A Polynomial-time Algorithm for Learning Noisy Linear
Threshold Functions*

Avrim Blum! Alan Friezet Ravi Kannan$ Santosh Vempala¥

Abstract

In this paper we consider the problem of learning a linear threshold function (a half-
space in n dimensions, also called a “perceptron”). Methods for solving this problem
generally fall into two categories. In the absence of noise, this problem can be formu-
lated as a Linear Program and solved in polynomial time with the Ellipsoid Algorithm
or Interior Point methods. Alternatively, simple greedy algorithms such as the Per-
ceptron Algorithm are often used in practice and have certain provable noise-tolerance
properties; but, their running time depends on a separation parameter, which quantifies
the amount of “wiggle room” available for a solution, and can be exponential in the
description length of the input.

In this paper, we show how simple greedy methods can be used to find weak hy-
potheses (hypotheses that correctly classify noticeably more than half of the examples)
in polynomial time, without dependence on any separation parameter. Suitably combin-
ing these hypotheses results in a polynomial-time algorithm for learning linear thresh-
old functions in the PAC model in the presence of random classification noise. (Also,
a polynomial-time algorithm for learning linear threshold functions in the Statistical
Query model of Kearns.)

Our algorithm is based on a new method for removing outliers in data. Specifically,
for any set S of points in R™, each given to b bits of precision, we show that one can
remove only a small fraction of S so that in the remaining set 7', for every vector v,
maxzer(v-z)? < poly(n,b)Eqcr(v-z)?; ie., for any hyperplane through the origin, the
mazimum distance (squared) from a point in 7' to the plane is at most polynomially
larger than the average. After removing these outliers, we are able to show that a
modified version of the Perceptron Algorithm finds a weak hypothesis in polynomial
time, even in the presence of random classification noise.

1 Introduction

The problem of learning a linear threshold function is one of the oldest problems studied in
machine learning. Typically, this problem is solved by using simple greedy methods. For

*An earlier version of this paper appeared in the 37th Symp. on Foundations of Computer Science, 1996.

tSchool of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by
NSF National Young Investigator grant CCR-9357793, a Sloan Foundation Research Fellowship, and by
ARPA under grant F33615-93-1-1330. Email: avrim@cs.cmu.edu.

#Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213. Supported in
part by NSF grant CCR9225008. Email: afip@andrew.cmu.edu.

$School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by
NSF grant CCR9528973. Email: kannan+@cs.cmu.edu.

YSchool of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by
NSF National Young Investigator grant CCR-9357793. Email: svempala@cs.cmu.edu.

instance, one commonly-used greedy algorithm for this task is the Perceptron Algorithm
[Ros62, Agmb4], described below in Section 3. These algorithms have running times that
depend on the amount of “wiggle room” available to a solution. In particular, the Perceptron
Algorithm has the following guarantee [MP69]. Given a collection of data points in R", each
labeled as positive or negative, the algorithm will find a vector w such that w -z > 0 for all
positive points z and w - z < 0 for all negative points z, if such a vector exists.! Moreover,
the number of iterations made by the algorithm is at most 1/02 where o is a “separation
parameter” defined as the largest value such that for some vector w*, all positive z satisfy
cos(w*,z) > o, and all negative z satisfy cos(w*,z) < —o, where cos(a,b) = |(‘1’|'|',’)| is the
cosine of the angle between vectors a and b.

Unfortunately, it is possible for the separation parameter o to be exponentially small,
and for the algorithm to take exponential time, even if all the examples belong to {0,1}".
A classic setting in which this can occur is a data set labeled according to the function “if
x1 = 1 then positive else if 9 = 1 then negative else if 3 = 1 then positive, ...”. This
function has a linear threshold representation, but it requires exponentially large weights
and can cause the Perceptron Algorithm to take exponential time. (In practice, though,
the Perceptron Algorithm and its variants tend to do fairly well; e.g., see [AR88].)

Given this difficulty, one might propose instead to use a polynomial-time linear program-
ming algorithm to find the desired vector w. Each example provides one linear constraint
and one could simply apply an LP solver to solve them [Kha79, Kar84, MT89]. In practice,
however, this approach is less often used in machine learning applications. One of the main
reasons is that the data often is not consistent with any vector w and one’s goal is simply
to do as well as one can. And, even though finding a vector w that minimizes the number
of misclassified points is NP-hard, variants on the Perceptron Algorithm typically do well
in practice[Gal90, Ama94|. In fact, it is possible to provide guarantees for variations on the
Perceptron Algorithm in the presence of inconsistent data (e.g., see [Byl93, Byl94, Kea93]?),
under models in which the inconsistency is produced by a sufficiently “benign” process, such
as the random classification noise model discussed below.

In this paper, we present a version of the Perceptron Algorithm that maintains its
properties of noise-tolerance, while providing polynomial-time guarantees. Specifically, the
algorithm we present is guaranteed to provide a weak hypothesis (one that correctly classifies
noticeably more than half of the examples) in time polynomial in the description length of
the input and not dependent on any separation parameter. The output produced by the
algorithm can be thought of as a “thick hyperplane,” satisfying the following two properties:

1. Points outside of this thick hyperplane are classified with high accuracy (points inside
can be viewed as being classified as “I don’t know”).

