
The height of random k-trees and related branching
processes

Colin Cooper∗ Alan Frieze† Ryuhei Uehara ‡

May 16, 2014

Abstract

We consider the height of random k-trees and k-Apollonian networks. These random
graphs are not really trees, but instead have a tree-like structure. The height will be
the maximum distance of a vertex from the root. We show that w.h.p. the height
of random k-trees and k-Apollonian networks is asymptotic to c log t, where t is the
number of vertices, and c = c(k) is given as the solution to a transcendental equation.
The equations are slightly different for the two types of process. In the limit as k →∞
the height of both processes is asymptotic to log t/(k log 2).

1 Introduction

We give a general method for obtaining the height of tree-like random processes, and illustrate
the method by application to random k-trees and Apollonian networks.

The processes that we consider generate a sequence of graphs G(t), t ≥ 0 where G(t) is
obtained from G(t− 1) by the addition of an extra vertex in some way. The initial structure
is a k-clique with a distinguished vertex v, which we use as the root vertex. Of course, G(t)
is not necessarily a tree but it is convenient to adopt the terminology.

The height of a vertex u in G(t) is its graph distance d(v, u) from the root vertex v. The height
h(G(t)) of G(t) is the maximum height of one of its vertices. By considering the breadth first

∗Department of Informatics, King’s College, University of London, London WC2R 2LS, UK. Supported in
part by EPSRC grant EP/J006300/1
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, USA. Supported

in part by NSF grant CCF0502793.
‡School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

1

search tree Tv rooted at v we can partition the vertices u ∈ V into sets Li, i = 0, 1, ..., hv based
on the distance i = d(v, u) from the root vertex v. We refer to sets Li as the level sets of the
BFS tree. The height of Gk(t) is thus the height of Tv in the usual sense.

The general properties of random k-trees have been investigated by several authors including
[4], [10], [17]. In particular, in an earlier study into the small world properties of random
k-trees, Cooper and Uehara [4] found experimentally that the diameter of such trees was a
rapidly decreasing function of k. The main result of this paper, given in Theorem 1, is that
the diameter Dk(t) of a random t vertex k-tree satisfies

lim
t→∞
k→∞

k

log t
Dk(t) =

2

log 2
.

The height of branching processes: Related work. The work in this area is so extensive
it is impossible to summarize concisely. As our interest lies in the area of discrete random
structures we must necessarily restrict our discussion to those authors who have had a direct
influence on us, and on the techniques we use in this paper. Foremost among these are
the works of Broutin and Devroye [3], Devroye [5, 6, 7], Kingman [15] and Pittel [18]. The
formulation in these papers differs from the discrete context in which a new vertex is added at
each step t, but the end product is the same. The basic model is a continuous time reproductive
process in which the reproductive rate λ(j) of the parent depends on the number of offspring j.
Each child independently reproduces according to the same process. Such processes are known
as a Crump-Mode-Jagers process (see Devroye [7]). The paper of Kingman [15] concerns the
time BN of the first birth in the N -th generation of an age dependent reproductive process of
Crump-Mode type, with a proof that BN/N → c as N → ∞. To determine the constant c,
the work uses the Cramér function of the process, which (crudely) is an optimization of the
logarithm of the moment generating function of the distribution of reproduction waiting times.
A full description of Cramér functions can be found in [3]. Pittel [18] applied Kingman’s result
to a branching process in which the number of children born to a parent within T steps is
negative exponential with linear population dependent rate λ(j) = aj + 1 for some a ≥ 0.
This serves as a model of random recursive trees where a vertex chooses its parent v with
probability proportional to ad(v) + 1, where d(v) is the out-degree of v in the orientation of
the tree away from the root. The cases of random and preferential attachment trees follow
from setting a = 0, and a = 1 respectively. The general solution being that the height hn of
an n vertex tree satisfies hn ∼ c log n, where c = 1/((a + 1)γ) and γ is the positive root of
aγ + log γ + 1 = 0. (We use An ∼ Bn to denote An = (1 + o(1))Bn as n→∞). In a sequence
of papers, Devroye and Broutin and Devroye, develop a general approach in which the central
structure is an infinite tree with branching factor b and a pair of independent random variables
(Z,E) on the edges. The random variable Z measures increments in weighted height, and E
measures the delay between birth of the parent and birth of the child. Typically E would
be negative exponential rate 1. The height of a vertex u is the sum of the Z entries on the
path from the vertex u to the root v. If hT is the maximum height of the subtree at time T ,
then hT/T → c, where c is the maximum along a particular curve of an identity based on the

2

Cramér functions of Z and E, thus extending the original proof of Kingman [15]. A complete
explanation of the technique, and a wide range of supporting examples are given in [3]. In
general, for branchings based on the minimum of exponential waiting times with varying rate
parameter, the time T and population size n(T) are related by T = Θ(log n). The need to
obtain the explicit constant somewhat complicates the discussion.

The height of random k-trees. In the area of graph algorithms, k-trees form a well known
graph class that generalize trees and play an important role in the study of graph minors (see
[1, 2] for further details). One definition (among many) of k-trees is the following:

For any fixed positive integer k ≥ 2, (i) A complete graph Kk of k vertices is a k-tree, (ii) For
a k-tree G of t vertices, a new k-tree G′ of t + 1 vertices is obtained by adding a new vertex
v incident to a clique of size k − 1 in G. When k = 2, this process forms a tree, by extending
a chosen vertex. When k = 3, the process forms a tree of triangles by extending the chosen
edge, and so on.

The preferential attachment method for generating random tree processes extends the graph
by attaching a new vertex to an existing vertex chosen with probability proportional to its
degree. This is equivalent to choosing to attach to a random end point of a random edge, i.e.
a random K1 of a random K2. The k-tree process described below generalizes this approach,
in that we attach the new vertex to a random (k − 1)-clique of a random k-clique.

A random k-tree Gk(t), t ≥ k, is obtained as follows. Start with Gk(1), a k-clique C1 with
a distinguished vertex v1. For t > 1, we obtain Gk(t) from Gk(t − 1) by adding a vertex vt
and a set of k − 1 edges from vt to Gk(t − 1) chosen in the following way. Pick a k-clique C
of Gk(t − 1) uniformly at random (uar), and choose a (k − 1)-dimensional face F of C uar.
Extend F to a k-clique Ct by the addition of edges from vt to the vertices of F . Let the vertex
set of C be {u1, ..., uk}. As {vt, u1, ..., uk} induces no k-cliques except C and Ct, the number
of k-cliques in Gk(t) is t. We are interested in the height of Gk(t) above the distinguished
vertex v1, i.e. the maximum graph distance from v1 to any vertex of Gk(t).

A random 2-tree G2(t) is obtained by joining vt to a random end point of a random edge;
i.e. by preferential attachment. Thus the height of random 2-trees is given by the result of
Pittel [18] discussed above. In the case of a random tree on t vertices generated by preferential
attachment Pittel [18] established the w.h.p. result that the height h(t) of the tree is asymptotic
to h(t) ∼ c log t where c = 1/(2γ) and γ is the smallest positive solution to 1 + γ + log γ = 0.
We include this result in our general statement as a special case. It follows naturally as a
special case of our method and serves to check correctness of the base case.

Theorem 1. For k ≥ 2 let h(t; k) be the height of a random k-tree on t vertices. Then w.h.p.
h(t; k) ∼ c log t where c is given as follows:

3

Case k = 2 [18], c is the solution of

1

2c
exp

{
1 +

1

2c

}
= 1.

Case k ≥ 3 constant, c is the solution of

1

c
=

k−2∑
`=0

k

`+ ak
,

where the value of a is given by

Γ(k)Γ(ka)

Γ(ka+ k − 1)
exp

(
k−2∑
`=0

ka+ k − 1

`+ ak

)
= 1,

and Γ(`) is the gamma function.

Case k →∞
c ∼ 1

k log 2
.

In the above theorem, and in Theorem 2 we assume that k is constant or tends slowly to
infinity with t. The bound on k used in the proofs is k = o(log1/3 t), but we do not attach
any special significance to this value.

The table below compares asymptotic value of height (rounded up to the next integer) and
results found by experiment for k-trees on t = 227 vertices.

Value of k 2 3 4 5 6 8 10 12 15 20
Height: Experimental result 16 10 8 7 5 4 4 3 3 3

Height: dlog t/(k log 2)e 14 9 7 6 5 4 3 3 2 2

See Figure 1 in the appendix for a plot of the results obtained as a function of t, and Figure
2 for the fit to dlog t/(k log 2)e.

The height of random k-Apollonian networks. An Apollonian network is the gener-
alization of an Apollonian triangulation, which can be described as follows. Initially there is
single triangle embedded in the plane. At the first step this triangle ABC is divided into three
by insertion of a point D in the interior of the triangular face and adding lines DA,DB,DC.
The triangles ABD,ACD,BCD replace the original triangle ABC in the embedded triangu-
lation of the plane. At each subsequent step some triangular face is subdivided in the same
manner.

