ANALYSIS OF TWO SIMPLE HEURISTICS ON A
RANDOM INSTANCE OF k-SAT

Alan Frieze*and Stephen Suen
Department of Mathematics,
Carnegie Mellon University,

Pittsburgh PA15213, U.S.A.

May 31, 1995

Abstract

We consider the performance of two algorithms, GUC and SC studied by Chao
and Franco [2], [3], and Chvétal and Reed [4], when applied to a random instance w
of a boolean formula in conjunctive normal form with n variables and |cn] clauses
of size k each. For the case where k£ = 3, we obtain the exact limiting probability
that GUC succeeds. We also consider the situation when GUC is allowed to have
limited backtracking, and we improve an existing threshold for ¢ below which almost
all w is satisfiable. For & > 4, we obtain a similar result regarding SC with limited
backtracking.

1 Introduction

Given a boolean formula w in conjunctive normal form, the satisfiability problem (SAT) is to
determine whether there is a truth assignment that satisfies w. Since SAT is NP-complete, one
is interested in efficient heuristics that perform well “on average,” or with high probability.
The choice of the probabilistic space is crucial for the significance of such a study. In
particular, it is easy to decide SAT in probabilistic spaces that generate formulas with large
clauses [8]. To circumvent this problem, recent studies have focused on formulas with exactly
k literals per clause (the k-SAT problem). Of particular interest is the case k = 3, since this
is the minimal & for which the problem is NP-complete.

Let V, be a set of n variables. We define a probability space Q) on the set of all m = len |

clause formulae over the variables which have exactly & literals bi)er clause. We let C;(V,,) be

*Supported by NSF grant CCR-9024935

the set of all clauses of size j chosen from V,,. We will assume that all variables occurring in
a single clause are distinct. We then take ngj)n = Cr(V,)™.

This means that we consider the clauses to be ordered and we will consider the literals within
clauses to be ordered too. Thus we can think of w as a k xm array where w; ; is the ¢’th literal
in the clause C;. There is not a lot of difference between this model and other unordered
models. We show later in Section 8 that our results can easily be extended to these models.

Experimental evidence [11, 13] strongly suggests that there exists a threshold ~, such that
formulas are almost surely satisfiable for ¢ < + and almost surely unsatisfiable for ¢ > ~,
where 7 is about 4.2. This has not been proven rigorously, but such a threshold (namely
c=1) is known to exist for 2-CNF formulas [7, 4].

Most practical algorithms for the satisfiability problem (such as the well-known Davis-
Putnam algorithm [6]) work iteratively. At each iteration, the algorithm selects a literal
and assigns it the value 1. All clauses containing this literal are erased from the formula,
and the complement of the chosen literal is erased from the remaining clauses. Algorithms
differ in the way they select the literal for each iteration. The following three rules are the
most common ones:

1. The unit clause rule: If a clause contains only one literal, that literal must have the
value 1;

2. The pure literal rule: 1f a formula contains a literal but does not contain its complement,
this literal is assigned the value 1;

3. The smallest clause rule: Give value 1 to a (random) literal in a (random) smallest
clause.

Broder, Frieze and Upfal [1] analysed an algorithm based entirely on the pure literal rule.

They showed that in the Qgg)n probabilistic space, the pure literal rule alone is sufficient
to find, with high probability, a satistying assignment for a random formula w € Qg)n, for

¢ =m/n < 1.63. On the other hand, if ¢ > 1.7, then the pure literal rule by itself does not
suffice.

Chao and Franco [2],[3] and Chvatal and Reed [4] analysed two heuristics GUC and SC
based on the small clause rule:
begin
repeat
choose a literal x;
remove all clauses from w that contain z and remove z from any remaining clause;
if a clause becomes empty - HALT, FAILURE;
until no clauses left;
HALT, SUCCESS

end

The algorithms GUC and SC differ in how the literal z is chosen. In GUC, z is chosen at
random from a randomly selected clause of smallest size. SC (see Chvatal and Reed [4] for
a complete description of SC) differs from GUC in that if there are no clauses of size one or
two, then z is chosen at random from the set of all free literals. Since at least one clause
is satisfied each time when GUC assigns a value to a variable, it is intuitively clear that
GUC is likely (probabilistically) to perform better than SC. Algorithm SC however has the
advantage of being simpler to analyse. The reason for this is that since SC only takes care
of clauses of size one and two, there are fewer cases to consider when analysing SC.