2. At least a 1/poly fraction of the input distribution lies outside of this hyperplane.

This sort of hypothesis can be easily boosted in a natural way (by recursively running the
algorithm on the input distribution restricted to the “don’t know” region) to achieve a
hypothesis of arbitrarily low error.3 This yields the following theorem.

If a non-zero threshold is desired, this can be achieved by adding one extra dimension to the space.

2The word “polynomial” in the title of [Byl93] means polynomial in the inverse of the separation param-
eter, which as noted above can be exponential in n even when points are chosen from {0,1}".

3Thanks to Rob Schapire for pointing out that standard Boosting results [Sch90, Fre92] do not apply in the

Theorem 1 The class of linear threshold functions in R™ can be learned in polynomial
time in the PAC prediction model in the presence of random classification noise.

Remark: The learning algorithm can be made to fit the Statistical Query learning model
[Kea93].

The main idea of our result is as follows. First, we modify the standard Perceptron
Algorithm to produce an algorithm that succeeds in weak learning unless an overwhelming
fraction of the data points lie on or very near to some hyperplane through the origin.
Specifically, the algorithm succeeds unless there exists some “bad” vector w such that most
of the data points z satisfy | cos(w,z)| < § for some small § > 0. Thus, we are done if we
can somehow preprocess the data to ensure that no such bad vector w exists.

The second part of our result is a method for appropriately preprocessing the data.
One natural approach that almost works is to use the principal components of the data
set S to perform a linear transformation so that for every hyperplane through the origin,
the average squared distance of the examples to the hyperplane is 1. In other words, for
every unit vector w, we now have E,cs(w -)2 = 1. (This assumes that there are no
planes through the origin on which all the examples lie, but that case is easy to handle by
restricting to that plane and reducing n by 1.) Unfortunately, it is possible that this linear
transformation will not solve our problem because of the presence of a small number of
outliers. For instance, there may exist a unit vector w such that even though the average
value of (w-z)? is 1, almost all of the points z satisfy w-z = 0, and just a few outliers have
a very large dot product with w.

We solve this last problem by proving the following result. Given any set S of points in
n dimensional space, each requiring b bits of precision, one can remove only a small fraction
of those points and then guarantee that in the set 7' remaining, for every vector v,

max(z +v)? < poly(n,b)Becrl(z - v)?).
In this sense, the set remaining has no outliers with respect to any hyperplane through the
origin. In addition, we show that removing these outliers can be done in polynomial time.
After removing these outliers, we can then apply the linear transformation mentioned above
so that in the transformed space, for every unit vector v,

E.er[(z-v)?] =1 and ma%c(z -v)? < poly(n, b).
z€
Because the maximum is bounded, having the expectation equal to 1 means that for every
hyperplane through the origin, at least a 1/poly(n,b) fraction of the examples are at least a
1/poly(n,b) distance away, which then allows us to guarantee that the modified Perceptron
Algorithm will be a weak learner.

context of random classification noise. (It is an open question whether arbitrary weak-learning algorithms can
be boosted in the random classification noise model.) Thus, we use the fact that the hypothesis produced by
the algorithm can be viewed as a high-accuracy hypothesis over a known, non-negligible portion of the input
distribution. Alternatively, Aslam and Decatur [AD93] have shown that Statistical Query (SQ) algorithms
can, in fact, be boosted in the presence of noise. Since our algorithm can be made to fit the SQ framework
(see Section 4.1), we could also apply their results to achieve strong learning.

1.1 The structure of this paper

We will begin by formally stating the Outlier Removal Lemma, whose proof is deferred
to a later section. We then consider the problem of learning a linear threshold function
in the case of zero noise and describe how the Perceptron Algorithm can be modified and
combined with the procedure from the Outlier Removal Lemma to produce a polynomial
time PAC-learning algorithm. Finally, we describe how the algorithm can be adjusted to
the noisy case using known techniques [Byl94, Kea93, AD94].

1.2 Notation, definitions, and preliminaries

In this paper, we consider the problem of learning linear threshold functions in the PAC
model in the presence of random classification noise [KV94]. The problem can be stated as
follows.

We are given access to examples (points) drawn from some distribution D over R™.
Each example is labeled as positive or negative. The labels on examples are determined by
some unknown target function w* -z > 0 (i.e., z is positive if w* - z > 0 and is negative
otherwise) but each label is then flipped independently with some fixed probability n < 1/2
before it is presented to the algorithm. 7 is called the noise rate. We assume that all
points are given to some b bits of precision. More precisely, we define I, = {p/q : |p|,|q| €
{0,1,2,...,2° — 1},q # 0}, and assume that D is restricted to I (i.e., Iy x - -+ X I).

A hypothesis is a polynomial-time computable function. The error of a hypothesis h with
respect to the target function is the probability that h disagrees with the target function on
a random example drawn from D. Thus, if h has error €, then the probability for a random
z that h(z) disagrees with the noisy label observed is (1 —n)e+ n(1 —€) = n+ €(1 — 27).

Our goal is an algorithm that for any (unknown) distribution D, any (unknown) target
concept w* - z > 0, any (unknown) 1 < 1/2, and any inputs €,§ > 0, with probability at
least 1 — & produces a hypothesis whose error with respect to the target function is at most
€. The algorithm may request a number of examples polynomial in n,b,1/e, log(%), and
ﬁ, and should run in time polynomial in these parameters as well.