4

A random k–Apollonian network Ak(t), t ≥ 0, is obtained as follows. Start with Ak(0) a
k-clique C0 = Kk with vertex set {c1, ..., ck} embedded in k − 1 dimensions. For t > 0, make
Ak(t) from Ak(t − 1) by adding a vertex vt, and edges chosen as follows. Pick a k-clique C
of Ak(t − 1) uar. Let the vertex set of C be U = {u1, ..., uk}. Insert vt in the interior of C
and join vt to ui, i = 1, ..., k by an edge uivt, i = 1, ..., k. This replaces C by k new embedded
cliques with vertices U + vt − ui, i = 1, ..., k. (We will use the notation U + v − w to mean
(U ∪ {w}) \ {v}.) The number of embedded k-cliques in Ak(t) is (k − 1)t+ 1.

Theorem 2. For k ≥ 3 let h(t; k) be the height of a random k–Apollonian network on t
vertices. Then w.h.p. h(t; k) ∼ c log t where c is given as follows:

Case k ≥ 3 constant c is the solution of

1

c
=

k−1∑
`=0

k − 1

`+ a(k − 1)
, (1)

where the value of a is given by

k!

(a(k − 1)) · · · ((a+ 1)(k − 1))
exp

(
k−1∑
`=0

(k − 1)(a+ 1)− 1

`+ a(k − 1)

)
= 1. (2)

Case k →∞
c ∼ 1

k log 2
.

Recently, and independently of this work results for random Apollonian networks were ob-
tained by Ebrahimzadeh et al [9] and Kolossváry [16]. The work of [9] adapted the results
of Broutin and Devroye [3] to derive the height of random Apollonian triangulations. The
value of c = 0.8342... they obtained is the solution to (1), (2) with k = 3 and corresponds
to a value of a = 2.0683. The work of [16] uses a different approach based on codes com-
bined with general techniques for Markov processes. In an earlier work, Frieze and Tsourakis
[13] bounded the height of random Apollonian triangulations from above by the height of a
random 3-branching, using a result of [3].

General method The technique we describe is simple, bypasses the classic continuous time
branching process results, (no prior knowledge needed) and works well for the complicated
multi-type branching processes involved in k-trees, Apollonian networks etc. The main re-
quirement is that the quantities Wi(t) we estimate can be expressed as recurrences of the
form

Wi(t+ 1) = Wi(t) +
1

t

∑
j≤i

αijWj(t).

By partitioning the steps t = 0, 1, 2... into small intervals, lower and upper bound approxi-
mations for Wi(t) are obtained which can then be expressed via rational generating functions
from which the coefficients can be extracted.

5

2 The height of random k-trees

2.1 Proof outline of the main theorems

In the construction of Gk(t) we add a new vertex vt at each step and extend this vertex to a
unique k-clique. The number of of k-cliques in Gk(t) is thus equal to the number of vertices t.

We use the parameters ω = ω(t), s, and m given by

ω = (1 + o(1)) log2/3 t, s =
⌈
t1/ω
⌉

= o(t), m =
log t/s

log
(
1 + 1

ω

) , (3)

where the (1 + o(1)) term is chosen to make m integer. The proof in Section 3 assumes
k = o(

√
ω), but our choice of ω is somewhat arbitrary anyway. The purpose of the parameter

ω is to interpolate the interval s, s+ 1, ..., t at steps sj = s(1 + 1/ω)j, j = 0, ...,m.

We will prove Theorem 1 in the following way:

1. Let the height h(Gk(t)) be denoted by h(t). We break our analysis of h(t) into two
parts.

Let C be a fixed k-clique added at some step 1, ..., s. If we consider only those k-cliques
added at steps s+1, ..., t, then some (possibly empty) subset of these form a k-tree GC(t)
rooted at C, i.e. at the lowest labeled vertex of C. This k-tree GC(t) is a subgraph
of Gk(t). Note that if C,C ′ are distinct k-cliques added at steps 1, ..., s the subgraphs
GC(t) and GC′(t) have no k-cliques in common.

Let the k-cliques added at steps i = 1, ..., s be indexed Ci : i = 1, ..., s. The main
problem is to obtain an asymptotic estimate for the maximum height of the subtrees
GCi

(t), i = 1, .., s. Let
hs(t) = max

Ci,i=1,...,s
{h(GCi

(t))} . (4)

Informally, hs(t) is the height of Gk(t) if we regard the first s of the k-cliques as rooted
at level zero. The fact that C may be an ancestor of C ′ in Gk(s) is not relevant to our
estimate of hs(t).

Let h0(s) be the height h(s) of Gk(s) rooted at v1. The height h(t) of Gk(t) is bounded
by

hs(t) ≤ h(t) ≤ h0(s) + hs(t). (5)

2. In our description of the BFS tree Tv rooted at a distinguished vertex v. Let N = 0, 1, ...
denote the levels of Tv. For every k-clique C in Gk(t), there is a level N , such that the
vertices of C lie only in levels N and N + 1 of Tv (see Section 2.2). We use the notation
[N, (`, k − `)] to refer to those cliques with ` vertices in level N of the BFS tree Tv and
k − ` vertices in level N + 1.

6

3. Let WN,`(t) be the expected number of [N, (`, k−`)] configured cliques at step t rooted at
any of the first s cliques. In Section 2.2 we obtain a recurrence forWN,`(t). In Sections 2.3
and 2.4 we obtain generating functions for lower and upper bounds WL

N,`(t) ≤ WN,`(t) ≤
WU
N,`(t).

4. Let WN(t) = WN,2(t) be the expected number of [N, (2, k−2)] configured cliques at step
t rooted at any of the first s cliques. The height of these cliques above Gk(s) is N + 1.
As the height depends on N but not `, the value ` = 2 was chosen for convenience in
the proof.

5. In Section 3 we see how to extract the coefficients of the generating functions for
WL
N(t),WU

N (t).

6. Let N = c log(t/s), and let N ′ = (1− ε)N , N ′′ = (1 + ε)N for some ε→ 0. In Sections
3.1 and 3.2 we find a value of N such that WU

N ′′(t)→ 0 but WL
N ′(t)→∞. Thus w.h.p.

hs(t) < N ′′.

7. In Section 4 we prove that the height of a random k-tree at step t is at least N ′ w.h.p.

8. Let h0(s) be the height of Gk(s) rooted at v1. We argued above that

hs(t) ≤ h(t) ≤ h0(s) + hs(t).

In Lemma 4 we prove that h0(s) = O(log s) w.h.p., thus for s as given in (3), log s =
(log t)/ω. We have established that w.h.p. hs(t) ∼ N = c log(t/s), and thus

c log t ≤ h(t) ≤ c log t+O((log t)/ω).

As we assume that k2 = O(ω), and from our proof c = O(1/k), it follows that Gk(t) has
height h(t) ∼ c log t, w.h.p.

2.2 Recurrence for tree height

We will describe the structure of Gk(t) in terms of the levels of vertices within each clique
relative to the root vertex v1. The following example using k = 3 is instructive of our labeling
method. In G3(3) the initial clique C3 = K3 has v1 at level i = 0 of the BFS tree and v2, v3

at level i + 1 = 1. The index of the lowest level of C3 is i = 0 and C3 is oriented (1, 2) in
that one vertex (v1) is at level i and two vertices (v2, v3) are at level i + 1. We will say that
C3 is configured [0, (1, 2)]. Extending a face of C3 gives rise to three possibilities. If face v1v2

or v1v3 is chosen, we obtain another [0, (1, 2)] configured clique C. If face v2v3 is chosen we
obtain a [1, (2, 1)] configured clique {v2, v3, v4} between levels i = 1 and i+ 1 = 2.

We recall the inductive definition of a random k-tree. A random k-tree Gk(t), t ≥ k, is
obtained as follows. Start with Gk(1) a k-clique C1 with a distinguished vertex v1, i.e. with

7

vertices v1, x2, ..., xk, say. At subsequent steps t > 1, we obtain Gk(t) from Gk(t − 1) by
adding a k-clique Ct with distinguished vertex vt and a set of k− 1 edges from vt to Gk(t− 1)
chosen as follows. Pick a k-clique C of Gk(t − 1) uniformly at random. Let the vertex
set of C be {u1, ..., uk}. Choose a (k − 1)-dimensional face F of C uar. Suppose, for the
purposes of description that the vertices of F are {u1, ..., uk−1}. Extend F to a k-clique
Ct = {vt, u1, ..., uk−1} by the addition of edges from vt to the vertices of F . As {vt, u1, ..., uk}
induces no k-cliques except C and Ct, the number of k-cliques in Gk(t) is t, and the number
of vertices is t + k − 1. The precise k-cliques which have been added to form Gk(t) can be
found by choosing the k-clique containing the vertex with the highest label vt, and deleting
this vertex recursively.