The combined results (among other things) in Chao and Franco [2], [3] and Chvatal and Reed
[4] can be summarized as follows. For 3-SAT, if ¢ < 2/3 then SC succeeds with probability
tending to 1 [4] and if ¢ < 2.99 then the probability that UC (a variant of GUC using only
the unit clause rule) succeeds does not tend to zero [2]. For k-SAT where k > 4, if

(k-—l)’““”k--m“3
c <

k—3 k—2 k7’

then SC succeeds with probability tending to 1 [4], and if k¥ < 40 and

E—1\F? ok
772 1.1
c<0775(k_2) PwE (1.1)

then the probability that GUC succeeds does not tend to zero [3].

Our first theorem gives the precise limiting probability that GUC succeeds when applied to
a random instance of 3-SAT. Let ¢z =~ 3.003 be the solution to the equation

3¢ —2logc=6—2log(2/3),

and 3
f(x) = fulx) = T(1 =% +logu, € (0,1).
When ¢ < ¢3 we have f(z) < 1 for all z € (0,1).

Theorem 1.1 Consider applying GUC to a random instance of 3-SAT with n variables and
len| clauses.

(a) Suppose that ¢ < 2/3. Then

lim Pr(GUC succeeds) = 1.

n—oo

(b) Suppose that 2/3 < ¢ < c3. Let o be the unique root of f(x) =0 that is strictly less than
1. Then

| . L)
T}Lrgo Pr(GUC succeeds) = exp (—/a mdaj) .
(¢c) If ¢ > ¢3 then

lim Pr(GUC succeeds) = 0.

n—oo

Chao and Franco [2] report that using GUC in a backtracking algorithm can be quite suc-
cessful (and possibly be polynomial expected time for certain values of ¢). We describe (in
Section 6) a modification of GUC called GUCB that allows a limited amount of backtrack-
ing when an empty clause is produced. We obtain the following result by showing that for
sufficiently small ¢, the backtracking does not change the state of GUC by a great deal.

Theorem 1.2 Consider GUCB when applied to a random instance of 3-SAT with n variables
and |en| clauses. If ¢ < c3 then

lim Pr(GUCB succeeds) = 1.

n—oo

Thus Theorem 1.2 raises the lower threshold for almost sure satisfiability from about 1.65n [1]
to just above 3n. On the other hand, the upper threshold giving almost sure unsatisfiability
has been reduced to below 5n by El Maftouhi and de la Vega [12] and to about 4.758n by
Kamath, Motwani, Palem and Spirakis [9]. Thus the current gap in our knowledge of the
satisfiabiity or unsatisfiability of random ionstances of 3-SAT is still rather large.

Furthermore, even though it is very easy to prove that an instance of 3-SAT with 100n random
clauses is almost surely unsatisfiable, there are no known polynomial time algorithms which
can prove this. Chvatal and Szemerédi [5] have proved negative results on this problem.

We next turn our attention to algorithm SC. It is possible to show that the assertions in
Theorems 1.1 and 1.2 hold for SC. In fact, our proof of Theorem 1.1 can be extended to
obtain the precise limiting probability that SC succeeds when applied to a random instance
of k-sAT. However, the more interesting question is: for what values of ¢ will SC, with limited
backtracking as in GUCB, succeed with probability close to 17 We answer this question with
our next result.