The algorithms we describe are most easily viewed as working with a fixed sample of
data. We can apply the algorithms to the PAC setting by running them on a sufficiently
large sample of data drawn according to the above model, and then applying standard
VC-dimension arguments to the result [VCT71].

For most of this paper, we will consider the above problem for the case of zero noise (n =
0), which we extend to the general case in Section 4. The reason for considering the n = 0
case first is that we will be modifying algorithms that have already been proven tolerant to
random classification noise (e.g., [Byl94]), and the key issue is getting the polynomial time
guarantee. The extension to n # 0 is a bit messy, but follows well-trodden ground.

2 The Outlier Removal Lemma

Our main lemma, needed for our algorithm and analysis, states that given any set of data
points in [', one can remove a small portion and guarantee that the remainder contains no
outliers in a certain well-defined sense.

Lemma 1 (Outlier Removal Lemma) For any set S C I} and any € > 0, there exists
a subset S' C S such that:

(i) |S'| > (1—e—2"™)|S|, and
(ii) for every vector w € R™, max,cg (w - z)? < BB g [(w - z)?],

where 3 = O(n"b/e). Moreover, such a set S' can be computed in polynomial time.

It turns out that the algorithm for computing the set S’ of Lemma 1 is quite simple and in
fact shares many characteristics with the high-level description given earlier in Section 1 of
how the Lemma is used. The algorithm is as follows:

First, we may assume that the matrix X of points in S has rank n; otherwise we simply
drop to the subspace spanned. Next we perform a linear transformation so that in the
transformed space, for every unit vector w, E;cs[(w - 2)?] = 1. This transformation is just
left-multiplication by A~! (so the new set of points is A~'X) where A? is the symmetric
factorization of X X7 that can be determined by an eigenvalue/eigenvector computation.
Next we remove all points € S such that |z|? > 3/144n. If S now satisfies the condition
of the theorem we stop. Otherwise, we repeat.

The difficult issue is proving that this algorithm will in fact halt before removing too
many points from S. The proof of this fact is deferred to Section 5.

3 The Perceptron Algorithm

The Perceptron Algorithm[Ros62, Agmb4] operates on a set S of labeled data points in n
dimensional space. Its goal is to find a vector w such that w -z > 0 for all positive points x
and w-x < 0 for all negative points z. We will say that such a vector w correctly classifies all
points in S. If a non-zero threshold value is desired, this can be handled by simply creating
an extra (n + 1)st coordinate and giving all examples a value of 1 in that coordinate.

For convenience, define £(x) (the label of z) to be 1 if z is positive and —1 if z is negative.
So, our goal is to find a vector w such that ¢(z)(w - z) > 0 for all z € S. Also, for a point
z let & = z/|z|. Le., & is the vector z normalized to have length 1.

3.1 The standard algorithm

The standard algorithm proceeds as follows. We begin with w = 0. We then perform the
following operation until all examples are correctly classified:

Pick some arbitrary misclassified example z € S and let w + w + £(z)Z.

A classic theorem (see [MP69]) describes the convergence properties of this algorithm.

Theorem 2 [MP69] Suppose the data set S can be correctly classified by some unit vector

w*. Then, the Perceptron Algorithm converges in at most 1/02 iterations, where o =

Minges|w* - &).

Proof. Consider the cosine of the angle between the current vector w and the unit vector
w* given in the theorem. That is, “’|T“’|* In each step of the algorithm, the numerator of this
fraction increases by at least o because (w+£4(z)Z) - w* = w-w* +4(z)E-w* > w-w*+o0. On
the other hand, the square of the denominator increases by at most 1 because |w+£(z)z|? =
|lw|?2 + 2¢(z)(w -) + 1 < |w|?> + 1 (since = was misclassified, this means the crossterm is
negative). Therefore, after ¢ iterations, w - w* > to and |w| < v/t. Notice that the former
cannot be larger than the latter. Thus, ¢t < 1/02. O

3.2 A modified version

We now describe a modified version of the Perceptron Algorithm that will be needed for our
construction. Recall our notation that cos(a, b) is the cosine of the angle between vectors a
and b, or equivalently ﬁ.

The reason we need to modify the algorithm is this: In the standard algorithm, if some
of the points are far from the target plane (in the sense that cos(w*,z) is large) and some
are near, then eventually the hypothesis will correctly classify the far away points but may
make mistakes on the nearby ones. This is simply because the points far from w* -z = 0
cause the algorithm to make substantial progress but the others do not. Unfortunately, we
cannot test for points being far or near to the target plane. So, we cannot produce the
rule: “if | cos(w*, z)| is large then predict based on z - w, else say ‘I don’t know’.” What we
want instead is an algorithm that does well on points that are far from the hypothesis plane,
because | cos(w, z)| is something that the algorithm can calculate. If we then can guarantee
that a reasonable fraction of points will have this property, we will have our desired weak
hypothesis (just replacing w* by w in the above rule).

Specifically, our modified algorithm takes as input a quantity o and its goal is to produce
a vector w such that every misclassified € S should satisfy | cos(w, z)| < o. The algorithm
proceeds as follows.

The Modified Perceptron Algorithm
1. Begin with w as a random unit vector.
2. If every misclassified € S satisfies | cos(w,z)| < o (i.e., if |w - &| < o|w|) then halt.