In general we use the notation clique to refer to a k-clique which has been added according
to our recursive process, and face to refer to a clique of dimension k − 1. We regard Gk(t) as
rooted a vertex v1. We are interested in the height of Gk(t) rooted at v1. The level sets of
the vertices of the breadth first search tree rooted at v1 form a convenient descriptive device.
Inductively the vertices of each k-clique C lie in two adjacent levels i and i + 1 of this BFS
tree. The notation [i, (`, k − `)] describes a k-clique C with ` vertices at level i and k − `
vertices at level i+1 relative to the BFS tree rooted at v1. In this case we say C is [i, (`, k−`)]
configured. In this notation, the initial clique C1 containing the foot vertex v1 is [0, (1, k− 1)]
configured.

Given that C is [i, (`, k − `)] configured, the number and type of possible extensions of faces
F of C to a new k-clique C ′ are obtained as follows. An extension of C = {u1, ..., uk}
consists of deleting a vertex uj (to obtain a face F) and then inserting a vertex v to form
C ′ = {u1, ..., uj−1, v, uj+1, ..., uk}. If the deleted uj is chosen among the k − ` vertices at level
i + 1 then C ′ is configured [i, (`, k − `)]. If uj is chosen among the ` vertices at level i, then
provided ` > 1, C ′ is configured [i, (` − 1, k − ` + 1). In the case that ` = 1, so that C is
configured [i, (1, k−1)] then deleting u1 results in a clique C ′ configured [i+ 1, (k−1, 1)] with
k − 1 vertices at level i+ 1 and one vertex at level i+ 2.

Our first step is as follows. We first obtain bounds for hs(t) as defined in (4). Referring to
(5) we will argue later that, for suitable choice of s, we have h0(s) = o(hs(t)), and hence
h(t) ∼ hs(t).

We will modify the notation [i, (`, k − `)] to deal with our calculation of hs(t). Recall that
hs(t) is the height of Gk(t) if we regard the first s of the k-cliques as rooted at level zero.
Let C ′ be a clique that was added at steps s + 1, ..., t. Then C ′ is a descendant of one of
the cliques added at the first s steps, i.e. C? ∈ {C1, ..., Cs}. In this case we say that C ′ is
relatively configured [i, (`, k − `)] if C ′ is i levels higher than the level of C? in Gk(t).

Let Wi,`(t) be the expected number of [i, (`, k − `)] relatively configured cliques in Gk(t). By
assumption, at step s, W0,1(s) = s. We have the following recurrences.

W0,1(s) = s, W0,`(t) = 0, ` ≥ 2, t ≥ s. (6)

8

Case i = 0: [0, (1, k − 1)] relatively configured cliques.

W0,1(t+ 1) = W0,1(t) +
k − 1

k

W0,1(t)

t
. (7)

Case ` = k − 1, i ≥ 1: [i, (k − 1, 1)] relatively configured cliques.

Wi,k−1(t+ 1) = Wi,k−1(t) +
1

k

Wi,k−1(t)

t
+

1

k

Wi−1,1(t)

t
. (8)

Case ` 6= k − 1, i ≥ 1: [i, (`, k − `)] relatively configured cliques .

Wi,`(t+ 1) = Wi,`(t) +
k − `
k

Wi,`(t)

t
+
`+ 1

k

Wi,`+1(t)

t
. (9)

The recurrences (7)-(9) can be explained in the following way. To be specific, consider (9),
and t > s. Let W i,`(t) be a random variable giving the number of [i, (`, k − `)] relatively
configured cliques in Gk(t). Then

E(W i,`(t+ 1) |W i,`(t),W i,`+1(t)) = W i,`(t) +
k − `
k

W i,`(t)

t
+
`+ 1

k

W i,`+1(t)

t
.

The term (k−`)/k is the probability to pick a face F with k−`−1 vertices at level i+1, from
a [i, (`, k − `)] relatively configured clique. Similarly, the term (` + 1)/k is the probability to
pick a face F with ` vertices at level i from a [i, (`+ 1, k− `− 1)] relatively configured clique.
Taking expectations again gives (9).

2.3 Lower bound for Wi,`(t): Generating Function

As all of the Wi,`(t) are monotone non-decreasing in t, replacing t by t′ ≤ t in (6)-(9) gives
a lower bound for the expected number of [i, (`, k − `)] relatively configured cliques at step
t + 1. Recall from (3) that s =

⌈
t1/ω
⌉
. For j ≥ 0 we will break the steps s, s + 1, ..., t into

intervals Ij = [sj, sj+1 − 1] where s0 = s and sj =
⌈
sλj0
⌉
. Here λ0 = 1 + 1/ω where ω is given

by (3). For fixed t we choose λ0 to ensure sm = sλm0 = t, so that

m =
log t/s

log λ0

.

We can assume that ω is chosen so that m is an integer.

We now describe a sub-process which gives lower bounds WL ≤ W . Basically, to do this,
for τ ∈ Ij we replace Wi,`(τ) by WL

i,`(sj), so that only vertices which choose cliques from the
lower bound sub-process added before sj count towards the growth of the sub-process. Thus

9

during Ij the equations corresponding to (6)-(9) for the sub-process can be replaced by the
following.

WL
0,1(sj+1) = WL

0,1(sj) +
k − 1

k
WL

0,1(sj)

sj+1−1∑
τ=sj

1

τ
(10)

WL
i,k−1(sj+1) = WL

i,k−1(sj) +

(
1

k
WL
i,k−1(sj) +

1

k
WL
i−1,1(sj)

) sj+1−1∑
τ=sj

1

τ
(11)

WL
i,`(sj+1) = WL

i,`(sj) +

(
k − `
k

WL
i,`(sj) +

`+ 1

k
WL
i,`+1(sj)

) sj+1−1∑
τ=sj

1

τ
. (12)

If f(x) is monotone decreasing

f(a+ 1) + · · ·+ f(b) ≤
∫ b

a

f(x)dx ≤ f(a) + · · ·+ f(b− 1).

Thus
sj+1−1∑
τ=sj

1

τ
− 1

sj
≤
∫ sj+1

sj

dx

x
≤

sj+1−1∑
τ=sj

1

τ
.

As sj =
⌈
sλj0
⌉

it follows that

sj+1−1∑
τ=sj

1

τ
=
θ1

sj
+ log

⌈
sλj+1

0

⌉⌈
sλj0
⌉ (13)

= log λ0(1 + δj), (14)

where 0 ≤ θ1 ≤ 1 and |δj| ≤ 2/sj provided s→∞.

Substitute (13)–(14) for the summation in (10)–(12). Let δ′ = maxj |δj|, thus δ′ = o(1/ω) (see
(3)). Let

λ1 = λ0(1− δ′) = λ0(1− o(1/ω)). (15)

Replace λ0 with λ1 = λ0(1− δ′) to obtain a uniform lower bound on the recurrences for all j,
and re-scale by dividing by s to obtain simplified recurrences WL

i,`(j) ≤ Wi,`(sj)/s. We obtain

WL
0,1(0) =1, (16)

WL
0,`(0) = 0 ` ≥ 2, (17)

WL
0,1(j + 1) = WL

0,1(j)

(
1 +

k − 1

k
log λ1

)
, (18)

WL
i,k−1(j + 1) = WL

i,k−1(j)

(
1 +

1

k
log λ1

)
+WL

i−1,1(j)
1

k
log λ1, i ≥ 1, (19)

WL
i,`(j + 1) = WL

i,`(j)

(
1 +

k − `
k

log λ1

)
+WL

i,`+1(j)
`+ 1

k
log λ1, i ≥ 1, ` 6= k − 1. (20)

10

Let GL
i,`(z) be the generating function for WL

i,`(j), j ≥ 0, and let γ` = 1 + ((k − `)/k) log λ1.
It follows from (16), (18) that

GL
0,1(z) =

1

1− γ1z
.

From (17), (19), (20), we obtain

GL
i,k−1(z) = γk−1z G

L
i,k−1(z) +

(
1

k
log λ1

)
z GL

i−1,1(z),

GL
i,`(z) = γ`z G

L
i,`(z) +

(
`+ 1

k
log λ1

)
z GL

i,`+1(z), i ≥ 1, ` 6= k − 1.

Thus

GL
i,k−1(z) =

1

k

z log λ1

1− γk−1z
GL
i−1,1(z), i ≥ 1, (21)

GL
i,`(z) =

`+ 1

k

z log λ1

1− γ`z
GL
i,`+1(z) i ≥ 1, ` 6= k − 1.

