
Finding a Maximum Matching in a Sparse Random Graph in O(n)

Expected Time

Prasad Chebolu, Alan Frieze∗, Páll Melsted

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh PA15213

U.S.A.

August 30, 2012

Abstract

We present a linear expected time algorithm for finding maximum cardinality matchings in
sparse random graphs. This is optimal and improves on previous results by a logarithmic factor.

1 Introduction

A matching M in a graph G = (V,E) is a set of vertex disjoint edges. The problem of computing
a matching of maximum size is central to the theory of algorithms and has been subject to intense
study. Edmond’s landmark paper [4] gave the first polynomial time algorithm for the problem.
Micali and Vazirani [8] reduced the running time to O(mn1/2) where n = |V | and m = |E|. These
are worst-case results. In terms of average case results we have Motwani [9] and Bast, Mehlhorn,
Schäfer and Tamaki [2] who have algorithms that run in O(m log n) expected time on the random
graph Gn,m, in which each graph with vertex set [n] and m edges is equally likely.

One natural approach to finding a maximum matching is to use a simple algorithm to find an
initial matching and then augment it. This will not improve execution time in the worst-case, but
as we will show, it can be used to obtain an O(n) expected time algorithm for graphs with constant
average degree (O(m) in general). For a simple algorithm we go to the seminal paper of Karp
and Sipser [6]. They describe a simple greedy algorithm and show that whp it will in linear time
produce a matching that is within o(n) of the maximum. Here “with high probability” is short
hand for “with probability 1−o(n−1/2)”. Aronson, Frieze and Pittel [1] proved that whp the Karp-
Sipser algorithm is off from the maximum by at most Õ(n1/5) (this notation hides poly-logaritmic
factors). In this paper we show that whp we can take the output of the Karp-Sipser algorithm
and augment it in o(n) time to find a maximum cardinality matching. Our failure probability will
therefore be o(1/ logn) and so we get a linear expected time algorithm if we back it up with the
algorithm from [2]. We will define a randomised algorithm Match and prove

Theorem 1 Let m = cn/2 where c is a sufficiently large constant. Let G = Gn,m. Then the
algorithm Match finds a maximum matching in G in O(n) expected time.

The expectation here is over the choice of input and the random choices made by the algorithm.

∗Supported in part by NSF Grant CCF-0502793

1

1.1 The Karp-Sipser algorithm

This is a simple greedy algorithm. It adds a matching edge as follows: If the graph G has a vertex
of degree 1, then it chooses one such vertex v at random and adds the unique edge (u, v) to the
matching it has found so far and deletes the vertices u, v from G and continues. If the graph has
minimum degree at least 2 then it picks a random edge (u, v), adds this to the matching and deletes
u, v from G and continues. Vertices of degree zero are also considered to be deleted from G. The
algorithm stops when G has no vertices.

We identify two phases in the execution of the Karp-Sipser algorithm. Phase one starts at the
beginning and finishes when the current graph has minimum degree at least two. We note that if
M1 is the set of edges chosen in Phase 1 then there is some maximum cardinality matching that
contains M1, i.e. no mistakes have been made so far.

Algorithm 1 below is a pseudo-code description.

Algorithm 1 Karp-Sipser Algorithm

1: procedure KSGreedy(G)
2: MKS ← ∅

3: while G 6= ∅ do
4: if G has vertices of degree one then
5: Select a vertex v uniformly at random from the set of vertices of degree one.
6: Let (v, u) be the edge incident to v.
7: else
8: Select an edge (v, u) uniformly at random.
9: end if

10: MKS ←MKS ∪ (v, u).
11: G← G \ {v, u}.
12: Remove any isolated vertices of G.
13: end while
14: return MKS

15: end procedure

A vertex is said to be matched by a matching M if it is incident to an edge of M , otherwise it
is unmatched.

Let M1 denote the matching produced by Phase 1 of the Karp-Sipser algorithm. Let the graph
at the end of Phase 1, beginning of Phase 2 be denoted by Γ. Γ will comprise (i) a collection
C1, C2, . . . , Ck of vertex disjoint cycles and (ii) a graph Γ1 where each component has minimum
degree two, but is not a cycle. At the end of the Karp-Sipser algorithm there will be some unmatched
vertices. We partition them into I1 ∪ I2. Here I1 consists of (i) vertices that are not matched in
Phase 1 and are already isolated by the end of Phase 1 and so are not in Γ, (ii) one vertex from
each odd cycle in the collection C1, C2, . . . , Ck. Thus I2 consists of the vertices of Γ1 that are not
matched by MKS . This partition is significant in that to obtain a maximum matching, it is enough
to augment the matching M1 so that as many vertices in I2 as possible are matched.

We now consider the output of the Karp-Sipser algorithm to be amended to include I2.

As shown in [6], all but o(n) vertices of Γ are matched by the Karp-Sipser algorithm when G is
the random graph Gn,m. This result was improved in [1] to show in fact that whp all but Õ(n1/5)
vertices of Γ are matched. It was shown in Frieze and Pittel [5] that whp a maximum cardinality
matching of Γ covers every vertex except one for each isolated odd cycle and one further vertex if

2

after removing odd cycles, the number of vertices remaining is odd. (This is an existence result,
non-algorithmic). The number of vertices on isolated cycles is O(logn) whp but this fact will not
be needed and therefore not proven. After running the Karp-Sipser algorithm and dealing with the
isolated cycles, our task will whp be to match together Õ(n1/5) unmatched vertices.

1.2 Outline Description of Match

We will take the output of the Karp-Sipser algorithm and then take the unmatched vertices I2 =
{v1, v2, . . . , vl} in pairs v2i−1, v2i, i = 1, 2, . . . , ⌊l/2⌋. We then search for an augmenting path from
v2i−1 to v2i for i = 1, 2, . . . , ⌊l/2⌋. We will refer to this as Phase 3 of our algorithm. We will
show that this can be done in o(n) time whp. Phase 3 will make use of all of the edges of the
graph Γ. The reader will be aware that the Karp-Sipser algorithm has conditioned the edges of
this graph. We will show however that we can find a large set of edges A that have an easily
described conditional distribution. This distribution will be simple enough that we can make use
of A to show that we succeed whp. Intuitively, we can do this because the Karp-Sipser algorithm
only “looks” at a small number of edges and discards most of the edges incident with the pair
u, v chosen at each step. Dealing with conditioning is a central problem in Probabilistic Analysis.
Often times it is achieved by the use of concentration. Here the problem is more subtle. Note that
one cannot simply run the Karp-Sipser algorithm on a random subgraph Gn,m1

⊆ Gn,m and then
use the m −m1 random edges. This is because in this case, Phase 1, when run on the sub-graph
will leave extra unmatched vertices.

Algorithm 2 below is a pseudo-code description of Match. Before giving this, let us describe
match in words. The input is a graph G.

1. Run Phase 1 of the Karp-Sipser algorithm on G.

2. As above let Γ denote G at the end of Phase 1. Γ is comprised of (i) a collection C1, C2, . . . , Ck

of vertex disjoint cycles and (ii) a graph Γ1 where each component has minimum degree two,
but is not a cycle.

3. Do a breadth first search of Γ and use it to identify and mark the vertices of C1, C2, . . . , Ck.

4. Run Phase 2 of the Karp-Sipser algorithm on Γ. Note that the Karp-Sipser algorithm deals
correctly with C1, C2, . . . , Ck. Let I2 = {v1, v2, . . . , vl} be the vertices of Γ1 that remain
unmatched at the end of Phase 2. Unmatched vertices in I1 will remain unmatched and the
marking done in 3. will allow us to distinguish I2.

5. For i = 1, 2, . . . , ⌊l/2⌋, look for an augmenting path from v2i−1 to v2i and use it to augment
the current matching. Formally this entails running a procedure AugmentPath.

6. If there is a i ≤ ⌊l/2⌋ such that we fail to find an augmenting path, declare failure and run
the algorithm of [2] from scratch.

Here is an alternative pseudo-code description of the above.

3

Algorithm 2 Algorithm Match

1: procedure Main(G)
2: (MKS , I2)← KSGreedy(G); M∗ ←MKS

3: Let I2 = {v1, v2, . . . , vl}.
4: for j=1 to ⌊l/2⌋ do
5: M∗ ←AugmentPath(M∗, v2j−1, v2j)
6: if AugmentPath(M∗, v2j−1, v2j) returns failed then
7: Abort and execute the algorithm of [2].
8: end if
9: end for

10: return M∗

11: end procedure

Procedure AugmentPath(M∗, u, v) is described in Section 2. Its analysis constitutes the main
subject matter of the paper.

Given an unmatched vertex u, an augmenting tree Tu will be a tree of even depth rooted at u
such that for k ≥ 0, edges between vertices at depth 2k and 2k+1 are not matching edges and edges
between vertices at depth 2k + 1 and 2k + 2 are matching edges. We refer to the vertices at levels
2k as even vertices of the tree and vertices at level 2k+1 as odd vertices for k ≥ 1. We let Odd(T)
and Even(T) denote the set of even and odd vertices respectively. In an augmenting tree, every
vertex in Odd(T) has exactly one child in Even(T), and so in particular |Odd(T)| = |Even(T)|. We
define the (disjoint) neighborhood N(S) of a set of vertices S by

N(S) = {w /∈ S : ∃v ∈ S such that (v, w) ∈ E(G)} .