Assume k > 4. Let

k\ c B
o) = (3 gt - o
It is easy to see that ps(z) is unimodal, achieving a maximum of

2 ke k—2 (k-3 k=3
363k — 1 \k—1

k=3 (k—l)k_sk—l
c >

when ¢ =2/(k —1). For

k \k-—3 k—2’
let 0 < By = Bolc) < B1 = Bi(c) < 1 be the two solutions of the equation ps(z) = 2/3. We
prove the following theorem.

Theorem 1.3 Suppose that k > 4. Let ¢i, be the mazimum value of ¢ such that

1 (1 k=3 1 k=3
(k—1)(k—2)

2T h B 4)“n(ﬂ“/ﬁl)gl'

Then when SCB is applied to a random instance of k-SAT with n variables and |cn| clauses
where ¢ < ¢, we have

lim Pr(SCB succeeds) = 1.

n—oo

Write ¢, = 732%/k. It is possible to show that as k — oo, 5, — n* where n* can be defined
similarly as n;. Numerical calculations show that n* ~ 1.817, ny ~ 1.3836, 5 ~ 1.504,
N0 ~ 1.686, and that 7y is increasing in k. Theorem 1.3 gives a constant ¢, such that almost
every formula w with n variables and [cn], with ¢ < ¢, clauses of size k is satisfiable. This
improves, by only a constant factor, a similar result in [4]. Also, ¢; (for 4 < k < 40) is
smaller than the right hand side of (1.1), and we believe that if the limiting probability that
GUC succeeds is positive, then GUC with limited backtracking (as described later) succeeds
with probability 1 — o(1). It is thus very likely that when applied to random instances of
k-SAT for k > 4, GUCB has a higher threshold of success than SCB. At present, we can only
characterize the critical behaviour of GUC and GUCB, when applied to random instances
of k-SAT with k£ > 4, using a system of k — 2 polynomial equations whose properties we have
difficulty in penetrating analytically. It seems unlikely that the exact thresholds for GUCB
can be rid of the factor 1/k (see definition of ¢).

2 Proof Strategy

The basis of our proof of Theorem 1.1 is that the intermediate states of GUC (or SC), when
applied to a random instance of k-SAT, can be represented by a Markov chain which we
describe as follows. Consider GUC when applied to a formula w chosen at random (with
equal probability) from the space Qg,’f)n where m = [en]. Use v to denote the number of
variables whose truth values are not yet determined by GUC at an intermediate stage. We
call this stage v and so GUC starts at stage n. For the purpose of analysis, all empty clauses
are assumed to be removed by GUC as soon as they are created, and GUC is allowed to
run until the set of clauses is exhausted. Hence, GUC succeeds if and only it the number of

empty clauses created is zero.

We will assume that w is not given to us in its entirety at the start of the algorithm. Instead
we will learn about the formula as the algorithm proceeds. This scenario has been aptly
named the method of deferred decisions by Knuth, Motwhani and Pittel [10].

At stage v we will have partially filled in the & X m matrix w and there remains v free
variables. Some columns, corresponding to satisfied clauses, will be completely filled in. We
will refer to these as removed. The remaining columns will be partially filled in. If an entry
in a partially filled in column is assigned a literal, then the value of this literal has been
assigned false by previous steps of the algorithm. The remaining entries will be left blank.
A partially filled in column with ¢ blank entries will correspond to a residual clause of size 7,
i =0,1,..., k. (A clause of size 0 is an empty clause, previous assignments have assured us
that GUC will fail to satisfy this clause.) Let N; = N;(v), ¢« = 0,1,2,...,k be the number

of residual clauses of size 7 remaining at the start of stage v of GUC.

b}

To carry out stage v we choose a clause C' of minimum size. We randomly choose a literal
x from the remaining 2v possibilities. We assign = to one unfilled entry of C' and then
randomly fill in the remaining positions, subject to the condition that all variables must be
distinct. We then go through the partially filled columns of w. Suppose we have a column j
with ¢ unfilled entries:

e With probability 1 — ¢/v we do nothing.

e With probability ¢/v we choose one of the unfilled positions of column j, position ¢
say.