It follows inductively that

GL
i,1(z) =

(
zk−1k!(log λ1)k−1

kk(1− γ1z) · · · (1− γk−1z)

)i
1

1− γ1z
, (22)

and for ` = 2, ..., k − 2

GL
i,`(z) =

1

k

k−1∏
j=`

j + 1

1− γjz

(
z log λ1

k

)k−`
GL
i−1,1(z). (23)

2.4 Upper bound for Wi,`(t): Generating Function

For simplicity of notation, put α` = (k − `)/k and β` = (` + 1)/k. Then iterating the main
variable backwards in recurrences (7) – (9), and recalling that Wi,`(t) is non-decreasing in t

11

gives

W0,1(t+ σ) = W0,1(t)
σ−1∏
j=0

(
1 +

α1

t+ j

)

Wi,k−1(t+ σ) = Wi,k−1(t)
σ−1∏
j=0

(
1 +

αk−1

t+ j

)
+ αk−1

σ−1∑
j=0

Wi−1,1(t+ j)

t+ j

σ−1∏
i=j+1

(
1 +

αk−1

t+ i

)

≤ Wi,k−1(t)
σ−1∏
j=0

(
1 +

αk−1

t+ j

)
+ αk−1

σ−1∑
j=0

Wi−1,1(t+ σ)

t+ j

σ−1∏
i=j+1

(
1 +

αk−1

t+ i

)

Wi,`(t+ σ) = Wi,`(t)
σ−1∏
j=0

(
1 +

α`
t+ j

)
+ β`

σ−1∑
j=0

Wi,`+1(t+ j)

t+ j

σ−1∏
i=j+1

(
1 +

α`
t+ i

)

≤ Wi,`(t)
σ−1∏
j=0

(
1 +

α`
t+ j

)
+ β`

σ−1∑
j=0

Wi,`+1(t+ σ)

t+ j

σ−1∏
i=j+1

(
1 +

α`
t+ i

)
Let t = sj, let t+ σ = sj+1 and let Wi,`(j) = Wi,`(sj)/s for all i, j, `. Thus

W0,1(j + 1) = W0,1(j)

sj+1−1∏
t=sj

(
1 +

α1

t

)
≤
(

1+O(1
s)
)
λα1

0 W0,1(j)

≤
(

1 +
k − 1

k
log λ′

)
W0,1(j).

For λ0 = 1 + 1/ω the value of λ′ = 1 + 1/ω + O(1/ω2). To see this, for a < 1 the function
f(x) = xa− (1+a log x) has a unique minimum at x = 1, with f(1) = f ′(1) = 0, so the Taylor
expansion of f(1 + h) = O(h2).

Similarly

Wi,k−1(j + 1) ≤ Wi,k−1(j)

sj+1−1∏
t=sj

(
1 +

αk−1

t

)
+ αk−1Wi−1,1(j + 1)

sj+1−1∑
t=sj

1

t

sj+1−1∏
τ=t+1

(
1 +

αk−1

τ

)
≤
(

1+O(1
s)
) (
Wi,k−1(j)λ

αk−1

0 +Wi−1,1(j + 1)(λ
αk−1

0 − 1)
)

≤ Wi,k−1(j)

(
1 +

1

k
log λ′

)
+Wi−1,1(j + 1)

1

k
log λ′,

12

and

Wi,`(j + 1) ≤ Wi,`(j)

sj+1−1∏
t=sj

(
1 +

α`
t

)
+ β`Wi,`+1(j + 1)

sj+1−1∑
t=sj

1

t

sj+1−1∏
τ=t+1

(
1 +

α`
τ

)
≤
(

1+O(1
s)
)(

W (j)λα`
0 +

β`
α`
Wi,`+1(j + 1)(λα`

0 − 1)

)
≤ Wi,`(j)(1 + α` log λ′) + β`Wi,`+1(j + 1) log λ′.

We thus obtain the following recurrences for an upper bound WU
i,`(j) ≥ Wi,`(sj)/s.

WU
0,1(0) =1,

WU
0,`(0) = 0 ` ≥ 2,

WU
0,1(j + 1) =

(
1 +

k − 1

k
log λ′

)
WU

0,1(j).

WU
i,k−1(j + 1) = WU

i,k−1(j)

(
1 +

1

k
log λ′

)
+WU

i−1,1(j + 1)
1

k
log λ′, i ≥ 1,

WU
i,`(j + 1) = WU

i,`(j)

(
1 +

k − `
k

log λ′
)

+
`+ 1

k
WU
i,`+1(j + 1)log λ′, i ≥ 1, ` 6= k − 1.

Let GU
i,`(z) be the generating function for WU

i,`(j), j ≥ 0, and let γ′` = 1 + ((k − `)/k) log λ′.
It follows that

GU
0,1(z) =

1

1− γ′1z
,

and generally, we obtain

GU
i,k−1(z) = γ′k−1z G

U
i,k−1(z) +

(
1

k
log λ′

)
GU
i−1,1(z),

GU
i,`(z) = γ′`z G

U
i,`(z) +

(
`+ 1

k
log λ′

)
GU
i,`+1(z), i ≥ 1, ` 6= k − 1.

Thus

GU
i,k−1(z) =

1

k

log λ′

1− γ′k−1z
GU
i−1,1(z), i ≥ 1, (24)

GU
i,`(z) =

`+ 1

k

log λ′

1− γ′`z
GU
i,`+1(z) i ≥ 1, ` 6= k − 1.

It follows inductively that

GU
i,1(z) =

(
k!(log λ′1)k−1

kk(1− γ′1z) · · · (1− γ′k−1z)

)i
1

1− γ′1z
, (25)

13

and for ` = 2, ..., k − 2

GU
i,`(z) =

1

k

k−1∏
j=`

j + 1

1− γ′jz

(
log λ′1
k

)k−`
GU
i−1,1(z). (26)

The expressions (24), (25), (26) differ from (21), (22), (23) in that λ′ replaces λ and multi-
plicative powers of z are suppressed. It will be seen in Section 3 that the WL and WU are
sufficiently close to obtain tight bounds on the the expected occupancy of each level.

3 Random k-trees: Asymptotic expression for maxi-

mum height

We now show how to extract the coefficients of our generating functions. For reasons of
symmetry of the generating function it is easier for us to focus on WX

N,2(t) for X = L,U and
suitable N → ∞. Choosing ` = 2 will suffice. The height of the rooted k-tree depends on
the index N of the maximum level set, and not on ` = 1, ..., k. As the case k = 2 is already
known from [18], we assume k ≥ 3.

3.1 Extraction of coefficients for a lower bound on the expected
size of level sets

We first discuss the case for GL(z) = GL
N,2(z), where from (22) and (23)

GL(z) =
k

2z log λ1

(
zk−1k!(log λ1)k−1

kk(1− γ1z) · · · (1− γk−1z)

)N
.

Using [zm]G(z) to denote the coefficient of zm in the formal expansion of G(z), let wL(m) =
WL
N,2(m) = [zm]GL(z). To extract these coefficients, let M = m−N(k − 1)− 1, so that

[zm]GL(z) =
k

2 log λ1

(
(log λ1)k−1k!/kk

)N
[zM](f(z))N , (27)

where

f(z) =
1

(1− γ1z) · · · (1− γk−1z)
. (28)

We want the smallest N such that [zm]GL(z) → 0, i.e. WL
N,2(t) → 0. It will be simpler for

our analysis if we can assume that such an N satisfies N = c log t, where c = Θ(1/k). By

14

inspection, as γ` > 1, the coefficients of (f(z))N are at least as large as the coefficients of
1/(1− z)N(k−1). Recall that m = (log t/s)/ log λ0. Thus

[zm]GL(z) ≥ k

2 log λ1

(
(log λ1)k−1k!/kk

)N (N(k − 1)− 1 +M

M

)
≥ k

2 log λ1

(
(log λ1)k−1k!/kk

)N mN(k−1)−1

(N(k − 1))!

= Θ

(
1

log t

)(
k

N

)1/2(
log(t/s)

Nk

)N(k−1)

.

As N ≥ 1 and assuming k ≥ 3, the value of [zm]GL(z) tends to infinity with t for any
Nk ≤ (log(t/s))/2. We can thus assume N = c log(t/s) where c = Θ(1/k). If so we have
N/m→ 0 and N = N(t)→∞. Using M = m−N(k − 1)− 1, as above

N

M
= (1 +O(1/ω))c log λ0 = c′ log λ1 (29)

where c′ = Θ(1/k), and log λ1 = log λ0(1 + o(1/ω)) (see (15)).

We next describe a general technique (based on [14]) to obtain an asymptotic expression for
[zM](f(z))N in terms of an implicitly defined parameter x̂. The method can be broken into
six steps.

M1 Write

[zM](f(z))N =
f(x)N

xM
[zM]

(
f(zx)

f(x)

)N
.

M2 Let Y (x) be a random variable with probability generating function EzY = f(zx)/f(x).
By inspection of the generating function, (see (28)) the random variable Y has positive
probabilities on the non-negative integers. Let Y1, ..., YN be i.i.d. as Y .