In which case we have by N(Even(T)) ⊃ Odd(T).
We refer to the leaves of Tu as the front of the tree and denote them by Fu or Φ(Tu) .
Given a pair of unmatched vertices u, v, AugmentPath will grow trees Tu, Tv until they are both

“large” and then whp we will be able to connect a vertex x at the front (leaves) of Tu, to a vertex y
at the front of Tv by a path x, a, b, y where (a, b) is a matching edge. This produces an augmenting
path from u to v. (There are some less likely ways resulting in an augmenting path and these are
also taken account of below).

Analysing the growth of these trees is the subject of Section 2. It requires detailed knowledge
of the distribution of the random graph Γ. This is discussed in Section 2.3.1.

To prove that we can whp find a quadruple x, a, b, y for Tu, Tv requires knowledge of the
conditioning imposed by Karp-Sipser algorithm on the edges not in MKS . This is the subject of
Section 3.

In Section 4 we use what we prove in Section 3 to show that for a given pair of unmatched vertices
u, v and corresponding augmenting trees Tu, Tv, we will whp be able to complete an augmenting
path.

2 Augmenting Path Algorithm

As already explained, an execution of AugmentPath searches for an augmenting path between two
unmatched vertices of I2. If such a path is found, the matching is augmented, if not the algorithm
returns Failure and we resort to the algorithm of [2]. Match executes AugmentPath until either
there is at most one unmatched vertex of I2 or there is a failure. Clearly, if the algorithm does not
fail then it finds a maximum cardinality matching.

4

We now define some more terms associated with the tree growing process.
A blossom rooted at v is an cycle of odd length where the edges on the path starting and ending

at v alternate between matching and non-matching edges. An edge (x, y) that creates a blossom
when added to Tu is called a blossom edge of Tu.

Given two augmenting trees Tu, Tv, rooted at u, v respectively, a hit edge is an edge (x, y) such
that x is an even node in Tu and y is an odd node in Tv. Note that given a hit edge (x, y) the
subtree of Tv rooted at y can be taken from Tv and added to Tu, by removing the edge from y to
its parent node in Tv (see figure 2).

The trees Tu, Tv are grown until we either find an augmenting path or the trees cannot be grown
further. For each of u, v we maintain a list of blossom edges and hit edges encountered so far.

The basic operation of our algorithm is to explore a vertex on the front. Vertices are explored
in the order in which they are added to the tree. Throughout the algorithm we will keep track of
which vertices we have explored in Phase 3, labeling them as exposed. This is mainly to keep track
of which vertices have “no randomness” left because we have seen all the vertices they are adjacent
to.

To explore x on the front Fu of Tu we look at each y incident to x such that (x, y) is not a
matching edge:

T1 If y belongs to neither of the trees and is matched, add it to Tu along with its matching edge
(y, y′)

T2 If y is unmatched we have an augmenting path from u to y

T3 If y is an even vertex of Tv then the path from u to x in Tu, with the edge (x, y) and the path
from y to v in Tv forms an augmenting path

T4 If y is an odd vertex of Tv then (x, y) is a hit edge, append it to the list of hit edges for u.

T5 If y is an even vertex of Tu then (x, y) along with the paths from x, y to their lowest common
ancestor in Tu form a blossom, append (x, y) to the list of blossom edges for u.

T6 If y is an odd vertex of Tu we do nothing.

After examining all edges incident to x, we label it as exposed. Examples of the six cases for the
edge (x, y) are shown in Figure 1 and examples for hit edges and blossoms are shown in Figures 2
and 3.

The description of AugmentPath uses a small constant ε, any ε small enough will work, but one
concrete value is given in (1). In each execution of AugmentPath the growth of both trees is split
into three stages. Within a stage the growth of each tree is divided into growth spurts. In a spurt
one of the trees Tu, Tv will be selected and all of the eligble vertices of its front will be explored. A
tree starts in Stage 1 until it reaches a size of n.6−ε, after that Stage 2 starts. If a tree is in Stage
1 then all vertices on its front are eligible. Although such a tree is “large enough” we cannot be
sure that it has enough unexposed vertices on the front. This is why we need Stage 2. During this
stage only already exposed vertices on the front are eligible. Thus we do not explore the unexposed
vertices at the front in this stage and it lasts until an n−ε fraction of the vertices on its front are
unexposed. This means that we create at most n.6−ε new exposed vertices per tree in Phases 1 and
2. When the tree, Tu say, has the required fraction of unexposed vertices on the front, it is placed
in Stage 3 and we select a set Su of size n.6−2ε at random from the set of unexposed vertices from
the front. If both trees reach Stage 3 then we try to connect Su, Sv by a path (x, a, b, y) of length
three whose middle edge is a matching edge. If we succeed then we will have created an augmenting

5

path from u to v. Otherwise we declare failure. Note that we expose at most n.6−ε + n.6−2ε new
currently unexposed vertices per tree per execution of AugmentPath.

During a spurt we explore the front of the selected tree and first deal with cases of T1,T2. If
exploring a vertex finds an augmenting path (T2) then the current execution of AugmentPath is
finished. If this does not happen and there are no instances of T1 then we inspect first the list of
blossom edges and see if we can grow the tree using them. For each blossom found, contract the
blossom into a supernode and consider this supernode to be at the front of the tree and try to grow
by exploring edges available to the supernode. If there is no growth through blossom edges then
we inspect the list of hit edges. If (x, y) is a hit edge in T4 with x ∈ Fu then we can grow Tu by
adding to it the edge (x, y) plus the sub-tree of Tv below y. If the tree still doesn’t grow then we
exit the execution of AugmentPath and fail.

The restriction in Stage 2 to only exploring already exposed vertices is a little un-natural and
one would hope to be able to avoid it. We do it here so that we can properly bound the amount
of work done over-all. Without the restriction, we could conceivably do a super-linear amount of
work by unnecessarily exposing too many vertices.

To determine which of the trees to grow we look at the stages and sizes of the trees. If both
trees are in Stages 1 or 2 we grow the smaller of the two. When only one tree is in Stage 1 we
grow that tree. When one tree is in Stage 2 and the other is in Stage 3, we grow the one in Stage
2. When both are in Stage 3, we finish via a simple search for an augmenting path.

As part of our argument we will show that whp we only expose o(n.8) vertices altogether.
This will ensure that we reach Stage 3, unless T2 or T3 occurs. Otherwise we will have run out of
exposed vertices. Typically, we expect to find an augmenting path through T3 or we find that both
trees reach Stage 3. Then at the first time both are in Stage 3, there will be many opportunities
for the unexposed vertices to find a path x, a, b, y where x ∈ Su, y ∈ Sv, (a, b) ∈M .

u

v

e1

e2

e3

e4

e5

e6

Tu

Tv

Figure 1: The trees Tu and Tv are shown with bold edges. The edges ei correspond to cases i in
the algorithm for i = 1, . . . , 6.

2.1 Data Structures

Aiming for a linear running time for Match means that we have to be careful in our use of data
structures. We describe what data structures are needed for Karp-Sipser and AugmentPath to
ensure a linear running time.

For Karp-Sipser, given in Algorithm 1, we need to efficiently (i) access a list of neighbours of a
vertex, (ii) delete a vertex from the graph, (iii) select an edge at random and (iv) select a vertex
of degree one at random.

6

u
v

e4

Tu

Tv

x

y

Figure 2: The trees Tu and Tv after using the hit edge e4.

u

v

e5

Tu

Tv

B

e
′

Figure 3: The trees Tu and Tv after using the blossom edge e5. Note that the blossom B is
contracted and the edge e′ becomes a part of the new tree.

This can be done by storing the vertices of G as array of vertices V . Each vertex V [i], stores
its degree, a linked list, L, of edge-structures, and a pointer to its position in the array of vertices
of degree one if it has one. Each edge-structure stores a pair of vertex indices and a pointer to the
edge-representative-structure for (u, v) described below.

We also store a list E of edge-representative-structures. Each edge-representative-structure
corresonding to an edge (u, v) stores the vertex indices u and v and one pointer per vertex pointing
to the position of the (u, v) in the edge-structure list of V [u] and V [v] respectively.

Finally we keep track of which vertices are of degree one as an array V 1 of vertex indices.
Accessing the neighborhood of any vertex u can be done in time O(degG(u)). Selecting an edge

at random can be done by selecting an index i at random from 1 to |E| and accessing E[i], similarly
for selecting a vertex of degree one at random. Deleting a vertex u involves deleting all edges (u, v)
for all neighbours of v, this can also be achieved in time O(degG(u)). This shows that the total
running time of Karp-Sipser is O(

∑

u∈G degG(u)) = O(m) = O(n).
When deleting a vertex u we repeat the following for all neighbours v of u. First swap the

edge-representative-structure with the last element of E, repairing the pointers as necessary and
decreasing the size of E by one. Then the two edge nodes of V [u] and V [v] are removed from their
lists. After deleting all edges incident with u we swap V [i] with the last element of V , repairing
all pointers of the elements swapped and decreasing the index of V by one. Finally if u is in V 1
we delete it from V 1 by swapping the element it points to out with the last element of V 1 and
decreasing its size by one.