3. Otherwise, pick the misclassified z € S maximizing | cos(w, z)| and update w using:

_H>

w <+ w— (w-z)

In other words, we add to w the appropriate multiple of z so that w is now orthogonal
to z, i.e., we add the multiple of z that shrinks w as much as possible.

4. If we have made fewer than (1/02)Inn updates then go back to Step 2. Otherwise,
go back to Step 1 (begin anew with a new random unit starting vector).

Theorem 3 If the data set S is linearly separable, then with probability 1 — § the modified
perceptron algorithm halts after O((1/0?)In(n)In(})) iterations, and produces a vector w
such that every misclassified x € S satisfies | cos(w,z)| < 0.

Proof. Let w* be a unit vector that correctly classifies all z € S. Suppose it is the case
that the initial (random unit) vector w satisfies w - w* > 1/4/n. Notice that in each update
made in Step (3), w - w* does not decrease because

(w—(w-2)2) w'=w-w—(w-&)(w-) >w- - w*
where the last inequality holds because w misclassifies z. On the other hand, |w|? does
decrease significantly because (this is just the Pythagorean Theorem)

(- (w-2)2) = |l —2(w-2)’ + (w-2)?
< @ -o?).

Thus, after ¢ iterations, |w| < (1 — 02)%/2. Since |w| cannot be less than w - w*, this means
that the number of iterations ¢ satisfies (1 — 02)/2 > 1//n, which implies ¢ < (Inn)/o?.

Each time we choose a random initial unit vector for w, there is at least a constant > 0
probability that w satisfies our desired condition that w - w* > 1/4/n. Thus, the theorem
follows. =

We have described the algorithm as one that runs in ezpected polynomial time. Alter-
natively we could stop the algorithm after a suitable number of iterations and have a high
probability of success. In Section 4 we will alter this algorithm slightly to make it tolerant
to random classification noise.

3.3 Combining the Perceptron Algorithm with the removal of outliers

The Modified Perceptron Algorithm can be combined with the Outlier Removal Lemma in
a natural way. Given a data set S, we use the Lemma to produce a set S’ with |S'| > 1|9|
and such that for all vectors w, maxg/(w - z)? < BEg/[(w -)?] where 3 is polynomial in n
and b.

We then reduce dimensionality if necessary to get rid of any vectors w for which the
above quantity is zero. That is, we project onto the subspace L spanned by the eigenvectors
of the X X7 matrix having non-zero eigenvalue (X is the matrix of points in S’). Now, we
perform the linear transformation A~! described in Section 2 so that in the transformed
space, for all unit vectors w, Eg/[(w - x)?] = 1. Our guarantee for set S’ implies that in the
transformed space, maxg: |z|2 < Bn. Thus, for any unit vector w,

(w-z)?

||
Eg[(w-2)?]
maxg |z|2

> 1/(Bn).

This implies that in the transformed space, at least a 1/(203n) fraction of the points in S’
satisfy cos(w,z)? > 1/(26n). We can now run the Modified Perceptron Algorithm with
o = 1/4/208n, and guarantee that at the end, at least a 1/(203n) fraction of the points in S’
satisfy | cos(w,z)| > o.

Eg/[cos(w,z)?] = Eg

The final hypothesis of the algorithm, in the original untransformed space, is: if x ¢ L
or |cos(w, A~1z)| < o then guess the label randomly (or say “I don’t know”), and otherwise
predict according to the hypothesis w’ A~12 > 0.

3.4 Achieving Strong (PAC) Learning

The algorithm presented above splits the input space into a classification region
{z:z e L and |cos(w, A 'z)| > o}

and a don’t-know region
{z:z &L or |cos(w,A 'z)| < o}.

By standard VC-dimension arguments [VC71], if the sample S is drawn from distribution
D, then for any €, > 0, if S is sufficiently (polynomially) large, then with high probability
(> 1 —4), the true error of the hypothesis inside the classification region is less than e.
Furthermore, the weight under D of the classification region is at least 1/poly(n, b); that is,
the fraction of S that lies in the classification region is representative of the weight of this
region under D. Therefore, we can boost the accuracy of the learning algorithm by simply
running it recursively on the distribution D restricted to the don’t-know region. The final
hypothesis produced by this procedure is a decision list of the form: “if the example lies in
the classification region of hypothesis 1, then predict using hypothesis 1, else if the example
lies in the classification region of hypothesis 2, then predict using hypothesis 2, and so on”.

4 Learning with Noise

We now describe how the Modified Perceptron Algorithm can be converted to one that is
robust to random classification noise. We present two ways of doing this. The first is to
recast the algorithm in the Statistical Query (SQ) model of Kearns [Kea93| as extended
by Aslam and Decatur [AD94], and to use the fact that any SQ algorithm can be made
tolerant of random classification noise. The second is a direct argument along the lines of
Bylander [Byl94], who describes how the standard Perceptron Algorithm can be modified
to work in this noise model.

We begin with some observations needed for both approaches. For convenience, in the
discussion below we will normalize the examples to all have length 1, so that we need not
distinguish between z and Z. Recall that £(z) = 1 if z is a positive example and £(z) = —1
if x is a negative example.