— With probability 1/2 place = in position ¢, randomly fill in the rest of column j
and remove it from further consideration, as it corresponds to a satisfied clause.

— With probability 1/2 we place & in position ¢, leaving the remaining positions of
column j blank.

The reader can easily convince himself (herself) that at the end of the algorithm the columns
have been filled in with random clauses.

The important and now obvious property of this process is that conditional on N;(v), i =
0,1,2,...,k the remaining clauses are random and independent of previous steps of the
algorithm. For future reference we refer to this as complete independence. It follows that

N = (Ng, N1,...,Ng) is a Markov chain.

We next write down the transition probability of N. Use B(7,p) to denote a binomial
variable with parameters 7 and p and note that v decreases by 1 at each stage. Write
AN;(v) = N;(v — 1) — N;(v) as the change from stage v to stage v — 1. Then AN; are
binomial variables (conditional upon N(v)). We shall write down the distributions of AN;
under the different cases where the minimum size of the clauses is 2. For ¢ =1,2,...,k, we
write x;((yo, y1, ..., yx)) = Lifmin{j | y; # 0,1 <j <k} =14, and x:((yo, y1,y2,-- -, yx)) =0
if otherwise. Also, xo(y) = 0 always. Consider the stage v when GUC has just assigned 1
to a literal x in clause C' and is about to remove clauses that contain = and all occurrences
of z from other clauses. Let A, be the number of clauses of size 7 containing literals x or z
(but not including C'). Let A, be the number of clauses of size j containing literal z (but
not x as all variables in a clause are different). It follows that conditional on N = N(v), we
have for y = 1,2,...,k that

A;o(v) = B(N;—x;(N),j/v), in distribution,
A;1(v) = B(Aje,1/2), in distribution.

Note that complete independece implies that the variables, Ajqg, 7 =1,2,...,k, are indepen-
dent. Then for j =0,1,....k,

AN;(v) = Ajy1a(v) — Ajo(v) — x;(N(v)),
where Agg = Apy11 = 0. Note that if Ni(v) = 0, then ANy(v) = 0 with probability 1.

Note also that if Ni(v) > 1 is given, then a clause of size one (with literal say) is chosen

6

at stage v and that ANy(v) is distributed as a binomial variable with parameters N;(v) — 1
and 1/(2v). Theorem 1.1(b) is obtained by showing that in the case of 3-SAT, the total
number of empty clauses created is asymptotically distributed as a Poisson variable with
mean [, f(z)?/(4z(1 — f(z)))dz. Theorem 1.1(a) and (c) are shown using monotonicity
arguments.

We shall also require similar statements for SC. Let Nj(v) be the number of size j clauses
remaining at stage v when SC is applied to a random instance of k-SAT with n variables
and m clauses. Then similary to GUC, N’(v) is a Markov chain with initial state N'(n) =
(0,...,0,m) and transition probabilities given by

! ! ! : N ¢
AN (1) — Laa(v) = Alg(v) = xi(N'(v)), it =0,1,2,
ANj(v) = { Al (v) = Al g(v), otherwise,

where A=A, =0and for j =1,2,...k

Ay = BW—x(N)fw), =012,
70 B B(N.,j/v), otherwise,
AL() = B(Al1/2).

Also, conditional on Nj(v), the distribution of the number of empty clauses created at stage
v is binomial with parameters (N;(v) — 1)* and 1/(2v).

The layout of this paper is as follows. We concentrate on showing Theorems 1.1 and 1.2,
while we shall only sketch our proof of Theorem 1.3. In the next section, we collect some
useful properties of a Markov chain X; which will be used to approximate N; in proving
Theorem 1.1(b). We shall then prove parts (a) and (c) of Theorem 1.1 in Section 4 by
developing monotonicity arguments for comparing different Markov chains. Theorem 1.1(b)
is proved in Section 5 by applying the results stated in Section 3. In Section 6, we describe
how GUC is allowed to backtrack, and prove Theorem 1.2. In Section 7, we sketch briefly
how our proof of Theorem 1.2 can be extended to proving Theorem 1.3. Section 8 briefly
discusses other models.