[zM]

(
f(zx)

f(x)

)N
= [zM]E(zY1+···+YN) = Pr(Y1 + · · ·+ YN = M).

M3 Obtain the moments µ(x), σ2(x) of Y (x) from

µ(x) = EY =
d

dz
EzY

∣∣∣∣
z=1

= x
f ′(x)

f(x)

σ2(x)− µ(x) + µ(x)2 = EY (Y − 1) =
d2

dz2
EzY

∣∣∣∣
z=1

= x2f
′′(x)

f(x)

M4 Choose Y so that µ(x) = EY = M/N . Solve µ(x) = M/N for x.

15

M5 We have chosen E(Y1 + · · ·+ YN) = M . Provided σ2(x) is bounded, and as the random
variable Y has lattice width h = 1, by the Local Limit Theorem (see e.g. [8] or [11])

Pr(Y1 + · · ·+ YN = M) = (1 +O(1/N))
1√

2πσ2N
.

M6 From M1, M2 and M5,

[zM]f(z)N = (1 +O(1/N))
1√

2πσ2N

f(x)N

xM
.

The value of x is obtained from the condition that µ(x) = M/N in M4, and the value
of σ2(x) <∞ from M3.

We apply this method to f(z) from (28). For step M3 we find

µ(x) =
k−1∑
`=1

γ`x

1− γ`x
(30)

σ2(x) = µ(x) +
k−1∑
`=1

(γ`x)2

(1− γ`x)2
. (31)

Considering M4, from (29) we can relate µ(x) to c′ by

µ(x) =
M

N
=

1

c′ log λ1

. (32)

Recall that γ` = 1 + (k− `)/k log λ1, and that λ1 = (1 + 1/ω+ o(1/ω2)). In order to find the
value of x̂ from (30) note that

max
`
γ` = max

`
(1 + (k − `)/k log λ1) = γ1.

The smallest singularity of (30) is at x = 1/γ1 = 1 − O(1/ω). Intuitively, as M/N → ∞ it
must be that x̂ → 1/γ1 from below. From (30) it follows that if µ(x) > 0 then x > 0. The
function g(x) =

∑k−1
`=1 (γ`x)/(1 − γ`x) is monotone increasing in x from g(0) = 0. Thus the

solution x > 0 to g(x) = µ(x) is unique.

Based on this, for some a = a(k), to be determined, let

x̂ =
1− a log λ1

γ1

=
1− a log λ1

1 + ((k − 1)/k) log λ1

= 1−O
(
a+ 1

ω

)
(33)

From
1

c′ log λ1

= µ(x̂) ≤ kγ1x̂

1− γ1x̂
≤ k

a log λ1

,

16

it follows that a > 0. Also as we assumed c′ = Θ(1/k), we have that a = O(1). From these
observations and (33) we see that

x̂ = 1−O(1/ω). (34)

The next step is to prove a = Θ(1) so that (40) (see below) is bounded, and establish the
relationship between a and c given in (37). From (30) we have

µ(x̂) =
1− a log λ1

log λ1

(
k−1∑
`=1

1 + k−`
k

log λ1

`−1
k

+ a+ a(k−`)
k

log λ1

)
(35)

=

(
1 +O

(
k

ω

))
k

log λ1

k−2∑
`=0

1

`+ ak
. (36)

Using M/N = (1 +O(k/ω))/c log λ0, we see from (36) that

1

kc
=

(
1 +O

(
k

ω

)) k−2∑
`=0

1

`+ ak
. (37)

Note that ∫ x+j+1

x

dy

y
≤ 1

x
+ · · ·+ 1

(x+ j)
≤ 1

x
+

∫ x+j

x

dy

y
. (38)

Putting x = ak we see that

log
k(a+ 1)− 1

ka
≤

k−2∑
`=0

1

`+ ak
≤ 1

ka
+ log

k(a+ 1)− 2

ka− 1
. (39)

This implies that
1

kc
≥ (1 + o(1)) log

k(a+ 1)− 1

ka
,

so that

a ≥ 1− 1/k

e(1+o(1))/ck − 1
.

As we assumed c = Θ(1/k), it follows for k ≥ 2 that a is bounded below by a positive constant,
and thus a = Θ(1). This bound on a combined with (39) implies that

k−2∑
`=0

1

`+ ak
= log

k(a+ 1)− 1

ka
+
ζ1

k
= log

a+ 1

a
+
ζ2

k
(40)

where |ζ1|, |ζ2| = O(1).

Thus crudely, for some B = Θ(1)

µ(x̂) = B
k

log λ1

.

17

Armed with this, our next task is to approximate σ2(x̂), as given in (31). Writing σ2(x) =
µ(x) + φ(x) and substituting (33) we find, for some B′ = Θ(1) that

φ(x̂) = B′
k

log2 λ1

.

Thus

σ2(x̂) = B
k

log λ1

+B′
k

log2 λ1

.

Proceeding to step M6 and using m/N = 1/(c log λ0), M = m − N(k − 1) − 1 and (27) we
have that

WL
N,2(m) = [zm]GL(z) =

kx̂

2 log λ1

1 +O(1/N)√
2πσ2N

[
k!

kk
(log λ1)k−1 f(x̂)

x̂1/c log λ0
x̂k−1

]N
=Θ

(
k1/2

N1/2

)
[Φ(k, a)]N . (41)

The final step is to put Φ(k, a) into a more tractable form by removing the parameter c =
c(a, k). Our aim is to prove

Φ(k, a) =

(
1 +O

(
k2

ω

))
Γ(k)Γ(ka)

Γ(ka+ k − 1)
exp

(
k−2∑
`=0

ka+ k − 1

`+ ak

)
. (42)

This can be done as follows:

F1. From the definition of x̂ in (33)

x̂−1/c log λ0 = exp

(
1

kc
(ka+ k − 1) (1 +O(1/ω))

)
. (43)

F2. It follows from (37) that

1

kc
=

(
1 +O

(
k

ω

)) k−2∑
`=0

1

`+ ak
.

As c = Θ(1/k) the right hand side sums to a constant, so that (43) can be written as

x̂−1/c log λ0 =

(
1 +O

(
k2

ω

))
exp

(
k−2∑
`=0

ka+ k − 1

`+ ak

)
.

F3. From the definition of x̂

x̂k−1 = 1 +O

(
k

ω

)
.

18

F4. From (28) and the definition of x̂

(log λ1)k−1

kk−1
f(x̂) =

(
1 +

k − 1

k
log λ1

)k−1 k−1∏
`=1

1

`− 1 + ak + a(k − `) log λ1

=
1 +O(k/ω)

(ka)(ka+ 1) · · · (ka+ k − 2)
.

Putting F1 to F4 together gives us (42).

3.2 Extraction of coefficients for an upper bound on the expected
size of level sets

We now consider wU(m) = WU
N,2(m) = [zm]GU(z) where GU(z) = GU

N,2(z). Observe first that
if we ignore the effect of the switch from λ1 to λ′ then

GL(z) = GU(z)× z(k−1)N−1.

Then with m as in Section 3.1 we have from (27) that with M ′ = m− 1 and λ′, γ′` replacing
λ1, γ` in f ,

wU(m) = [zm]GU(z) =
k

2 log λ′
(
(log λ′)k−1k!/kk

)N
[zM

′
]f(z)N

≤ k

2 log λ′
(
(log λ′)k−1k!/kk

)N f(x̂)N

x̂M ′

= Θ(k)

((
1 +O

(
k

ω

))
Φ(k, a)

)N
, (44)

where Φ(k, a) is given in (41).

3.3 Asymptotic value of maximum height

For a given height N = c log(t/s), we get lower and upper bounds for WN,2(t), the expected
number of [N, (2, k − 2)] relatively configured k-cliques from (41) and (44), which in turn
depend on Φ(k, a). Provided wL(m) ∼ wU(m), and we can prove concentration of the level
set sizes around these bounds, the maximum height hs(t) can be obtained from the value a
which makes Φ(k, a) = 1 in (42). By expanding Φ(k, a) around this value of a we prove that
the value wU(m)→ 0 for larger values of c, whereas wL(m)→∞ for smaller values of c.

Once we find the value of a such that Φ(k, a) = 1, we can obtain c(a) via (37). Our analysis
of behavior around Φ(k, a) = 1 depends on k. Basically there are three cases. k = 2, k ≥ 3
constant, and k →∞.

19

Setting aside the details for now, for k ≥ 3 constant, the implicit relationships (42) and (37)
are the content of Theorem 1. In the case that k →∞, the value of a solving Φ(k, a) = 1 can
be obtained explicitly as a = 1+o(1). This solution allows us to obtain an explicit asymptotic
of c ∼ 1/k log 2 from (37).