The first observation is that the only properties of the point x selected in Step 3 of the
Modified Perceptron Algorithm that are actually used in the analysis of Theorem 3 are:

cos(w,z)l(z) < —o, and (1)

cos(w*,z)l(z) > 0. (2)
The second observation is that, in fact, we only need points that approrimately achieve
these two properties. In particular, suppose that every point x we use in Step 3 satisfies
the relaxed conditions:

VAN

—0/2, and 3)
2

cos(w, z)£(z)

cos(w*, z)l(z) > m 4)

The first condition guarantees that after t = (8lnn)/o? iterations we have |w| < (1 —
(0/2)?)%/? < 1/n. The second guarantees that if initially w-w* > in, then after ¢ iterations

w-w* > ﬁ — mﬁgﬁ > ﬁ Therefore, we are guaranteed to halt before ¢ iterations have

been made.
The final observation is that any positive multiple of

pw,s = Eg[l(z)z : cos(w, z)l(z) < —0o]

will satisfy conditions (1) and (2), assuming zero noise so that every x € S satisfies (2), and
if we define ¢(u,,s) = 1. Furthermore, any point sufficiently near to p,, s will satisfy the
relaxed conditions (3) and (4). Specifically, the definition of p,, g, the fact that all examples
have length 1, and condition (1) together imply that |p. | > o. So, any point fi, s such
that |fiy s — pw,s| < 03/(164/nlnn) satisfies conditions (3) and (4).

4.1 Learning with Noise via Statistical queries
Let f be a function from labeled examples to [0,1]. That is, in our setting,
f:R*x{-1,1} — [0,1].

A statistical query is a request for the expected value of f over examples drawn from distri-
bution D and labeled according to the target concept c; i.e., a request for Eycp[f(z, c(z))].
Assuming that f is polynomial-time computable, it is clear that given access to non-noisy
data, this expectation can be estimated to any desired accuracy 7 with any desired confi-
dence 1 —§ in time poly(%, log(%)), by simply calculating the expectation over a sufficiently
large sample. Kearns [Kea93] and Aslam and Decatur [AD94] prove that one can similarly
perform such an estimation even in the presence of random classification noise.* Specifically,
for any noise rate n < 1/2 and any accuracy (or tolerance) parameter 7, the desired expecta-
tion can be estimated with confidence 1 —§ in time (and sample size) poly(L,log(3), ﬁ)
Thus, to prove an algorithm tolerant to random classification noise, it suffices to show that
its use of labeled examples can be recast as requests for approximate expectations of this

form.

The Modified Perceptron Algorithm uses labeled examples in two places. The first
is in Step 2 where we ask if there are any points z € S such that cos(w,z){(z) < —o,
and we halt if there are none. We can replace this with a statistical query requesting
the probability that a random labeled example from D satisfies this property (formally, a
request for E,cp[f(z, c(z))] where f(z,f) =1 if cos(w, z)¢ < —o and f(z,£) = 0 otherwise)
and halting if this probability is sufficiently small. Specifically, we can set 7 = %e/ (20n)
and halt if the result of the query is at most %e /(26n), where 1/(20n) is a lower bound on
Pryep(| cos(w, z)| > o) from the Outlier Removal Lemma.

The second place that labeled examples are used is in Step 3. As noted in the discussion
following equations (3) and (4), it suffices for this step to use a good approximation to
Mw,s instead of using any specific labeled example. We can find such an approximation
via statistical queries. Specifically, to approximate the ith coordinate of u., s, we ask
for Ezepll(z)z;| cos(w,z)l(xz) < —o]. This conditional expectation can be approximated

4Kearns [Kea93] considers queries with range {0,1}. Aslam and Decatur [AD94] extends these arguments
(among other things) to queries with range [0, 1], which is more convenient for our purposes.

from statistical queries since we are guaranteed from Step 2 that Pr(cos(w, z)¢(z) < —o)
is reasonably large. Finally, we combine the approximations for each coordinate into an
approximation fi,, s of fi, s.

Note that examples are also used in the algorithm for the Outlier Removal Lemma.
However, since this algorithm ignores the labels, it is unaffected by random classification
noise.

4.2 A direct analysis

We now describe a direct method for making the algorithm noise tolerant, along the lines of
Bylander [Byl94]. First, for simplicity, we will reflect negative examples through the origin,
and view every example as having a positive label. Thus we can ignore the “/(z)” term in
equations (1)—(4) and in the definition of j,, s at the beginning of this section.

We now consider the addition of random noise. Let S denote the original set of non-
noisy examples (which our algorithm does not get to see) and let S7 denote the set in which
each z € S independently at random has been reflected through the origin with probability
7. l.e., S7 is the noisy data seen by the algorithm. For simplicity, let us assume that 75
is known to the algorithm; we will see how to remove this assumption at the end of the
section.

For a given vector w, define

S or ={z € 8" : cos(w,z) < —o}
and
8P wrect = {x € S : cos(w,z) > o}

For convenience, for any set S’ define Sum[S'] = > .o z. We claim that a quantity that
suffices for performing the update of Step 3 is now simply

Sum[s;,:’orrect] . (5)

Lyupdate = Sum[sgrror] + 1 4

To see why this is a good vector, define Scorrect = {z € S : cos(w,z) > o} and Serror =
{z € S : cos(w,z) < —o}. Let us now, for the purpose of exposition, make the assumption:

A: The vectors w produced by the algorithm are independent of the noise. (This
is clearly erroneous and it will be removed shortly.)