The matching computed by Karp-Sipser is stored as an array M indexed by vertex indicies

7

containing the pair of vertices in the edge, unmatched vertices have an empty pair.
For the extension to Karp-Sipser we note that we can detect if a vertex u is on an isolated cycle

by running a breadth-first search algorithm and counting the number of vertices and edges seen. If
the two are equal then the connected component containing u is an isolated cycle.

Given a list of all vertices on isolated cycles allows us to find I2 in time O(n).
For AugmentPath we allow ourselves more room in keeping track of things. We need to keep

track of the trees Tu and Tv and determine whether vertex x belongs to either of them. We also
need to keep track of blossom and hit edges and supernodes formed by contracting blossoms. Each
of these tasks can be done with a suitable sophisticated data structure, such as a balanced tree,
with a running time of O(logn). Our analysis will show that the number of operations executed in
Phase 3 is less than n1−ε and this saving of n−ε will easily account for any log n factors.

2.2 Tree Expansion

In this section we will show that whp both of our augmenting trees will reach Stage 3, unless their
growth stops prematurely because an augmenting path has been found. Later we will argue that
when both of the trees are in Stage 3 then their fronts contain many unexposed vertices and then
whp an augmenting path can be found via a short path connecting these fronts.

In particular we will show that if the absolute constant α1 is sufficiently large and 0 < α2 < 1/2
and c = 2m/n ≥ c0 and c0 is sufficiently large then the following four lemmas hold. The proofs of
the first three lemmas are heavy on computation. We have moved them to a separate section.

The algorithm uses the constant ε and in addition the proof uses a constant γ:

ε =
1

200
and γ =

1

20
. (1)

Lemma 2 The following will hold with probability 1 − O(1
n2). For all matchings M of Γ and all

augmenting trees T with c−1α1 log n ≤ |T | ≤ n.99. T can be grown to a new tree T ′ for which
Φ(T ′) ∈

[

9c
10 |T |, 11c10 |T |

]

.

Lemma 3 With probability 1 − Õ
(

1
n1−α2

)

, Γ does not contain two cycles of length a and b, at
distance d apart for any a, b, d such that a+ b+ d ≤ α2 logc n

Lemma 4 With probability 1−O(1
n2) Γ, does not contain a set S ⊆ V (Γ) with log logn ≤ |S| ≤ n.99

that has more than (1 + ǫ)|S| edges.

Lemma 5 Let Γ be such that the low probability events described in Lemmas 2, 3 and 4 do not
hold. Let u, v be a pair of isolated vertices for which an augmenting path is sought. Let M be an
arbitrary matching of Γ. Suppose that we do not find an augmenting path as in Steps T2,T3. Then
the following hold:

(a) Both Tu and Tv will reach Stage 3.

(b) The number of growth spurts undergone by either tree in Stage 2 is at most log3c/4 n.

Proof of Lemma 5: Suppose that (a) does not hold and that Tu is selected for a spurt and the
execution of AugmentPath fails. Neither tree can grow in size via T1–T6. We split the analysis
into two cases depending on the size of Tu.

Case 1 |Tu| ≤ 1
10α2 logc n.

Note that when we explore vertices on the front we have seen one matching edge incident to them

8

and that they have degree at least two. Furthermore u has degree at least two, so Fu starts out
with at least two vertices. The only way the tree cannot grow is if we are in cases T4, T5 or T6.

All of the non-matching edges incident with the front Fu of Tu go to within Tu. Observe that
there are no hit edges leaving Fu, for otherwise Tu would grow and AugmentPath would not fail.
Observe next that |Fu| can only be reduced either

R1 when a non-matching edge (x, y) with x ∈ Fu has y ∈ Tu, thus creating a cycle inside Tu, or

R2 a piece of Tu is removed by a hit edge from Tv.

Remark 6 We will see in the analysis in Case 2 below that no hit edges are needed by Tv when
|Tv| > 1

10α2 logc n.

If |Fu| ≥ 2 then either we have two edges going from Fu to within itself that form two cycles,
a violation of Lemma 3, or |Fu| = 2 and we have one edge that forms a blossom. If the algorithm
has failed after the contraction of the blossom then Tu plus the blossom edge then there are several
cases: (i) Tu plus the blossom edge is an isolated odd cycle (contradicting the fact that u ∈ I2);
(ii) The vertices of Tu already contain a short cycle through a case of T6, which with the blossom
contradicts Lemma 3; (iii) The tree Tu had a branch which was grafted to Tv via a hit edge. But
by Remark 6 we see that at this time |Tv| ≤ 1

10α2 logc n. So either the vertices of Tv contain a small
cycle, which with the blossom contradicts Lemma 3 or there are at least two hit edges, which again
contradicts Lemma 3.

If Fu = {x} is of size one, then either x has degree at least two or it is a supernode from a
previously contracted blossom. If u has degree at least two, we must already have encountered R1
or R2 above. In case R1 we have found one small cycle C with vertex set contained in V (Tu) \Fu.
Since there are no hit edges and Tu cannot grow, the non-matching edge incident with Fu has both
endpoints in Tu and we therefore have two cycles in V (Tu), which violates the conditions of Lemma
3, a contradiction. (The reader might be concerned that we could have found an isolated odd cycle.
However u, v ∈ I2 and so neither of them are on such a cycle).

Now consider the case where Fu = {x} is of size one and the reduction in front size was caused
by a hit edge (x, y) from Tv. By the argument above we know that when Tv used this hit edge we
must have had either (i) |Fv| = 1 or (ii) |Tv| > 1

10α2 logc n. We see from Remark 6 that when Tv

used (x, y) to grow its size was at most 1
10α2 logc n and either its vertices contained a cycle C or

there were at least two hit edges from Tv to Tu which again leads to a small cycle. Now consider
the non-matching edge (x, y) incident with Fu where x ∈ Tu. y cannot be in Tv since there are no
hit edges from Tu at this time and it cannot be in Tu because of Lemma 3, contradiction.

If the only node on the front Fu is a supernode with degree one, then either R1 or R2 have
happened previously since |Fu| ≥ 2 initially. If R1 occurred this would imply that V (Tu) has two
cycles. If R2 occurred then by the same argument as above both trees must have been of size
1
10α2 logc n at the time. Therefore there exists a subgraph contained in V (Tu ∪ Tv), of size at most
2
10α2, with two cycles, contradicting Lemma 3.

Case 2. |Tu| ≥ 1
10α2 logc n.

We now show if Tu is selected for a spurt then it will grow a new front of size at least 4c
5 (1−n−ε)|Tu|.

We can assume that c ≥ 10α1/α2. By Lemma 2 we know that the size of the new front is at least
9c
10(1− n−ε)|Tu| when Tu is grown without considering Tv. The factor (1− n−ε) accounts for only
growing from exposed vertices. Some of these vertices might be odd vertices of Tv and we must
account for this. It is enough to show that the front of Tu cannot be adjacent to c

10 |Tu| odd vertices
of Tv. Suppose this is the case and call this set A. Let TA be the tree obtained by taking the union

9

all the paths from A to v within Tv. A is not considered to be part of TA. Now TA is contained
within the tree T ′

v which is Tv minus the matching edges on the front.
Consider the last time T ′

v was grown and look at the rule used to decide which tree to grow. At
this point Tu is a subtree T ′

u of the Tu at failure.
Case 2a: If both trees were in Stage 1 or 2 then the smaller tree was grown, so T ′

v was smaller
than a subtree of Tu. This implies that |T ′

v| ≤ |Tu|.
Case 2b: If one tree was in Stage 1 and the other in Stage 2 or 3, then since we grew T ′

v, a
subtree of Tu must have been in Stage 2 or 3 and T ′

v in Stage 1. This implies that |T ′
v| ≤ n.6−ε ≤ |Tu|.

Case 2c: If one tree is in Stage 3 and the other in Stage 2 then T ′
v must be in Stage 2 and Tu

must be in Stage 3. Tv must also be in Stage 3, since we are trying to grow Tu. This contingency,
Tu and Tv both in Stage 3 is not dealt with in the lemma. It will be dealt with in Section 4.3.

Now consider the set S = Tu∪A∪TA, it has at least |S|+ |A|− 2 edges. We have |TA| ≤ |T ′
v| ≤

|Tu|. This implies that

|S| = |Tu|+ |A|+ |TA| ≤ 2|Tu|+ |A| ≤
(

20

c
+ 1

)

|A|.

So S is a set with 1 + |A|−2
|S| ≥ 1 + 1−o(1)

1+ 20

c

≥ 3
2 edges, and this contradicts the result of Lemma 4.

We have seen that while in Stage 2, a tree grows in size by a factor of at least 3c/5, unless
it reaches size n.99, see Lemma 2. This is impossible as it would require the exposure of at least
n.99−ε vertices to this point. But we only expose at most 2n.6−ε new vertices during an execution
of AugmentPath and there are only Õ(n1/5) executions of AugmentPath. Thus both trees reach
Stage 3.

Part (b) follows because we have shown that Tu grows by a factor 3c/5 during Stage 2.