3.3.1 Case k →∞

We assume k = o(
√
ω) and use the asymptotic expansion of (42). As Γ(y) = eO(1/y)

√
2π yy−1/2e−y

Φ(k, a) can be written as

Φ(k, a) =

(
1 +O

(
1

k

)
+O

(
k2

ω

)) (
(a+ 1)32πk

a

)1/2

×

(
aa

(a+ 1)a+1
exp

(
(a+ 1− 1/k)

k−2∑
`=0

1

ak + `

))k

. (45)

It is easiest to expand directly about a = 1. The value of Φ(k, 1) is

Φ(k, 1) ∼ (16πk)1/2 1

4k
(2− β)2k−1,

where 0 ≤ β ≤ 1/k. This value β is deduced as follows. Putting a = 1, we can bound the
sum in (45) by

log
2k − 1

k
=

∫ 2k−1

k

dy

y
≤ 1

k
+ · · ·+ 1

2k − 2
≤
∫ 2k−2

k−1

dy

y
= log

2k − 2

k − 1
.

We see that for some 0 ≤ β ≤ 1/k,

k−2∑
`=0

1

k + `
= log(2− β). (46)

Denote the final bracketed term on the RHS of (45) above by Ψ(k, a)k. Note that

Ψ(k, 1) =
1

4
(2− β)2−1/k. (47)

The expansion of Φ(k, α) in α = a(1 + ε) can thus be obtained by expanding Ψ(k, α) about
a = 1. We write Ψ(k, a(1 + ε)) = F1e

F2 , and note the following simplifications.

F1 =
(a(1 + ε))a(1+ε)

(a(1 + ε) + 1)a(1+ε)+1
=

aa

(a+ 1)a+1

(
aa

(a+ 1)a

)ε
(1 + ε)a(1+ε)

(1 + aε/(a+ 1))a+1+εa
(48)

=
aa

(a+ 1)a+1

(
aa

(a+ 1)a

)ε
eO(ε2). (49)

20

The second line comes from an expansion of the last term on the right hand side of (48), using
(1 + x) = exp(log(1 + x)), in which the first order terms disappear.

F2 =(a(1 + ε) + 1− 1/k)
k−2∑
`=0

1

ak(1 + ε) + `

=(a+ 1− 1/k)
k−2∑
`=0

1

ak + `
+ ε

(
k−2∑
`=0

a

ak + `
− a(k(a+ 1)− 1)

k−2∑
`=0

1

(ak + `)2

)
+O(ε2). (50)

Thus,

Ψ(k, a(1 + ε)) = Ψ(k, a)

(
eO(ε)

(
a

a+ 1

)a
exp

(
−a

k−2∑
`=0

k − `− 1

(ak + `)2

))ε

, (51)

which, for ε > 0 decreases faster than (a/(a+ 1))aε.

Applying (46) with b = 2 and a = 1 to the second term in (50) gives

(2k − 1)
k−3∑
`=0

1

(k + `)2
= 1− θ,

where θ = O(1/k). As a result, from (46), (47), (49), (50) and (51)

Ψ(k, 1+ε) = Ψ(k, 1)

(
eO(ε)

(
1− β

2

)
e−1+θ

)ε
=

1

4
(2−β)2−1/k

(
eO(ε)

(
1− β

2

)
e−1+θ

)ε
. (52)

The coefficients wL(m), wU(m) we wish to evaluate at a = 1 + ε are given in (41) and (44),
respectively by

wL(m) = WL
N,2(m) = Θ

(
k1/2

N1/2

)
[Φ(k, a)]N (53)

wU(m) = WU
N,2(m) ≤ Θ(k)

[(
1 +O

(
k

ω

))
Φ(k, a)

]N
. (54)

From (45) and (52) and θ = O(1/k).

Φ(k, 1 + ε) =

(
1 +O

(
1

k

)
+O

(
k2

ω

)
+O(ε) +O(kε2)

)
(4πk)1/2

((
1− β

2

)2+ε

e−ε

)k

.

The the O(1/k) is from 1/(1− β/2), the O(ε) is from eθεk and the O(kε2) from ekO(ε2). These
come from raising the expression in (52) to the power k.

21

Upper bound on height. Choose |ε| = A(log k)/k for some constant A > 0, then as
0 ≤ β ≤ 1/k, for some 0 ≤ ξ ≤ 1,

Φ(k, 1 + ε) = (2 + o(1))
√
πe−ξ
√
ke−εk = k1/2−A+ok(1) as k →∞.

Suppose first that A > 1/2, say A = 1. Then for large enough k,

WN,2(m) ≤ swU(m) ≤ sΘ(k)k−N/3 → 0.

Here we use k = o(
√
ω) (see below(3)) to ensure convergence to zero.

We show in Lemma 4 that w.h.p. the height of Gk(τ) is bounded by O(log τ). It follows that
w.h.p. the height

h(t; k) ≤ O(log s) +N + 1. (55)

Indeed, we have shown that w.h.p. there are no [N, (2, k − 2)] relatively configured cliques
and the clique generation process means that in this case there will be no [N + 1, (`, k − `)]
relatively configured cliques.

From (32) we have µ(x̂) ∼ 1
c log λ1

. From (36) and (40) we have µ(x̂) ∼ k
log λ1

· log a+1
a

. It follows

that c ∼ 1
k log 2

. From (55) we have w.h.p. that

h(t; k) ≤ O

(
log t

ω

)
+ c log(t/s) + 1 ∼ log t

k log 2
. (56)

This proves the upper bound in Theorem 1 for the case where k →∞.

Lower bound on height. Now consider the lower bound. Putting A < 0 we get from (53)
that

WN,2(m) ≥ wL(m) ≥ Θ

(
k1/2

N1/2

)
k−AN →∞.

We show in Section 4 that this is good enough to prove that h(t; k) ≥ (1− o(1))c log t w.h.p.
This establishes a lower bound asymptotic to (56). Thus as asserted by Theorem 1

h(t; k) ∼ log t

k log 2
.

3.3.2 Case k constant

The case k = 2 can be resolved by our methods, but it is proved in [18] and the paper is
already long enough, we omit this case. For k ≥ 3, the statement of Theorem 1 follows from
(42), and the following details.

Γ(k)Γ(ka)

Γ(ka+ k − 1)
=

(k − 1)!

(ka+ k − 2)(ka+ k − 3) · · · (ka)
.

22

Let a be the unique positive solution to Φ(k, a) = 1. Let α = a(1 + ε), then

(kα + k − 2) · · · (kα) =(ka+ k − 2) · · · (ka)
k−2∏
`=0

(
1 +

εka

ka+ `

)

=(ka+ k − 2) · · · (ka) exp

(
εka

k−2∑
`=0

1

ka+ `
+O(ε2k)

)
. (57)

Using (57) to deal with the exponential term in the definition of Φ(k, a) in (42), we see that

Φ(k, α) = Φ(k, a) exp

(
−a(k(a+ 1)− 1)

k−2∑
`=0

1

(ak + `)2

)εk

× eO(ε2k).

We now see from (54) that if ε > 0 and εN → ∞ then wU(m) → 0 and so from (56) we see
that w.h.p. h(t; k) ≤ (1 + o(1))c log t where the value of c is given by (37). This verifies the
upper bound in Theorem 1 for this case.

When ε < 0 and −εN → ∞ we see from (53) that wL(m) → ∞. In Section 4 we show
that wL(m)→∞ suffices to prove with high probability that h(t; k) ≥ (1− o(1))c log t. This
verifies the lower bound in Theorem 1 for this case.

4 Concentration of occupancy of level sets around ex-

pected value Wi,`(t)

The coefficient WL
N,2(t) is the expected value of a random variable W corresponding to a

subprocess of Gk(t). Recall that hs(t) is our estimate of the expected height of Gk(t) above
Gk(s). If we can prove concentration of W from below for H = (1− ε)hs(t), then the height
of Gk(t) is at least H w.h.p. To do this we follow the method of Devroye [6], which we
translate into our discrete step context. This method couples the growth of the level sets with
a suitably defined Galton-Watson process. We first explain our approach. Because we observe
the process at a given step t the total number of vertices added is fixed, and the proof requires
an additional twist.

It is convenient to consider coupling our discrete process with a continuous time process. To
do this, we replace the step parameter t of the previous sections by n and reserve variables
such as t, T, τ for times in the continuous process.

Our basic view of the discrete process starting from the clique set S of Gk(s) is as a set of
bins C1, ..., Ci, ..., Cs. At step s each bin Ci contains a single ball vi, corresponding to a single
clique. Suppose that at step n ≥ s bin Ci contains νi balls. At the next step, step n + 1,
the probability that ball vn+1 goes into bin Ci is νi/n. Given the occupancy νi of Ci we can
subsequently construct a branching T (νi) rooted at clique vi as a k-tree process of length νi.