Then, with respect to the random choice of noisy examples, we have: (noting that the noise
does not change | cos(w, z)|)

E[Sum[Sgrror]] = (1 - n)Sum[Serrcrr] — nSum[Seorrect]

and
E[Sum[Sg,, el = (1 — 1m)Sum[Scorrect] — nSum|[Serror]-
Therefore, the expected value of the vector zp4qte used for updating is simply
E[mupdate] = (]- /e 772/(1 - n))Sum[Serror]
1-2
_ (- n”) Sum(Serror], (6)

10

which is a multiple of the desired vector p,, s.

We now show that given a sufficiently large sample, with high probability either (Case

1) the calculated value of Z,p4aze is small implying that the current hypothesis is a good

classifier, or else (Case 2) the value of z,pqqte calculated is sufficiently close to its expectation

to satisfy conditions (3) and (4). In what follows, we use “with high probability” to mean
[{P%}]

with probability at least 1 — n~° where “c” can be increased by adjusting the base of the
logarithms to appropriate constants.

We are going to assume that

10*n2(lnn)? (1 —n)?
" lSCOMECt U Sermr| = Mo = 62(0'6) ((1 - 27777))2

where € < 1/2. jFrom Lemma 1 this amounts to assuming that |S| is at least 28mgn. Also,
since each example is of length 1, it is easy to see that

Claim 1 With high probability, |Typdate — E[Zupdate]| < v/mlogn.

We now consider the two cases mentioned above.

Case 1: Suppose
1

-2
|$update| < (?77) meo — \/ﬁlogn.

In this case, we have with high probability that [Sum[Serror]| < meo using equation (6).
But, by definition, each point € Sepror is @ unit vector satisfying — cos(z,w) > o, and so
|Sum[Serror]| > |Serror|- Therefore, |Serror| < me and we have achieved the goal of having
a good classifier on Scorrect U Serror-

Case 2: Suppose

1-2
1 TI) meo — v/mlogn.
-n

In this case, we know that with high probability,

|~'L'update| > (

w* - Lupdate w* - E[mupdate] . \/mlogn
|$update | B |$update | |$update |
S = vmlogn
N |xupdate|

which implies (4). To verify (3) we use

1-2
E(w : "Eupdate) = (1— T?) w - Sum[Sermr]
1-2
< - (1 T’) |Serror|0|w|
-n
< —ofw|/2,
since with high probability
[Servorl > 52—
error| — 2(1 _ 277) -

Therefore the conditions of the Algorithm are satisfied and we have Theorem 1.

11

We now deal with Assumption A. The simplest idea is to use a new independent set
of samples for each iteration. This new set is clearly independent of the current vector w
which depends only on previous samples. Assumption A is satisfied at the expense of many
more samples than are actually needed.

Alternatively, we know that (6) holds for every fized w and we will argue that with high
probability Claim 1 is true simultaneously for every w. For example consider

|Sum[Sgr7‘or] - ((1 - U)Sum[serwr] - nsum[scorrect])|
< | Y i@ - =nlel+| Y [0-(z) —nlal, (M)

wr—o w-r>+o

where 6, (z) + 0_(z) = 1 and 0, (z) = 1 if z is not corrupted and 0 otherwise. For a fixed
w, the sums are unlikely to be very large. Indeed, assuming |w| = 1,

Pr(| Y [6:(2) — (1 —n)la| > Vmnlogn) < e os™)”,

w-r<—0o

Furthermore, in showing all such sums are small with high probability, we need only consider
the < (li |) = ¢0(nlogn) half spaces which contain n points of S. Thus the deviation allowed
in Claim 1 needs to be increased to y/mnlogn. This has already been allowed for in the
definition of my.

The above discussion assumes that 7 is known to the algorithm. If 5 is not known,
one standard fix is to simply run the algorithm multiple times, each time with a different
guessed value in {0,1/|S|,2/|S|,.-.,1/2}. However, in our case there is also a less time-
consuming fix. Notice that as we increase our guess for 7 towards 1/2, the multiple of
Sum(Serror] appearing in E[z,p4qte] decreases (but remains positive) and the multiple of
Sum|[Scorrect] increases (and becomes positive once we exceed the true value). In other
words, our performance with respect to criteria (3) drops but our performance with respect
to (4) improves. But, we can always check if (3) is satisfied. Thus, we may simply choose
as large a guess of 7 as possible that still satisfies (3).

5 Proof of Lemma 1

For a set S C R™ (S need not be finite) and a distribution y on R", let
W,(S)={we R": E,[(w'z)? |z e 8] <1}.

We will drop the subscript © (on both W and on the expectation E) when the distribution
is clear from context. The key to our proof is the following lemma.

Lemma 2 Let u be a measure on R™ which is not concentrated on a subspace of dimension
less than n (i.e. the total measure on any subspace of dimension less than n is less than 1).
Then, for any 0 < a < 1/3n, B = 36n3/a and n sufficiently large, there exists an ellipsoid
S C R" such that

(a) Pr(z ¢ S) <a.
(b) Either

12

(i) for allw € R™, max{(wTz)?: z € S} < BE((wTz)? |z € S), or
(ii) vol(W(S)) > 2vol(W (R™)).