2.3 Proofs of Lemmas 2, 3, and 4

This requires some knowledge of the distribution of the random graph Γ.

2.3.1 Structure of Γ

Suppose that it has ν vertices and µ edges. By construction it has minimum degree at least two.
It is shown in [1](Lemma 2) that if G is distributed as Gn,m, m = cn/2, c > e (the base of natural
logarithms) then Γ1 is distributed as Gδ≥2

ν,µ i.e. Γ has ν vertices and µ edges and Gδ≥2
ν,µ is uniformly

chosen from simple graphs with ν vertices, µ edges and minimum degree at least 2. The precise
values of µ, ν are not essential but we will describe how they are related to c: Let z, β be defined
by

βecβ = ez and z − cβ(1− e−z) = 0. (2)

Then whp

ν ∼ β(1− (1 + z)e−z)n and µ ∼ z2n

2c
(3)

where ∼ denotes = (1 + o(1)). (Equation (3) follows from Lemma 8 of [1]).
Note that as c → ∞ we have z ր c. (z < cβ ⇒ zez < cβecβ = cez ⇒ z < c. Also

c→∞⇒ cez →∞⇒ cβ →∞⇒ z →∞⇒ z/cβ → 1. Now use β = e−e−zcβ and cβ = ce−o(cβ) to
deduce that β → 1).

The degrees of the vertices in Γ1 = Gδ≥2
ν,µ are distributed as truncated Poisson random vari-

ables Po(λ;≥ 2). More precisely we can generate the degree sequence by taking random variables

10

Z1, Z2, . . . , Zν where

P(Zi = k) =
λke−λ

k!(1− (1 + λ)e−λ)
for i = 1, 2, . . . , ν and k ≥ 2. (4)

Then we condition on Z1+Z2+· · ·Zν = 2µ. The resulting Z1, Z2, . . . , Zν have the same distribution
as the degrees of Γ1. This follows from Lemma 4 of [1]. If we choose λ so that E(Po(λ;≥ 2) = 2µ

ν

or λ(eλ−1)
eλ−1−λ

= 2µ
ν then the conditional probability, P(Z1 + Z2 + · · ·Zν = 2µ) = Ω(1/

√
ν) and so we

will have to pay a factor of O(
√
ν) for removing the conditioning i.e. to use the simple inequality

P(A | B) ≤ P(A)/P(B).
Hence we can take

λ(eλ − 1)

eλ − 1− λ
= c̃ =

2µ

ν
∈ [.999c, 1.001c].

It follows from (2) and (3) that when c is large whp z(ez−1)
ez−1−z ∼

2µ
ν ∼ c and so λ ∼ z ∼ c. This

explains why we can assume that c̃ ∈ [.999c, 1.001c].
The maximum degree in G is less than log n whp and Γ inherits this property. Equation (7) of

[1] enables us to claim that that if νk, 2 ≤ k ≤ log n is the number of vertices of degree k then whp

∣

∣

∣

∣

νk −
νλke−λ

k!(1− (1 + λ)e−λ)

∣

∣

∣

∣

≤ K1

(

1 +
√

νλke−λ/(k!(1− (1 + λ)e−λ))

)

logn, 2 ≤ k ≤ log n. (5)

for some constant K1 > 0.
In particular, this implies that if the degrees of the vertices in Γ are d1, d2, . . . , dν then whp

ν
∑

i=1

di(di − 1) = O(n). (6)

Given the degree sequence we make our computations in the configuration model, see Bollobás
[3]. Let d = (d1, d2, . . . , dn) be a sequence of non-negative integers with m = nd even. Let W = [nd]
be our set of points and let Wi = [d1 + · · · + di−1 + 1, d1 + · · · + di], i ∈ [n], partition W . The
function φ : W → [n] is defined by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into
m = dn/2 pairs) we obtain a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for
each {u, v} ∈ F . Choosing a pairing F uniformly at random from among all possible pairings of
the points of W produces a random (multi-)graph GF .

This model is valuable because of the following easily proven fact: Suppose G ∈ Gn,d. Then

P(GF = G | GF is simple) =
1

|Gn,d|
.

It follows that if G is chosen randomly from Gn,d, then for any graph property P

P(G ∈ P) ≤ P(GF ∈ P)
P(GF is simple)

. (7)

Furthermore, applying Lemmas 4.4 and 4.5 of McKay [7] we see that if the degree sequence of Γ
satisfies (6) then P(GF is simple) = Ω(1). In which case the configuration model can substitute for
Gn,d in dealing events of probability o(1).

11

2.3.2 Proof of Lemma 2

We show that whp augmenting trees of size λ = 2l + 1, where α1

c log n ≤ λ ≤ n0.9, expand at a
steady rate close to c.

We will first show that the probability of the event that there exists a tree T with |Even(T)| = l
and |N(Even(T))| = r, α1

c log n ≤ l ≤ n0.9 and l ≤ r ≤ 0.91cl, is polynomially small.
If the above event occurs, then the following configuration appears (i) 2l edges of the tree

connect Even(T) to Odd(T) (ii) r − l edges connect Even(T) to U = N(Even(T)) \ Odd(T) and
(iii) none of the (l+1)(n− r− l− 1) edges between Even(T)∪{root vertex} and V \U are present.
Given the vertices of T and N(Even(T)), the probability of the above event occurring in Gδ≥2

n,m is
bounded above by

O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r

×

∑

di≥2, i∈[r+l+1]
∑l+1

i=1
di=r+l

(

l+1
∏

i=1

λdidi!

di!(eλ − 1− λ)

2l+1
∏

i=l+2

λdidi(di − 1)

di!(eλ − 1− λ)

r+l+1
∏

i=2l+2

λdidi
di!(eλ − 1− λ)

)

(8)

Explanation:
The probability that an edge exists between vertices u and v of degrees du and dv, given the

existence of other edges in the tree, is at most d′ud
′

v
2µ−2(l+r)+1 where d′u = du less the number of edges

already assumed to be incident with u. Hence, given the degree sequence, the probability that the
augmenting tree exists is at most

(

1

2µ− 2(l + r) + 1

)l+r l+1
∏

i=1

di!
2l+1
∏

i=l+2

di(di − 1)
r+l+1
∏

i=2l+2

di.

Here the first product corresponds to Even(T), the second product corresponds to ODD(T) and
the final product corresponds to neighbours of T (not in T).

We now simplify the expression (8) obtained for the probability to

O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r

×

λ2r+2l

(eλ − 1− λ)r+l+1

∑

∑l+1

i=1
di=r+l





∑

di≥2, i∈[r+l+1]

2l+1
∏

i=l+2

λdi−2

(di − 2)!

r+l+1
∏

i=2l+2

λdi−1

(di − 1)!





≤ O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r

×

λ2r+2l

(eλ − 1− λ)r+l+1

∑

∑l+1

i=1
di=r+l

di≥2,i∈[l+1]









2l+1
∏

i=l+2

∑

di≥2

λdi−2

(di − 2)!









r+l+1
∏

i=2l+2

∑

di≥2

λdi−1

(di − 1)!









≤ O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r λ2r+2l

(eλ − 1− λ)r+l+1

(

r

l

)

eλl (eλ − 1)r−l

12

≤ O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r λ2r+2l

(eλ − 1− λ)r+l

(er

l

)l
eλl(eλ − 1)r−l

= O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r
(er

l

)l
(c̃λ)r

(

c̃λeλ

(eλ − 1)2

)l

using
λ(eλ − 1)

eλ − 1− λ
= c̃

≤ O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r

(c̃λ)r
(

0.91ecc̃λeλ

(eλ − 1)2

)l

using r/l ≤ 0.91c

≤ O(
√
ν)

(

1

2µ− 2(l + r) + 1

)l+r

(c̃λ)r
(

0.92ecc̃λ

eλ − 1

)l

using
eλ

eλ − 1
< 1.01

≤ O(
√
ν)

(

1

c̃ν

)l+r

e3(l+r)2/c̃ν(c̃λ)r
(

0.92ecc̃λ

eλ − 1

)l

using 2µ = c̃ν

= O(
√
ν)

(

1

ν

)l+r

eo(l) λr

(

0.92ecλ

eλ − 1

)l

(9)

since r = O(l).
We now count the number of such configurations. We begin by choosing Even(T) and the root

vertex of the tree in at most ν
(

ν
l

)

ways. We make the following observation about augmenting path
trees with |Even(T)| = l. The contraction of the matching edges of the tree yields a unique tree on
l + 1 vertices. We note, by Cayley’s formula, that the number of trees that could be formed using
(l + 1) vertices is (l + 1)l−1. Reversing this contraction, we now choose the sequence of l vertices,
Odd(T), that connect up vertices in Even(T) in (ν − l− 1)(ν − l− 1)...(ν − 2l) = (ν − l− 1)l ways.
We pick the remaining r− l vertices from the remaining ν− 2l− 1 vertices in

(

ν−2l−1
r−l

)

ways. These

r− l vertices can connect to any of Even(T) in lr−l ways. Hence, the total number of configurations
is at most

ν

(

ν

l

)

(l + 1)l−1(ν − l − 1)l

(

ν − 2l − 1

r − l

)

lr−l ≤ νr+l+1er
(

l

r − l

)r−l

.