23

As mentioned above, we wish to use the method in Devroye [6] to prove concentration of
the lower bound. The main problem for us, is that the occupancies of the bin system CS =
(C1, ..., Ci, ..., Cs) in the discrete process are not independent. Let νi be the occupancy of
Ci then ν1 + ν2 + · · · + νs = n. Using a continuous time device we construct independent
sub-processes which occur in CS w.h.p.

To avoid confusion between the continuous time and discrete processes in the subsequent
discussion we adopt the following notation. The discrete process at step n is a system of
balls in bins. The continuous time process at time t, is a system of particles in cells. For the
continuous time system consisting of particles C = {b1, b2, . . . , }, each particle b ∈ C divides
independently into b, b′ with waiting time Xb a random variable with (negative) exponential
distribution rate parameter ρ = 1. If the continuous time system is observed at time T and
contains n particles (i.e. we have C = {b1, ..., bn}) then:

(i) The probability pj that bj is the next particle to divide is pj = 1/n.

(ii) The waiting time from T to the division event of particle bj is independent exponential
with rate parameter ρ = 1.

(iii) The rate parameter for the next division in the entire system of n particles is ρn = n.

These results follow from the memoryless properties of the exponential distribution.

A pure birth process of this type is known as a Yule process, see Feller [12]. Given an initial
population of θ particles in a cell C at time t = 0, the population Πθ(τ) of C at time τ has
distribution Pn(τ) = Pr(Πθ(τ) = n) given by

Pn(τ) =

(
n− 1

n− θ

)
e−θτ

(
1− e−τ

)n−θ
. (58)

This is the probability of k = n − θ failures and r = θ successes in n Bernoulii trials, where
there is a success on the nth trial. The probability of success is p = e−τ . The expected number
of failures k before the r-success is r(1− p)/p. Thus

EΠθ(τ) = θ +
θ(1− p)

p
= θeτ . (59)

In our case the cell C can be regarded either as a single cell CS with θ = s at t = 0, or
as s sub-cells with θ = 1 at t = 0; the latter corresponding to the balls in bins system of
the discrete process. By choosing a time τn = log(n/θ), from (59) the expected size of the
population is n. We use this relationship to switch between the discrete and the continuous
time processes. If we observe a given cell C at time τ and C has occupancy N then the rooted
branching T (τ) is identical with T (N) in the discrete process. It we start at time 0 with a
single cell C with occupancy θ = 1, and stop at time τ with occupancy Π(τ) = Π1(τ), we can

24

restart identically distributed processes C1, ..., CΠ(τ) stopping at 2τ , and so on. We now fix
our attention on a given cell C with θ = 1 at t = 0.

In the discrete process, choose λ = e1/ω so that s = nlog λ = n1/ω. Here we will assume that
(3) holds with t replaced by n. Let sj = sλjL, j = 0, 1, ... where L = (1/2) log(n/s). Now fix
τ = sλL. For a given bin Ci, after τ steps the expected occupancy is ν = τ/s, where

ν = τ/s = λL = eL/ω =
(n
s

)1/2ω

= s(1/2)(1−1/ω) ∼
√
s. (60)

In the corresponding continuous time process, let

Tj = jL log λ+ log s= log sj

so that
Tj+1 − Tj = L log λ = log(τ/s) = T, say.

Intuitively Tj is the equivalent of sj, and T is the equivalent of τ . For a cell starting with
θ = 1 particles, from (59), (60)

EΠ(T) = eT = τ/s ∼
√
s.

Because of the memoryless property we restart the Yule processes at Tj, j = 0, 1, ..., assigning
i = 1 particles per cell. Starting at Tj each cell grows independently up to Tj+1, etc.

A cell C is good, if after time T has elapsed,

(i) The occupancy Π(T) ≥ ν,

(ii) The branching constructed on the first τ/s particles in the cell has height at least
h = c(1− ε) log ν where ε = o(1).

If C is good, let W̃h be the occupancy of level h in this process, otherwise let W̃h = 0. In this
way we define a Galton-Watson process with population sizes Xj, j ≥ 0 as follows. X0 = 1,

X1 = W̃h and in general Xj+1 is the progeny of the surviving particles at level j. Thus if
Xj = ξ then Xj+1 = Xj,1 + · · ·+Xj,ξ where Xj,`, ` = 1, ..., ξ are independently distributed as
X1.

EW̃h ≥ Pr(Π(T) ≥ ν)× Ŵ

where Ŵ = WL
h,2(ν) is a lower bound on the expected number of cliques (balls) at height h

at time ν defined in Section 2.3. There is the caveat that s is replaced by s′ = so(1), chosen
so that so(1) →∞ with s. We run the discrete process to generate the first ν balls in the box
(particles in the cell), starting the branching from a base set of s′ balls as in Section 2.3.

25

In (58), let θ = 1, replace τ with T and n with ν. Then

Pr(Π(T) ≥ ν) =
∑
N≥ν

PN(T)

=
∑
N≥ν

s

τ

(
1− s

τ

)N−1

=
(

1− s

τ

)τ/s−1

≥ 1

2e
.

If we choose c(a) so that the RHS of (53) tends to infinity then we have

EW̃h ≥ Ŵ/2e > 1.

In the associated Galton-Watson process we have µ = EX1 = EW̃h > 1. For a Galton-
Watson process with mean µ > 1, the probability of ultimate survival is 1− q where q < 1 is
the smallest solution of q = F (q). Here F (x) is the probability generating function of X1. Let
M = maxX. We do not know F (x), but as M ≤ ν and µ > 1, we use a result from Devroye
[6] to upper bound q by

q ≤ 1− µ

M
.

Thus

q ≤ 1− 1

ν
. (61)

Let σ = log(n(1− δ)/s) for δ = o(1) . Observing the population ΠS(σ) of the complete s-cell
Yule process CS at time σ, from (59) we have

EΠS(σ) = seσ = n(1− δ).

Let N = ΠS(σ) be the population of the complete process at time σ, and let A be the event
that N ≤ n. We will establish in Lemma 3 below that Pr(A) = o(1).

Let B be the event that the height H of T (N) satisfies

H ≥ h
σ

T
= c(1− ε) log ν

log(n(1− δ)/s)
log ν

= c(1− ε′) log n/s

where ε′ = o(1). Consider the complementary event B that none of the s independent Galton-
Watson branching processes survives past generation bσ/T c. From (60) ν ∼

√
s, and using

(61) we have
Pr(B) ≤ qs ≤ e−(1−o(1))

√
s = o(1).

If the event A occurs, then N ≤ n and the corresponding tree T (N) is a subtree of T (n).
Thus

Pr(height of T (n) ≥ (1− ε)c log n/s) ≥ 1−Pr(A)−Pr(B) = 1− o(1).

Finally observe that log(n/s) ∼ log n and this completes the proof for the lower bound on
height hs(n).

26

Lemma 3. Let σ = log n(1− δ)/s. Provided δ ≥
√

(K log n)/s, and s = o(
√
n) we have

Pr(A) =
∑

N≥n+1

PN(σ) = O(n−(K−3)/2).

Proof From (58), with θ = s, and τ = σ and n = N , we have

PN(σ) =

(
N − 1

N − s

)
e−sσ

(
1− e−σ

)N−s
. (62)

Thus for N ≥ n+ 1

PN+1

PN
=

N

N − s+ 1

(
1− s

n(1− δ)

)
≤ 1 + s

(
1

N − s
− 1

n(1− δ)

)
≤ 1− sδ

2n(1− δ)
.

Thus, ∑
N≥n+1

PN = O
(n
sδ

)
Pn+1.

However, from (62)

Pn+1 = O

(
e

1− δ
e−1/(1−δ)

)s
= O

(
e−sδ

2/2
)
.

Thus ∑
N≥n+1

PN = O
(n
sδ
e−sδ

2/2
)

= O
(
n−(K−3)/2

)
.

2

4.1 Upper bound on height

Lemma 4. The height h(t) of a random k-tree Gk(t) is O(log t) w.h.p.

27

Proof A crude calculation suffices to establish a w.h.p. upper bound of O(log t). Consider
a shortest path vt, u1, ..., ui, v1 back from vt to the root vertex v1 in Gk(t). As half of the cliques
C = Kk in Gk(t) were added by time t/2,

Pr(vt chooses a clique C in Gk(t/2)) ≥ 1

2
.

Thus the expected distance to the root must be (at least) halved by the edge vtu1. Whatever
the label s of u1 = vs, this halving occurs independently at the next step. This must terminate
w.h.p. after c log t steps, for some suitably large constant c, as we now prove.