Proof. Let

M = E(zz')
A2

where A is symmetric, and non-singular by assumption. Then
E((w'z)?) = w" Mw
for all w € R™. Now let

E = {zeR": (v z)? <w’ Mw,Yw € R"}
= {zeR": ((Aw)T(4712))? < |Aw|®,Yw € R"}
= {zecR":|A | <1}

Note that this shows that E is an ellipsoid. Putting z = A~ 'z we see that for any v > 0,

Pr(z ¢vE) = Pr(|z] >9)
> _Pr(lz| > v/vn)

=1

IN

n

ny > E(z3),

j=1

IN

by the Chebychef inequality.
But,

E(zz") = E(A'zzTA™)
=1
and so
Pr(z ¢ 1E) < n?/+%.

We now take v = n/a'/2, S = yE and we see that (a) of the lemma is satisfied.

We now consider two possibilities:
Case (i)

E((w'z)? |z € §) > v*E((w"2)*)/8

for all w € R".

In this case

VE((wz)?)
BE((wTz)? |z € 9).

max{(wlz)?: z€8) <
<

13

Case (ii) There exists w € R™ such that
E((@"2)’ | z € §) < vE((@"2)?)/B. (8)

Let
M; = E(z2T |z € 9).

We complete the lemma by showing that

vol(T1) > 2vol(T), 9)
where
T = W(R")
= {weR": w'Mw<1}
and

n = W(S)
= {weR": w'Mw<1}

It will be convenient to show that
vol(ATy) > 2vol(AT), (10)

which is equivalent to (9) because the linear transformation A multiplies volumes by |det(A)|.
Note next that by substituting v = Aw we see that

AT = {veR": v'A'MA v <1}
= {veR": vTv<1}
= B,,

where B,, is the unit ball in R™.

Furthermore,
E((wfz)?|ze 8) < (1-a) E(wlz)?)

which follows from E((wTz)?) > E((wTz)? | z € S)Pr(z € S). So,
ATy, = {veR": vTA'M;A W <1}
D {veR": vTA'MA W< 1-qa}

Also, AT contains a vector of length A = /2 /~. Indeed, let
Aw
0= A .
T ad
Then, from (8),
dTATIMIAT Y = ’\—2lewT
|Aw|?
)\2 ,),2
< Lo MoT
= Jaep g

14

Since AT} contains an n — 1 dimensional ball around the origin and a point at a distance
of 1 — o from the center of the ball, from the convexity of AT it follows then that ATy
contains a cone with base an (n — 1)-dimensional ball of radius 1 — & and height A.

Thus if V,, denotes the volume of B,, we see that

vol(ATh) S AVp_1(1—)™t

vol(AT) — nVy
S A1 —)™t
- 2y/n
> 2.

O

We now specialize the above result to the case where u is concentrated on Ij'. Let
Lo={z €I: p(z) >2 3%} So, u(Lo) > 1— |[P|273° >1 -2 "

Let po denote the measure induced on Lo by p i.e. po(z) = p(x)/u(Lo) for z € Ly.
We consider applying the construction of Lemma 2, K times starting with pg. In general
we would expect to construct a sequence of ellipsoids S; This assumes Case (bii) always
occurs. Let p; denote the measure induced on S1NS2N---NS; by po. It is possible that yu;
is concentrated on a subspace V; of lower dimension. If so, we simply work within V; from
then on. This cannot happen more than n times.

Suppose that Case (bi) never occurs. Then there exists a subspace Vi of dimension v
and ellipsoids S1, S2,...,Sk such that if Tk = LN S NSy N---N Sk N Vg then

(a) dim(Tk) = v.
(b) po(Tk) >1—aK.
(c) vol, (W(Tk)) > 2K/,
where in (c),
W(Tk) = {w € Vg : E((wlz)? |z e Tx) < 1}.

Part (c) takes into account the doubling of volume K times, and restarting each time
we move to a lower dimensional subspace (at most n times).

The above is not possible for sufficiently large K as we will now show. By assumption,
Tk contains v linearly independent vectors v1,v2,...,v, € Ij'. But then

v

E((w'z)’ |z € Tk) > g(wTvi)QuK(vi)

2—3nb Z(wT'Ui)2-
i=1

v

So if w € W(Tk) then

v

Z('wT'ui)2 < 2%t (12)
=1

Let B denote the n X n matrix Y% ; v;v] so that

wl Bw = i(wTviF. (13)
i=1

15

Let B have eigenvalues 0 = A\ = Ao = --- = A\, < A= An—vt1 £ Ap_pg2 < -o- Ay Let

a1,a2,...,a, be a corresponding orthonormal basis of eigenvectors. Now if w = > 7 ; u;a;
then |w|? = ¥ ; u? and wT Bw = 3" ; \;u? and so
T
w" Bw _ <
> X whenever w” Bw > 0. (14)
wlw

But if w € Vi then wTBw > 0 since wTv; # 0 for at least one i and we can apply (13).
But A # 0 is a root of a polynomial of degree at most n — 1 with rational coefficients c;/3;
where |a;], |3;] < n!2"’. By a simple computation, this implies that A > (n!27?)72" and so
(12), (13 and (14) imply that if w € W(Tk) then

|w|2 < 23nb22n2b(n!)2n < 23n2b

(for b > logn) and so
vol, (W (Tk)) < (287°0)"/2.