Combining the bounds for probability and configurations, we get an upper bound of

νr+l+1er
(

l

r − l

)r−l

O(
√
ν)

(

1

ν

)l+r

eo(l) λr

(

0.92ecλ

eλ − 1

)l

≤ O(ν3/2) ·
(

eλl

r − l

)r−l(0.93e2cλ2

eλ − 1

)l

The expression
(

eλl
x

)x
is maximized at x = λl > 0.9999c̃l. But r− l ≤ 0.91cl < λl. Hence, we have

the bound

O(ν3/2) ·
(

eλl

0.91cl

)0.91cl (0.93e2cλ2

eλ − 1

)l

≤ O(ν3/2) ·
(e

0.91

)0.91cl
(

0.93e2cλ2

eλ − 1

)l

using λ < c

≤ O(ν3/2) ·
(e

0.91

)0.91cl
(

0.93e2cλ2

e0.999c

)l

using eλ − 1 > e0.999c

≤ O(ν3/2) ·
(

0.93e2cλ2

e0.002c

)l

using
e0.999

(

e
0.91

)0.91 > e0.002

= O(ν3/2)ql where q =
0.93e2cλ2

e0.002c
≤ e−.001c.

13

We sum the above expression over all r and l with α1

c logn ≤ l ≤ n0.9 and l ≤ r ≤ 0.91cl and
we get the probability to be at most

O(n7/2)q
α1
c

log n = O(n7/2−α1/1000) = o(n−2)

for α1 ≥ 5501.
We will now show that the probability of the event that there exists a tree having |Even(T)| = l

and |N(Even(T))| ≥ 1.07cl, where α1

c log n ≤ l ≤ n0.9.
It is enough to show that the probability that there exists a tree with |Even(T)| = l and

|N(Even(T))| ≥ r, where α1

c log n ≤ l ≤ n0.9 and r = 1.07cl, is polynomially small since a tree
with |N(Even(T))| > 1.09cl also contains a tree with |N(Even(T))| ≥ 1.07cl.

The probability bound (9) remains the same with the 0.92 replaced by 1.08 and we get a bound
of

O(ν3/2) ·
(

eλl

1.07cl

)1.07cl (1.08e2cλ2

eλ − 1

)l

≤ O(ν3/2) ·
(e

1.07

)1.07cl
(

1.08e2cλ2

eλ − 1

)l

using λ < c

≤ O(ν3/2) ·
(e

1.07

)1.07cl
(

1.08e2cλ2

e0.999c

)l

using eλ − 1 > e0.999c

≤ O(ν3/2) ·
(

1.08e2cλ2

e0.002c

)l

using
e0.999

(

e
1.07

)1.07 > e0.002

= O(ν3/2)ql where q =
1.08e2cλ2

e0.002c
≤ e−.001c.

We sum the above expression over all l with α1

c log n ≤ l ≤ n0.9 and we get the probability to
be at most

2en5/2q
α1
c

log n = 2en5/2−α1/1000 = o(n−2)

for α1 ≥ 4501.
Hence, whp, there does not exist a tree with |Even(T)| = l and |N(Even(T))| = r, where

α1

c log n ≤ l ≤ n0.9 and r /∈ [0.9cl, 1.1cl]. �

2.3.3 Proof of Lemma 3

We show that this holds in Gn,m and note that Gδ≥2
ν,µ is a vertex induced subgraph of Gn,m. Since

the property is closed under edge deletion this will imply the Lemma. Because the property in
question is monotone increasing we can estimate the events probability in Gn,p where p = c

n .
If there are two small cycles close together then there will be a path P of length at most

k = a + b + d plus two extra edges joining the endpoints of P to internal vertices of P . The
probability of this can be bounded by

nkk2pk+1 ≤ k2ck+1

n
= Õ

(

1

n1−α2

)

.

�

14

2.3.4 Proof of Lemma 4

We can work in Gn,p, for exactly the same reasons as in Lemma 3.
We get the bound

(

n

k

)(
(

k
2

)

(1 + ǫ)k

)

(c

n

)(1+ǫ)k
≤
(en

k

)k
(

ek2/2

(1 + ǫ)k

)(1+ǫ)k
(c

n

)(1+ǫ)k
≤
(

e2+ǫc1+ǫkǫ

nǫ

)k

and since k = O(n.99) the summand can be upper bounded by 2−k for k ≥ √n and by n−ǫk/200 for
k ≤ √n. The union bound then gives an upper bound of

√
n

∑

k=log logn

n−ǫk/200 +
n.99
∑

k=
√
n

2−k = o(n−3)

�

3 Karp-Sipser conditioning

We now study the conditioning introduced on unused edges by the Karp-Sipser algorithm.
We now view Γ as an ordered sequence of edges and look at an equivalent version of the

Karp-Sipser algorithm. In the analysis of Karp-Sipser on random graphs we have two sources of
randomness. One is the random graph itself and the other one is the random choices made by
the algorithm. In order to simplify the analysis we change the choices into deterministic ones and
simply randomize the order in which the edges are stored and take them in this (random) order.
This is equivalent to the original algorithm. We now state the modified Karp-Sipser algorithm. We
stress that we do not propose to implement the Karp-Sipser algorithm in this way, it is merely a
vehicle used in our analysis. It does however produce the same output if the ordering is matched
to the choices made by the original Karp-Sipser algorithm. We consider its effect on Phase 2. We
assume the graph Γ at the start of Phase 2 is given as Γ = (ξ1, . . . , ξµ), an ordered set of µ edges.

We say that edge e ∈ Γ has index i if it is the i-th edge in the list, i.e. e = ξi. Note that every
graph in the support of Gδ≥2

ν,µ will yield µ! ordered sets of edges, so from now on we will think of

Gδ≥2
ν,µ as a family of ordered sets of edges. Furthermore, if c is large then µ/ν will be close to c,

whp.

1: procedure KS
∗(G)

2: M ← ∅

3: while G 6= ∅ do
4: if G has vertices of degree 1 then
5: Of all edges incident to vertices of degree 1, let e have the lowest index
6: Let e = (v, u) where v has degree 1.
7: else
8: Let e = (v, u) be the edge of lowest index in G
9: end if

10: M ←M ∪ (v, u)
11: G← G \ {v, u}
12: end while
13: return M
14: end procedure

15

The output of Karp-Sipser algorithm will consist of an ordered matching M = {e1, e2, . . . , eℓ}
plus some extra witness edges W . Here e1, e2, . . . , eℓ is the order in which the matching edges are
produced by the Karp-Sipser algorithm. More precisely, the output will be a sequence σ1, σ2, . . . , σµ
where σi is either (i) an edge of G, marked as being a matching edge or a witness, or (ii) ∗. The
choice σi = ∗ signifies that the ith edge is random with a distribution described in Section 3.2. In
addition, the output includes the ordering of M by the time of choice by the Karp-Sipser algorithm.

There will therefore be a set Ψ of possible edge replacements for the positions with ∗. Given
the output, each member of Ψ will be equally likely. This follows from the fact that G is sampled
uniformly from a set of instances. We need however to know more about the structure of Ψ and
this is the content of Lemma 7 below.

3.1 Witness edges

In addition to the edges of the matching we define edges based on the execution of the algorithm.
We split the vertices of the graph into three classes, regular, pendant and unmatched. A vertex
is regular if when it was removed from the graph, it had degree 2 or more. A vertex is said to
be a pendant vertex if when it was removed it had degree exactly one and it is the endpoint of
a matching edge in M . Unmatched vertices are those vertices that are not incident to matching
edges. We say that an edge e is regular if both of its endpoints are regular, i.e. it was removed
from the graph in line 8. For each of these vertices we define witness edges.

• Regular Vertices: v is removed from the graph when the edge e is picked as a matching
edge. Since it has degree at least 2, there are other edges incident to it at the time it is
removed. Pick the one with the lowest index and define it to be the regular witness edge for
v.

• Pendant or Unmatched vertices: Consider the last point of time when v has degree at
least 2, an edge e = (x, y) is removed from the graph and v is incident to at least one of them
(perhaps both), say x. We then define (v, x) to be the pendant witness edge for v.

• Unmatched Vertices: v has a pendant witness edge, and since it is never picked for a
matching its last edge is incident to some matching edge e = (x, y), say x, we then define
(v, x) to be the removal witness edge for v.

• In case of any ambiguities, define pendant witness edges first and then removal witness edges.
Use the lowest index of edges to break all ties. This can happen if a vertex goes from having
degree three to pendant or from having degree 2 to degree zero if it is incident to both
endpoints of a matched edge.

• Note that an edge e can be a regular witness edge for one vertex and a pendant or removal
witness edge for another vertex.

Let W be the set of witness edges. Regular and pendant vertices are incident to matching edges
and their witness edges. Unmatched vertices are incident to two witness edges. Hence the graph
defined by M and W has minimum degree 2 and size at most 2ν.

We think of the graph G as an ordered set of µ boxes filled with edges. Suppose we know the
output of KS∗, M , W and also the order in which the matching and witness edges were added to M
and W , but the underlying graph is unknown to us. This corresponds to µ ordered boxes, of which
the ones corresponding to M and W have been opened. The following lemma provides necessary
and sufficient conditions for a graph G to yield M and W as the output of KS∗.

