMA 3 There is an absolute constant ¢, >0 such that ¢ D, has at least

1- 38)3h( m )

3h
colourings with the following properties. Set u = Leih]. There are distinct
red elements y,, y,, ..., y, and not necessarily distinct sets Y, Y,, ..., Y,

such that each Y; consists of red elements, |Y;| = u and the red edge incident
with y; does not join y;, to Y,. O

Now we are ready to complete the proof of the theorem. Let ¥, be the
collection of all coloured configurations such that the configuration be-
longs to @, and the colouring satisfies the conclusions of Lemma 3. Then

(Tol=I0 (-3¢ ), M

In order to show that |®|/|®| is small, we shall give a suitable upper
bound for |¥,|. Suppose that B,=C} for some C,e ¥,. At most how
many Ce ¥, satisfy C°=B,? When extending B, to a configuration
Ce ¥,, we have at most 6h — u choices for the red edge, incident with y,.
Hence we have at most (6h —u)™? choices for the first w = [1/2] edges
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incident with y,, y,,..., y,. The remaining 3h —w edges can be chosen in
at most N(3h —w) ways. Hence at most

(6h —u)*N(Bh —w)<N(3h)e S+

configurations Ce ¥, satisfy C°=B,, where ¢, is a positive absolute
constant.
As clearly

KCP: Cewy) sN(m)( 3";> / NGh),

we have

|| < {N(m) ( 3";) / N(3h)}N(3h)e‘C2h. @)

Inequalities (1) and (2) imply

@/ Ny <16l /{Nem) (1 1 307} o0,
provided that & is small enough. This completes our proof. [

With a little more work one can prove that a polynomial of degree 4
will do for P. However, as it is very likely that P can be chosen to be
linear, the additional complications are hardly worthwhile.
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