This is a contradiction for K > Ky = %n4b. We deduce then that

Theorem 4 For any 0 < a < 1/3n and 8 = 36n®/a and p concentrated on I?, there exist
k < Ky ellipsoids S; such that if S = ﬂle S;

(i) p(S) >1—ka—27".
(ii) max{(wTz)?: z € S} < BE((wTz)? |z € S), for all w € R".

The previous discussion has been existential in nature and we now show how to make it
constructive. This is relatively easy for a finite set of m points (i.e p is concentrated on the
m points). Now if we apply the above theorem to p then all of the ellipsoids and subspaces
are computable in polynomial time.

One way to view the algorithm is the following. We wish to find a set of points with the
property that in any direction w, the maximum squared value of the projection of points
in that direction is not much more than the average. If initially there is a direction where
this is not true, we apply a transformation to the points (A_lm, above) that results in their
inertial ellipsoid becoming the unit ball. Then we drop all points outside a multiple 7 of
this ellipsoid and repeat on the smaller set of points (with their original coordinates). This
cannot go on forever since we assume that the points are represented by bounded rationals
and an associated ellipsoid is doubling in volume at each iteration.

Note that we can make the method constructive for the infinite case as well by picking
a sample of points and applying VC-dimension arguments.

6 Open Problems

We list here two open problems related to the topic of this paper. The first is whether it
is possible to achieve PAC-learning of linear threshold functions in the presence of random
classification noise, using a hypothesis that itself is a linear threshold function (as opposed
to a decision list of linear threshold functions as in this paper). In the context of linear
programming, one could state this question as follows: suppose one has a feasible set of

16

linear inequalities Az > 0, but then 10% of the rows of A are negated at random to produce
the matrix A that is actually presented to the algorithm. Is there an algorithm than with
reasonable probability produces a solution z that satisfies nearly 90% of the constraints of
A? (At least for sufficiently (polynomially) many constraints.)

A second open question is whether weak-learning is possible in the presence of adversarial
noise. For instance, given a set of examples that are nearly (90%) linearly separable, can
one find a linear threshold function that correctly classifies at least a 1/2 + 1/poly(n, b)
fraction? More generally, one could present this question in somewhat cryptographic terms:
given access to (example, label) pairs drawn from a distribution D, where D satisfies the
property than there is some linear threshold function that agrees with D over 90% of the
labelings, can one in polynomial time be able to predict the label given to a new example
drawn from D with probability at least 1/2 4+ 1/poly(n,b)? Known reductions show that a
positive answer to this question would imply an nPolvlog(n)_time algorithm for learning DNF
formulas, and more generally, AC? circuits, over arbitrary distributions [ABFR91].

References

[ABFRY1] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting
polynomials. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, pages 402-409, May 1991.

[AD93] J. A. Aslam and S. E. Decatur. General bounds on statistical query learning
and PAC learning with noise via hypothesis boosting. In Proceedings of the
34th Annual Symposium on Foundations of Computer Science, pages 282291,
November 1993.

[AD94] J. A. Aslam and S. E. Decatur. Improved noise-tolerant learning and generalized
statistical queries. Technical Report TR-17-94, Harvard University, July 1994.

[Agm54] S. Agmon. The relaxation method for linear inequalities. Canadian Journal of
Mathematics, 6(3):382-392, 1954.

[Ama94] E. Amaldi. From finding mazimum feasible subsystems of linear systems to feed-
forward neural network design. PhD thesis, Swiss Federal Institute of Technology
at Lausanne (EPFL), October 1994. (Ph.D. dissertation No. 1282, Department
of Mathematics).

[AR88] J. A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of
Research. MIT Press, 1988.

[Byl93] T. Bylander. Polynomial learnability of linear threshold approximations. In
Proceedings of the Sizth Annual Workshop on Computational Learning Theory,
pages 297-302. ACM Press, New York, NY, 1993.

[Byl94] T. Bylander. Learning linear threshold functions in the presence of classifica-
tion noise. In Proceedings of the Seventh Annual Workshop on Computational
Learning Theory, pages 340-347. ACM Press, New York, NY, 1994.

17

[Fre92]

[Gal90]

[Kar84]

[Kea93]

[Kha79]

[KV94]

[MP69)

[MT89]

[Ros62]

[Sch90]

VCT]

Y. Freund. An improved boosting algorithm and its implications on learning
complexity. In Proceedings of the Fifth Annual ACM Workshop on Computa-
tional Learning Theory, pages 391-398. ACM Press, 1992.

S. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural
Networks, 1(2):179-191, 1990.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4(4):373-395, 1984.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceed-
ings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pages 392-401, 1993.

L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math-
ematics Doklady, 20:191-194, 1979.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Ge-
ometry. The MIT Press, 1969.

W. Maass and G. Turdn. On the complexity of learning from counterexamples.
In Proceedings of the Thirtieth Annual Symposium on Foundations of Computer
Science, pages 262—-267, October 1989.

F. Rosenblatt. Principles of Neurodynamics. Spartan Books, 1962.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197—
927, 1990.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities. Theory of Probability and its
applications, XVI1(2):264-280, 1971.

18