3 A Markov chain

Use B(m, p) to denote a binomial variable with parameters m and p, and write b; = b;(m, p)
for the probability that B(m,p) equals j. We assume throughout this section that mp <
A* < 1. The big O terms in this section are uniform in m and p (but may depend on *).
We consider a Markov chain X; with transition probabilities defined as follows. If X; = 0,
then AX; = X;11 — X; equals B(m, p) in distribution; otherwise AX; equals B(m,p)— 1 in
distribution. We assume Xy > 0 and so X = 0 is a reflecting barrier. As we are interested in
bounds that are uniform in m and p, we need to consider a Markov chain Y; which is similar
to X; except that in the one-step transitions of Y;, we have a Poisson variable P()) in place
of B(m,p). It will be clear that the two chains X; and Y; are very similar when mp = A,

although it is not possible to couple them so that Xy = Yy and X; < Y; for all t > 0. We let
A = mp in this section.

We first prove the existence of a steady state distribution denoted by 7 for our walk. The
following existence proof was kindly provided by Boris Pittel.

Let T;, ¢ > 0 denote the expected number of steps to visit the state 0 if the walk starts at .
Then T; = lim,,_.o T-(n), where Tén) = TZ-(O) =0and forn > 1 and 7 > 1,

K3

Tﬁhz1+Eﬁﬁ§QmM

is the expected value of min{n, time to reach 0 from ¢}.

Now, if mp < 1 then T; = 1_imp satisfies

Ti =1+ E[Ti—l—l—B(m,p)L

so by induction Ti(n) < T, and consequently T; < T;. Thus, Ty the expected time of return
to zero is at most

14> Pr(B(m,p)=j)-T; = 1+ E[B(m,p)]

7>0 L —mp

mp 1

= 1+

= < oQ.
l—mp 1—mp >

Thus the stationary distribution {=;} exists and 7o = 1/74 > 1 —mp. (Note that 7o = 1 —mp

from (3.1) below, and so T; = 1;,¢ > 1.)

Note next that 7 satisfies
i+1
7Ti:7TObi‘|‘Z7rjbi—j+17 Vi > 0.

i=1

Writing Gx(s) = 352, s'm; as the probability generating function of the steady state distri-
bution, it follows from the above equations that

Gx(s) = =g Z s'h; + Z 7rj3j_1 Z b; st
>0 i>1 >0
1
= 7o(l —p+ps)" + ~(Gx(s) —mo)(L —p+ps)",
giving

mo(s — 1)
Gﬂﬁ:Sﬂ—p+me—f

As Gx(1) = 1, we actually have
o =1—mp (3.1)

and

GX(S) _ (5-1)(1—771]))

S s(l—ptps)m =1 (3:2)

8

Since (1 — p+ ps)™ < exp(—A + As) for all s, we see that

(s —=1)(1—=2X)
sexp(A — As) — 1’

for all s between 1 and the radius of convergence of G. (It can be checked that G(s) is the
probability generating function of the steady state distribution of Y;.) Since A < A*, G(s)
exists for all s < r}, where r} > 1 is a constant depending on A* only. (r; is in fact the
unique root bigger than 1 of sexp(A* — A*s) = 1.) Thus, (3.3) holds for all s satisfying
1 < s < rj. Note also that from (3.2), the mean of the steady state distribution of X; is

Gx(s) < G(s) = (3.3)

_ m — g mp(?—p—mp) .
p = pu(m,p) ; i Ay (3.4)
Also,
Pr(X;,=0)=Gx(0)=1—mp. (3.5)

We would like to consider the number of times that X; returns to 0 in a certain time period.
To do this, we need to collect some preliminary results. Suppose Xg = 1. Let Hyx be the
time elapsed when X; first hits 0. (H is defined accordingly for Y; with Y, = 1.) Note that