16

Lemma 7 In the following e = (u, v) is not an edge of graph G′ and G = G′ ∪ {e}. Think of G′

as an ordered set of µ boxes where one box is unopened. To obtain G we open this box and find e.
Suppose that when algorithm KS∗ is run on G it produces the ordered matching M and the witness
set W . Suppose further that when algorithm KS∗ is run on G′ it produces the ordered matching M ′

and the witness set W ′.

(a) If e /∈M ∪W then M ′ = M and W ′ = W and e satisfies the preservation conditions 1,2, and 3
below where the type of a vertex is determined by the execution of the Karp-Sipser algorithm
on G.

(b) If e satisfies the preservation conditions 1,2, and 3 below, where the type of a vertex is deter-
mined by the execution of the Karp-Sipser algorithm on G′ then M = M ′ and W = W ′.

(c) In both cases (a), (b) above, the type of u or v is the same with respect to the execution of the
Karp-Sipser algorithm on G or G′.

Preservation Conditions.

1. If both u and v are both regular vertices and u was removed from the graph before v then e
has a higher index than the regular witness edge for u.

2. If u is a regular vertex and v is either a pendant or unmatched vertex then (i) e has a higher
index than the regular witness edge for u, (ii) u is removed before v by the Karp-Sipser
algorithm and (iii) when u is removed from the graph v has degree at least 2. Additionally,
if the pendant witness for v is incident to the matching edge of u then e has a higher index
than the pendant witness for v.

3. At least one of u, v is a regular vertex.

Proof of Lemma 7:
To keep track of the algorithm KS∗ we let Gt denote the graph after the tth iteration, so G0 = G
and GT = ∅ where T is the number of iterations. At timestep t let Πt be the set of edges incident
with pendant vertices of Gt. Let Mt denote the set of matching edges and Wt denote the set of
witness edges at time t. For G′ we define G′

t etc. in the same manner.
(a) Assume that u is removed first from G at time step tu + 1, i.e. u ∈ Gtu and u /∈ Gtu+1.

If u, v are both G-regular then this can be assumed. (We use the term G-regular to stress the
fact that we are considering the execution of the Karp-Sipser algorithm on G). If u is a G-regular
vertex and v is either a G-pendant vertex or a G-unmatched vertex then u must be removed first.
Suppose not and v is removed first. Suppose that v is G-pendant. Then when v is removed, edge
e is still in Gt and it has a higher index than the G-witness edge for v. But this implies that v is a
G-regular vertex, contradiction. A similar argument handles the case when v is unmatched.

We show next that Mt = M ′
t for t = 1, . . . , tu. If this holds for all t up to tu then after that we

will have Gt = G′
t for t > tu since u has been removed and e is gone from the graph. This is proved

by induction. The base case is easy since M0 = M ′
0 = ∅. Assume that Mt = M ′

t so Gt = G′
t ∪ {e}.

We now show that Mt+1 = M ′
t+1

Case 1: Both u and v are G-regular. Since e is not incident to a G-pendant vertex and e /∈W
we have Πt = Π′

t. If Πt 6= ∅ then we select the edge from Πt with minimum index, and add it to
Mt, since Πt = Π′

t we have Mt+1 = M ′
t+1. If Πt = ∅ we select the edge in Gt of minimum index.

This cannot be e since it comes after the regular G-witness edge f for u. If e came before f then f
would not be the G-witness edge for u. Hence the preservation conditions hold and the same edge
is chosen in both Gt and G′

t and Mt+1 = M ′
t+1.

17

Case 2: u is a G-regular vertex and v is either a G-pendant vertex or a G-unmatched vertex.
Now u is removed from G before v and degGtu

(v) ≥ 2. This is clear since e is not a pendant witness
for v and the pendant witness edge is the second last edge incident to v to be removed from the
graph.

Neither u nor v are G-pendant vertices for t ≤ tu and so e is not incident with a G-pendant
vertex, hence Πt = Π′

t. Thus if Πt 6= ∅ we have Mt+1 = M ′
t+1 as before. If Πt = ∅ we use the

argument for Case 1 with the additional comment. If the G-pendant witness f for v is incident to
the matching edge of u then e must have a higher index than f , otherwise e would be the G-pendant
witness for v.

Case 3: If u, v are both G-pendant vertices and u is matched before v then u is incident to e
and its matching edge at the time it is matched, contradicting the fact that degGtu

(u) = 1. If u is
G-pendant and v is unmatched then we draw the same conclusion. If both u, v are G-unmatched
and u becomes isolated first then e would have to be the G-removal witness for u, a contradiction
since v is still in the graph.

We have now shown that e satisfies the preservation conditions with respect to G and the same
ordered matching set M will be generated for G and G′. In particular we have shown

Gt =

{

G′
t ∪ {e} t ≤ tu

G′
t t > tu

(10)

This together with the fact that e has a higher index than the G-regular witness edge f for u
immediately implies that W ′ = W . This is because the Karp-Sipser algorithm will basically have
the same choices for witnesses at each point.

This completes the proof of Part (a).
(b) Assume now that the preservation conditions hold with respect to the execution of the

Karp-Sipser algorithm on G′. It is enough to show that (10) holds under these assumptions. This
will imply that W ′ = W . Consider the execution of the Karp-Sipser algorithm on G. Assume as
in (a) that Mt = M ′

t so Gt = G′
t ∪ {e}. We show that Mt+1 = M ′

t+1.
Case 1: Both u and v are G′-regular. Since e is not incident to a G′-pendant vertex we have

Πt = Π′
t. If Πt 6= ∅ then we select the edge from Πt with minimum index and add it to Mt. Since

Πt = Π′
t we have Mt+1 = M ′

t+1. If Πt = ∅ we select the edge in Gt of minimum index. This cannot
be e since it comes after the regular G′-witness edge f for u. Note that f ∈ G′

t implies that f ∈ Gt

at this point. Hence the same edge is chosen in both Gt and G′
t and Mt+1 = M ′

t+1.
Case 2: u is a G′-regular vertex and v is either a G′-pendant vertex or an G′-unmatched vertex.

By the preservation conditions u is removed from G′ before v and degG′

tu
(v) ≥ 2. Neither u nor v

are Gt-pendant vertices for t ≤ tu so e is not incident with a Gt-pendant vertex, hence Πt = Π′
t.

Thus if Πt 6= ∅ we have Mt+1 = M ′
t+1 as before. If Πt = ∅ we use the argument for Case 1.

Hence the graphs G and G′ will generate the same ordered matchings and (10) holds.
This completes the proof of Part (b).
Part (c) follows from (10). It immediately shows that if x is G′-regular then it is G-regular.

If x is G′-pendant then it is either G-regular or G-pendant. Also, x is G-unmatched iff it is G′-
unmatched. We only have to check now that if x is G′-pendant then it is G-pendant. Here we must
have x ∈ {u, v} and then x = v since we have assumed that u is deleted first and is G′-regular. But
the fact that u is deleted before v means that adding the edge e cannot change the type of vertex
v when going from G′ to G.

Remark 8 Note that it is possible to add an edge to the graph that will produce the same set of
matching edges, but a different witness set. Since we want to condition on both sets, and the exact
order in which they were produced we are not concerned with such cases.

18

Remark 9 Part (a) of Lemma 7 shows that we can remove all edges except matching and witness
edges and KS∗ will produce the same output on this “skeleton” graph. Thus we can partition the set
of all graphs where each part corresponds to the same skeleton graph. Part (b) of Lemma 7 allows
us to construct each graph corresponding to the same skeleton graph.

Remark 10 We stress the following point about condition 2(iii). If (u, x) is a pendant edge at the
time of u’s removal and v was pendant at this time then adding (u, v) would mean that Gtu and
G′

tu have different sets of pendant vertices and this contradicts our argument for Part (a).

3.2 Probability Space

We describe the probability space after we sample a random graph from Gδ≥2
ν,µ and run KS∗ on the

graph. We condition on the output matching edges M and also on the witness edges W . For the
purpose of proof we assume that KS∗ outputs W as well as M . Given the output M and W and
Lemma 7 we can find all graphs that would give M and W as the output of KS∗ and generate one
uniformly at random.

First note that for each box i that is not in M or W we can create a set of edges Ei that could
go into that box, from Lemma 7 we see that this set depends only on M and W . Also note that
all the rules state that an edge can go into any box that comes after some specified box, thus we
have Ei ⊆ Ej when i < j. This leads us to the following algorithm for generating a random graph
from the distribution Gδ≥2

ν,µ |M,W , i.e. conditioned on the output of KS∗.

1: procedure Generate-Random(M ,W)
2: for unfilled boxes i do
3: Ei ← {all edges e that can go into box i}
4: end for
5: Γ←M ∪W
6: for unfilled boxes i in increasing order do
7: Select e uniformly at random from Ei

8: Γ← Γ ∪ {e}
9: Remove e from Ej for all j > i

10: end for
11: return Γ
12: end procedure

Each Γ that outputs M and W can be generated with Generate-Random in exactly one way
(since the graph is an ordered set of edges) and that any graph Γ produced by Generate-Random
will produce M and W when we run KS∗ on Γ. This shows that Generate-Random will gives a
uniformly random graph from Gδ≥2

ν,µ |M,W .