If vt is at height h = c log t then the h trials must have resulted in less than h/3 halving
steps, for otherwise h ≤ 2h/3 + log2 t, a contradiction for large c. But the probability of this
is at most e−h/144. Putting h = 300 log t we see that the probability of height h is at most
te−h/144 ≤ 1/t→ 0. Thus w.h.p. the height of Gk(t) is O(log t). 2

5 Random Apollonian networks

We are interested in the height of Ak(t) rooted at vertex c1. Once again the height of Ak(t)
is the maximum distance of a vertex from the root. The first problem is to describe the
structure of Ak(t) relative to this BFS tree. The following example using k = 3 is instructive
of our labeling method. In A3(0), let the initial clique C0 be a triangle with vertex set {a, b, c}.
Assume vertex a is at level 0 of the BFS tree and b, c at level 1. The index of the lowest level of
C0 is i = 0 and C0 is oriented (1, 2) giving a [0, (1, 2)] configured triangle. Insertion of a vertex
v in the interior of abc replaces this triangle by three new triangles abv, acv, bcv. Triangles
abv, acv are configured [0, (1, 2)] and bcv configured [1, (3, 0)] in that all three vertices of this
triangle lie in level i = 1 of the BFS tree. Once a clique has been subdivided, it is no longer
considered as part of the Apollonian network. In the above example triangle abc is no longer
available for subdivision. To distinguish this case, we call the cliques available for subdivision
embedded.

In general, suppose clique C = Kk is configured [i, (`, k−`)] with vertex set {u1, ..., u`, v`+1, ...vk}.
If ` = 2, ..., k then inserting a vertex w in the interior of C, removes C and produces ` cliques
of type [i, (`− 1, k − `+ 1)] and k − ` cliques of type [i, (`, k − `)]. If ` = 1, then insertion of
a vertex inside a clique of type [i, (1, k − 1)] forms one clique of type [i + 1, (k, 0)] and k − 1
cliques of type [i, (1, k − 1)].

At each step k embedded cliques are created and one is discarded, as it has been subdivided.
Thus, as proved above Theorem 2 the number of embedded cliques in Ak(t) is (k−1)t+1. This
leads to the following recurrences for the expected number Wi,`(t) of [i, (`, k − `)] configured
cliques at step t.

W0,1(0) = 1, Wi,`(0) = 0 otherwise.

28

W0,1(t+ 1) = W0,1(t) +
k − 2

(k − 1)t+ 1
W0,1(t).

Wi,k(t+ 1) = Wi,k(t)−
1

(k − 1)t+ 1
Wi,k(t) +

1

(k − 1)t+ 1
Wi−1,1(t). (63)

For 1 ≤ ` ≤ k − 1,

Wi,`(t+ 1) = Wi,`(t)+
k − `− 1

(k − 1)t+ 1
Wi,`(t) +

`+ 1

(k − 1)t+ 1
Wi,`+1(t).

5.1 Solution of recurrences

The system of recurrences for Wi,`(t) and their solution is very similar to the case for k-trees.
We give an outline description only, pointing out where differences arise. The main difference
is that (63) contains a negative term. However, as (63) can be rewritten as

Wi,k(t+ 1) = Wi,k(t)

(
1− 1

(k − 1)t+ 1

)
+

1

(k − 1)t+ 1
Wi−1,1(t),

the lower bound substitution of Wi,`(sj) for Wi,`(t) is still valid. We obtain (e.g.) the following
system of lower bound recurrences, in place of (16) – (20).

WL
0,1(0) = 1

WL
0,1(j + 1) = WL

0,1(j)

(
1 +

k − 2

k − 1
log λ

)
WL
i,k(j + 1) = WL

i,k(j)

(
1− 1

k − 1
log λ

)
+WL

i−1,1(j)
1

k − 1
log λ

WL
i,`(j + 1) = WL

i,`(j)

(
1 +

k − `− 1

k − 1
log λ

)
+WL

i,`+1(j)
`+ 1

k − 1
log λ, 1 ≤ ` ≤ k − 1.

For ` = 1, ..., k let

γ` = 1 +
k − `− 1

k − 1
log λ.

The lower bound generating functions satisfy

G0,1(z) =
1

1− γ1z

Gi,k(z) =
1

k − 1

z log λ

1− γkz
Gi−1,1(z)

Gi,`(z) =
`+ 1

k − 1

z log λ

1− γ`z
Gi,`+1(z),

29

leading to

Gi,1(z) =

(
zkk!(log λ)k

(k − 1)k
1

(1− γ1z) · · · (1− γkz)

)i
1

1− γ1z
.

Work with GN,2(z) = GN(z) as before, where

GN,2(z) =
k − 1

2

1− γ1z

z log λ
GN,1(z)

=
k − 1

2

1− γ1z

z log λ

(
zkk!(log λ)k

(k − 1)k
1

(1− γ1z) · · · (1− γkz)

)N
1

1− γ1z
.

Making substitutions M = m−kN+1, x̂ = (1−a log λ)/γ1 and so forth leads to the following
expression for Φ(k, a) (to be compared with (42)),

Φ(k, a) =
k!Γ(a(k − 1))

Γ((a+ 1)(k − 1) + 1)
exp

(
((k − 1)a+ k − 2)

k−1∑
`=0

1

`+ a(k − 1)

)
,

subject to the asymptotic identity (to be compared with (37)),

1

c(k − 1)
=

k−1∑
`=0

1

`+ a(k − 1)
.

In the case that k →∞ we can expand about a = 1 in a manner identical to k-trees to obtain
the asymptotic height

h(t; k) ∼ log t

k log 2
.

The case k ≥ 3 constant, is similar.

The concentration of the upper bound follows easily and the concentration of the lower bound
from methods similar to Section 4. The main difference is that, in the continuous time model,
on division a particle b is replaced by k ≥ 3 progeny, as opposed to two progeny, which was
the case for k-trees.

Let N be the number of (multiple) births, in a Yule process in which each particle has k
children and then dies, i.e. there is an overall increase in population of k − 1 per birth. If
the original population size is s at time t = 0, then the population size after N -th birth is
βN = (k − 1)N + s. The probability of N births having occurred by time t is given by

pN(t) =
N∏
i=1

(k − 1)(i− 1) + s

(k − 1)i
× e−st(1− e−(k−1)t)N .

30

References

[1] H. Bodlaender. A Tourist Guide Through Treewidth. Acta Cybernetica, 11:1–21, (1993).

[2] H. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theoretical
Computer Science, 209:1–45, (1998).

[3] N. Broutin and L. Devroye. Large deviations for the weighted height of an extended class
of trees. Algorithmica 46: 271–297, (2006).

[4] C. Cooper, R. Uehara. Scale free properties of random k-trees. Mathematics in Computer
Science, 3.4, 489–496 (2010).

[5] L. Devroye. A note on the height of binary search trees. ACM 33.3, 489-498 (1986).

[6] L. Devroye. Branching processes in the analysis of the heights of trees. Acta Informatica,
24, 277–298,(1987).

[7] L. Devroye. Branching processes and their applications in the analysis of tree structures
and tree algorithms. in Probabilistic Methods for Algorithmic Discrete Mathematics, ed.
M. Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed, Springer Seriues on Algo-
rithms and Combinatorics, 16, 249–314, Springer-Verlag, Berlin, (1998).

[8] R. Durrett. Probability: Theory and Examples. Wadsworth & Brooks Cole, (1991).

[9] E. Ebrahimzadeh, L. Farczadi, P. Gao, A. Mehrabian, C. Sato, N. Wormald and J.
Zung. On the Longest Paths and the Diameter in Random Apollonian Networks (2013).
http://arxiv.org/pdf/1303.5213v1.pdf

[10] Y. Gao. The degree distribution of random k-trees. Theoretical Computer Science, 410,
688-695, (2009).

[11] B. V. Gnedenko. Theory of Probability. Chelsea, New York, (1963).

[12] W. Feller. An Introduction to Probability Theory and Its Applications. Volume I. Wiley
(1960).

[13] A. Frieze and C. Tsourakakis. On Certain Properties of Random Apollonian Networks.
WAW 2012, 93–112. (2012).

[14] A. Khinchin. Mathematical Foundations of Statistical Mechanics. Dover, New York
(1949).

[15] J. F. C. Kingman. The first birth problem for an age dependent branching process. Annals
of Probability, 3.5, 790–801 (1975).

[16] I. Kolossváry, J. Komjáthy and L. Vágó. Degrees and distances in random and evolving
Apollonian networks http://arxiv.org/pdf/1310.3864v1.pdf

31

[17] A. Panholzer and G. Seitz. Ancestors and descendants in evolving k-tree models. RSA,
(2012).

[18] B. Pittel. Note on the height of random recursive trees and random m-ary search trees.
RSA 5.2, 337–347 (1994).

32

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

k=2
k=3
k=4
k=5
k=6
k=8

k=10
k=12
k=15
k=20

Figure 1: Experimental results for the height of random k-trees for k = 2, 3, 5, 6, 8, 10, 12, 15, 20

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

k=2
 ceil(log x/2log 2)

k=5
ceil(log x/5log 2)

k=20
ceil(log(x)/(20*log(2)))

Figure 2: Experimental results for k-tree height fitted to dlog(t)/(k log 2)e for k = 2, 5, 20

33