4 Final Proof

In Section 3.2 we gave a description of the probability space. However this is not enough for us to
finish the proof of Theorem 1. We need to dig a little deeper into the analysis of the Karp-Sipser
algorithm. We begin by listing some definitions and lemmas from the paper that we will need. The
constants ε and γ are given in (1).

Let τ0 be the last time when the number of vertices removed from the graph is at most n.8+10ε.
We refer to vertices removed before τ0 as early vertices and those removed afterwards as late. We
say that a matching edge e is a good matching edge if both of its endpoints are early and regular
and if the regular witness edges for both of its endpoints have indices in [µ/2].

19

We will show that whp when we reach Stage 3, Tu and Tv will both have many late vertices at
the front (Lemma 13). There will also be many good matching edges outside the two trees (Lemma
14).

The good matching edges are useful since they allow us to identify a large set of potential edges
in the graph. Suppose that e = (x, a) where a is an endpoint of a good matching edge and x is a
late vertex. Then a is a regular vertex removed before x and when a is removed from the graph
all vertices have degree at least two. So unless (i) x is a pendant or unmatched vertex and (ii) the
pendant witness edge for x is incident to the other endpoint of the matching edge for b, then all of
the preservation conditions are satisfied and (x, a) can be part of the graph. We say that such an
edge is available. But for each a, Lemma 3 implies that there is at most one vertex x such that (i)
and (ii) hold. Because a is an endpoint of a good matching edge the edge e = (x, a) can go into
any open box after the regular witness edge for a, which is guaranteed to have index less than µ/2.
In summary, if e is available then

P(Box i ≥ µ/2 contains e | contents of boxes j 6= i) ≥ 1
(

n
2

) . (11)

Using this, we will be able to show that if Tu, Tv contain many unexposed late vertices at their
front and there are many good matching edges, then we will be able to find x, a, b, y such that x, y
are unexposed late vertices at the fronts of Tu, Tv repsectively and (a, b) is a good matching edge
and x, a, b, y is a path, producing the required augmenting path from u to v.

4.1 The Batch Graph

Let Γ(t) denote the current graph after t steps of Phase 2. It is shown in [1] that Γ(t) is distributed
uniformly at random from the set of all graphs with v0(t) vertices of degree 0, v1(t) vertices of
degree 1, v(t) vertices of degree at least 2 and m(t) edges, we denote this sequence by ~v(t) =
(v0(t), v1(t), v(t),m(t)). Furthermore, the sequence ~v(t) is a Markov chain. Thus the analysis of
the algorithm is done by tracking the sequence ~v(t). Additionally we define z(t) by

2m(t)− v1(t)

v(t)
=

z(t)(ez(t) − 1)

ez(t) − 1− z(t)
.

Thus z(0) = λ ∼ z of Section 2.3.1. Notice that v1(0) = 0.
Conditional on ~v(t), the degrees of the vertices of degree at least 2 are distributed as independent

copies of a truncated Poisson random variable Z, where

P(Z = k) =
zk

k!(ez − 1− z)
k = 2, 3, . . .

conditional on
∑

v:deg(v)≥2 Zv = 2m(t)− v1(t).

As our input is taken from Gδ≥2
ν,µ we start in the state ~v(0) = (0, 0, ν, µ), i.e. with v1(0) = 0.

For t1 < t2 such that v1(t1) = v1(t2) = 0 and v1(t) > 0 for t1 < t < t2 ≤ τ0 we look at the set of
edges and vertices removed from t1 to t2, i.e. the graph Γ(t1) \ Γ(t2) and call it a batch. Note that
each batch contains the regular matching edge removed at time t1 and is a connected graph.

We note next that for t = 0, . . . , τ0 we have removed at most o(n) vertices and o(n) edges, thus

2m(t)− v1(t)

v(t)
= (1 + o(1))

2m(0)− v1(0)

v(0)
= (1 + o(1))c̃

and z(t) = (1 + o(1))z(0) and z(t) is bounded away from 0 by a constant. Corollary 3 of [1] then
gives that E[v1(t+ 1)− v(t)] ≤ −α for some positive constant α. Using this α in Lemmas 13 and
14 in [1] gives the following lemma

20

Lemma 11

P

(

∃t ≤ τ0 : v1(t) >
4 log3 n

α

)

= O(n−4)

and
P
(

∃t ≤ τ0 − T : v1(t) = 0, v1(t
′) > 0 for t < t′ ≤ t+ T

)

= O(n−4)

for T = 16 log3 n
α3 .

This shows that for t ≤ τ0 each batch corresponds to an interval of time of length at most
O(log3 n). Since the maximum degree in Γ is o(logn) whp, we see that the total number of
pendant vertices (at the time of removal) is O(log4 n), which implies that the number of vertices
in a batch is also O(log4 n).

This also shows that during the first τ0 time steps there will be at least Ω
(

n.8+10ε

log4 n

)

times when

v1(t) = 0 and thus at least that many regular edges are added to the matching.

Lemma 12 The probability ρ that there exists a vertex v ∈ G that is within distance γ logc n of
100 batches is at most n−5

Proof of Lemma 12:
Letting dist denote distance in Γ we bound this probability by

ρ ≤ n
n
∑

v=1

(

n.8+10ε

100

) 100
∏

i=1

P(dist(v,Bi) ≤ γ logc n | dist(v,Bj) ≤ γ logc n, 1 ≤ j < i).

Explanation: Here
(

n.8+10ε

k

)

is the number of choices for the start times of the batches
B1, B2, . . . , Bk.

We claim that for each i, v,

P(dist(v,Bi) ≤ γ logc n | dist(v,Bj) ≤ γ logc n, 1 ≤ j < i) ≤ nγ+ε+o(1)−1. (12)

Using the values of ε, γ from (1), this gives

ρ ≤ n(n.8+11ε+γ+o(1)−1)100 ≤ n−5.

Proof of (12): Suppose that Bi is constructed at time ti. It is a subgraph of Γ(ti) and depends
only on this graph. Using Lemma 11, we argue that

P(∃w ∈ Bi : dist(v, w) ≤ γ logc n | dist(v,Bj) ≤ γ logc n, 1 ≤ j < i)

≤ O(n−4) +
O(log4 n)

n− o(n)
(nγ+ε + P(∃w : |Nγ logc n(w)| ≥ nγ+ε), (13)

where Nk(w) is the set of vertices within distance k of w in Gn,p.

Explanation: The O(n−4) term is the probability the batch Bi is large. The term O(log4 n)
n−o(n)

in (13) arises as follows. We can assume that |Nγ logc n(w)| ≤ nγ+ε, see (14) below. Suppose as
in [1] we expose the graph Γ at the same time that we run the Karp-Sipser algorithm. For us
it is convenient to work within the configuration model of Bollobás [3]. (Note that in this case
the multi-graph produced by the configuration model has an Ω(1) probability of being simple, see
Section 2.3.1). Assume that we have exposed Nγ logc n(w). At the start of the construction of a
batch we choose a random edge of the current graph. The probability this edge lies in Nγ logc n(w)

21

is ≤ nγ+ε/(n − o(n)). In the middle of the construction of a batch, one endpoint of a pendant
edge is known and then the other endpoint is chosen randomly from the set of configuration points
associated with Γ(t). The probability this new endpoint lies in Nγ logc n(w) is also ≤ nγ+ε/(n−o(n))
and there are only O(log4 n) steps in the creation of a batch. This explains the term O(log4 n)

n−o(n) nγ+ε.
It only remains to verify

P(∃w : |Nγ logc n(w)| ≥ nγ+ε) = O(n−10). (14)

To prove this we can resort to proving the same inequality for Gn,c/n. This is an easy application
of Chernoff bounds. We do a BFS from w until the first time that the breadth first tree has ≥ logn
leaves. Given a maximum degree of o(log n) we see that there will at this time be o(log2 n) leaves.
If there are never ≥ log n leaves then, |Nγ logc n(w)| = o(log3 n) and so assume it does. If there
are ℓs leaves at depth s then the number of leaves at depth s + 1 in the BFS tree is bounded by
Bin(ℓsn, p) where p = c

n and so

P(ℓs+1 ≥ 2cℓs) ≤ e−cℓs/3 ≤ n−c/3

and so with probability 1− O(n−10) say, the tree will grow multliplicatively at a rate of less than
2c per round. In which case |Nγ logc n(w)| ≤ (2c)γ logc n ≤ nγ+ε.

Early pendant vertices can be a nuisance at the front of a tree. It follows from Lemma 7, Rule
2(ii), that if v is early then there could be relatively few choices for u so that we can find edge (u, v)
in an unopened box. The next lemma puts a bound on the number of early vertices at the front.

Lemma 13 Let T be an augmenting tree of size |T | = Ω(n.5). Then, whp, there are at most
|F |/n2ε early vertices at the front F of the tree.

Proof of Lemma 13: Suppose first that T is in Stage 1 and that there are s = |T |
n3ε early vertices

at the front of the augmenting tree T . Let F ′ be the set of nodes in the tree at distance γ logc n
from the front. Consider the subtree T ′ formed by F ′ and the paths from nodes in F ′ to the root.
By Lemma 2, if T ′ underwent γ

2 logc n spurts, its front would increase by a factor of at least

(

9c

10

)
γ
2
logc n

≥ nγ/3 (15)

for c large enough. This shows that |F ′| ≤ |T |/nγ/3. Since there are at least |T |/n3ε early vertices
on the front there exists a node v in F ′ that is an ancestor to at least nγ/3−3ε early vertices. Each
batch contains at most log4 n vertices so there are at least nγ/3−3ε−o(1) early vertices from distinct
batches. By the definition of F ′ the batches are at a distance of at most γ logc n from v and so by
Lemma 12 the probability of this event can be bounded above by n−5.

Now assume that T is in Stage 2 and that r levels have been added since the start of Stage 2.
This is the interesting case, but the argument for Stage 1 will come in handy. The problem is that
(15) need not be true, as we do not grow from unexposed vertices. Let T ∗ ⊇ T denote the tree
we would grow if we had also grown from unexposed vertices in Stage 2. Let f0, f1, . . . , fr be the
front sizes in T from the start of Stage 2 and let f∗

0 , f
∗
1 , . . . , f

∗
r denote the sizes of the corresponding

fronts F ∗
i in T ∗. Here f0 = f∗

0 is the size of the front at the end of Stage 1. The argument already
given shows that there are at most f∗

i /n
3ε early vertices at the front of the ith such level of T ∗.

Now under the worst-case assumption that the early vertices of F ∗
i are all unexposed, we see that

there at most n−3ε
∑r

i=1 f
∗
i early vertices in the front F of T . (16)

22

Now we have
r
∑

i=1

f∗
i ≤

r
∑

i=1

(

11c

10

)i

f0 and fr ≥
(

3c

4

)r

f0.

Using Lemma 5(d), this implies that

r
∑

i=1

f∗
i ≤

(

44

30

)r

fr ≤
(

44

30

)log3c/4 n

fr ≤ nεfr.

The lemma follows from this and (16).

4.2 Good Matching edges

Lemma 14 There are whp Ω
(

n.8+10ε

log4 n

)

good matching edges in Γ.

Proof of Lemma 14: As already observed, Lemma 11 shows that there are Ω
(

n.8+10ε

log4 n

)

times

t ≤ τ0 when v1(t) = 0. Consider exposing the ordering of the edges of the graph as we remove
edges from the graph. Thus at time t all edges in Γ \ Γ(t) have been revealed. When v1(t) = 0
an edge is picked as a matching edge and must be in the available box of lowest index. Then for
both endpoints we reveal the indices of edges incident to the endpoints. The edges of lowest index
for each vertex become the witness edges. Note that at this point in time the contents of at most
O(n.8+10ε) boxes have been revealed. Since each endpoint has at least one edge incident to it the
index of the witness edge is in [µ/2] with probability at least 1

2 − o(1). This shows that the regular
edge created at this time is a good matching edge with probability at least 1

4 − o(1), independently
of the previous history. Thus the actual number of good matching edges dominates a binomial with

expectation Ω
(

n.8+10ε

log4 n

)

.

4.3 Putting it all together

We show that whp in each execution of Augmentpath the algorithm will find an augmenting path
and will find one by exposing at most O(n.6−ε) new vertices.

4.3.1 Running Time

The size of the front of an augmenting tree in the ith execution of Augmentpath will be at most
O(in.6−ε) since we claim that whp we only explore O(n.6−ε) unexposed vertices in an execution of
Augmentpath. Thus all fronts can easily be fitted into an array of size n. This also implies that the
amount of work done in the ith execution of Augmentpath is O(((i − 1)n.6−ε + n.6−ε log n) logn),
since we could in the worst case visit all previously exposed vertices and the maximum degree
is o(log n) whp. The final log n accounts for the overhead from using more sophisticated data
structures as discussed in section 2.1.

So the total work would be Õ(l2n.6−ε) = Õ(n1−ε) = o(n), where l is the total number of
executions of AugmentPath and l = Õ(n.2) since the size of I2 is Õ(n.2) whp.

4.3.2 Proof of Theorem 1

Consider the ith execution of Augmentpath and assume we have only exposed O(i ·n.6−ε) = o(n.8)
vertices. By Lemma 5 we know that whp the algorithm will be able to grow the trees by a factor
≥ 3c/4 in each execution of Augmentpath. If we have found an augmenting path before both trees

23

are in Stage 2 then at most O(n.6−ε) new vertices have been exposed. We will now show that during
Stage 3, the algorithm will find an augmenting path and expose at most O(n.6−ε) new vertices in
the process.

We know from Lemma 5 that Tu, Tv will enter Stage 3. Let Fu and Fv be the unexposed
vertices on the fronts of Tu and Tv respectively, and let Su and Sv be two sets of size n.6−2ε selected
randomly from the fronts. Now Fu and Fv represent at least an n−ε fraction of the size of the front,
and whp at most an n−2ε fraction of the front can be early vertices. So in the worst case at most
an n−ε fraction of Fu and Fv are early vertices. Since Su and Sv are selected at random from Fu

and Fv at least half of Su and Sv are late vertices with probability at least 1− o(n−1).
We now show that AugmentPath can find an augmenting path by a simple search. Let A be

the set of good matching edges whose endpoints are unexposed. Lemma 14 implies that initially
we have at least n.8+9ε good matching edges and at most o(n.8) vertices have been exposed, we
know that |A| = Ω(n.8+9ε).

If there exists an x ∈ Su, y ∈ Sv and (a, b) ∈ A such that (x, a), (b, y) ∈ E then (x, a), (a, b), (b, y)
forms an augmenting path with the paths from x and y to their roots. AugmentPath will do a
simple search for such a quadruple x, a, b, y.

Let Au be the set of edges in A whose vertices are adjacent to Su. It follows from Lemma 7
that an available edge (x, a), x ∈ Su and a incident to A can go into any one of the unopened boxes
after µ/2. At most 2n+ o(n) edges have been revealed. Revealing the contents of the boxes one by
one we have a lower bound of 1

(n2)
for the probability of seeing any one fixed edge e, see (11). This

is under the assumption that we have not already seen e in an earlier box, regardless of previously
opened boxes. Suppose now that we open the boxes µ/2 to 3µ/4 and stop when we have either
exhausted all such boxes or have found n.4+7ε members of Au. When we open a box, there is a
probability of at least (n.8+9ε − n.4+7ε)n.6−2ε/

(

n
2

)

≥ n.9ε−.6 of finding a new member of Au. Thus
|Au| dominates min

{

n.4+7ε, Bin(µ/4− 2n− o(n), n.9ε−.6
}

and so whp n.4+7ε/2 ≤ |Au| ≤ n.4+7ε.
For each edge a ∈ Au let ξa be a vertex of a that is adjacent to Su and let ηa be the other endpoint.

We now consider the edges in unopened boxes 3µ/4 to µ. For any unopened box the probability

it contains an edge from {ηa : a ∈ Au} to Sv is Ω

(

n.6−2εn.4+7ε/2

(n2)

)

. Thus the number of such edges

dominates Bin(µ/4− 2n− o(n), n−1+5ε) and this is non-zero with probability 1− o(n−1). Because
the maximum degree of a vertex is o(log n) we see that the search for x, a, b, y can be done in
O(n.6−2ε log2 n) = O(n.6−ε) time.

This completes the proof of Theorem 1 �

5 Conclusion

We have shown that a maximum matching can be found in O(n) expected time if the average
degree is a sufficiently large constant. It is easy to extend this to the case where the average degree
grows with n. It is much more challenging to try to extend the result to any constant c. Karp and
Sipser showed that if c < e then whp Phase 1 leaves o(n) vertices for Phase 2. In the paper [1],
it was shown that for c < e, only a few vertex disjoint cycles are left, whp. So the problematical
range is e ≤ c < c0.

References

[1] J. Aronson, A. M. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-
Sipser revisited, Random Structures and Algorithms 12 (1998) 111-177.

24

[2] H. Bast, K. Mehlhorn, G. Schäfer and H. Tamaki, Matching Algorithms are Fast in Sparse
Random Graphs, Theory of Computing Systems 39 (2006) 3-14.

[3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs, European Journal on Combinatorics 1 (1980) 311-316.

[4] J. Edmonds, Paths, Trees and Flowers, Canadian Journal of Mathematics 17 (1965) 449-467.

[5] A. M. Frieze and B. Pittel, Perfect matchings in random graphs with prescribed minimal
degree, Trends in Mathematics, Birkhauser Verlag, Basel (2004) 95-132.

[6] R.M. Karp and M. Sipser, Maximum Matchings in Sparse Random Graphs, Proceedings of
the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981) 364-375.

[7] B. McKay, Asymptotics for Symmetric 0-1 matrices with Prescribed Row Sums, Ars Combi-
natoria 19A (1985) 15-25.

[8] S. Micali and V.V. Vazirani, An O(
√
V E) Algorithm for Finding Maximum Matching in Gen-

eral Graphs. Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer
Science (1980) 17-27.

[9] R. Motwani, Average-case Analysis of Algorithms for Matchings and Related Problems, Jour-
nal of the ACM 41 (1994) 1329-1356.

25