Hy =1+ L;+ ...+ Lg in distribution,

where B = B(m,p) in distribution and Li,..., Lg are independent copies of Hx. This last
equation follows from the fact that if the first step of the walk jumps to state B, it takes
B independent copies of Hy for the walk to get back to the origin because all moves of the
walk toward the origin have magnitude 1. Hence, writing Mx () = E[exp(0Hx)], we have

Mx (0) = e’(1 — p+ pMx(6))™. (3.6)

By considering the functions fi(y) = €?(1 — p + py)™, foaly) = exp(6 — X + A\y), f3(y) =
exp(d — X* + X*y) and f(y) = y, and by noting that fi(y) < fi(y) for all § and y and that
f2(y) < fs(y) for all and y > 1, we have

My (0) < M(0) < M*(0), (3.7)

where the first inequality holds for all § < r} and the second inequality holds for 0 < 8 < r3,
and r} is the radius of convergence of M*(#), and M(0) and M*(8) respectively are the
smallest roots of

M) = exp(0— X+ AM(0)), (3.8)
M=) = exp(f — X"+ X"M"(0)). (3.9)
(Again, it can be checked that M is the moment generating function for H.) By observing
that r} is the value of 6 at which the line f(y) = y is a tangent to the curve f(y) =
exp(f — X* + X*y), we find that r5 = A* —log A* — 1. Further, by considering 6 close to r3,
we see that A*M*(0) < 1. Also, we shall need to bound M"(6) = djT”f. From (3.8), we have
M(8) = M(B)/(1—\M(B))
M"(0) = M(0)/(1—AM(0))°.

9

Using the fact that AM*(0) < M*M*(0) < 1, it follows from the second inequality in (3.7)
that for 0 < 0 < r},

" M=(9)
M) < Ty

Also, for § < 0, we have

" 1
M) < T5F < T

Thus, for any § < (1 — €)ry (where € > 0 is any fixed constant), we have

M"(6) < A, (3.10)
where A is a fixed constant (depending only on A*). Note that from (3.6) and (3.8), we have
E[Hx]|=E[H]=1/(1 - A). (3.11)

Consider next that Xo = 0. For r > 1, let 7, be the time elapsed when X; first returns
to 0 for the r-th time. We shall obtain a concentration result for 7, (when r is large).
Observe that 71 equals Hy in distribution (this is because X; has the same distribution
when Xo =0 or Xo = 1) and so 7, is distributed as a sum of r independent copies of Hx.
Hence, E[7,] = /(1 — X). We shall use the inequalities

Pr(r, > A) < Mx(0) exp(—A0),

Pr(r, < A) < Mx(—0) exp(Af),

for any 8 > 0. As Mx(0) < M(0) by (3.7), we shall bound M (). Using Taylor’s theorem
and (3.11),
M(0) = 14+ 0/(1— \) + M'(E)0° /2,

for some ¢ between 0 and . Using (3.10), we have that as § — 0,

M"(§) = O(1),
which implies that

M) =14+6/(1 —X)+0(6).

Hence, for any A > 0 and small § > 0,
Pr(r, >r/(1 = X))+ ATI/Q)
M(0)" exp(—r8/(1 — X) — Abr!/?)
exp(O(rh?) — Afrt/?).
Also, we have for any A > 0 and small § > 0,
Pr(r, <r/(1 =) — ATI/Q)
M(—=0) exp(rf/(1 — \) — AOrt/?)
exp(O(rf*) — A9r1/2).

<
<

<
<

By putting 6 = r~1/2

, we have for any A > 0 and for large r

Pr(|7, —r/(1 —mp)| > Ar'/?) = O(e™). (3.12)

We therefore have the following lemma.

10

Lemma 3.1 Let 7, be the time elapsed when X, first returns to 0 for the r-th time given
that Xo = 0. Then for any A > 0, we have as r — o0,

Pr(|7, —r/(1 = \)| > Art/?) = O(e™4).

Lemma 3.2 Suppose that Xo = r for any integer r > 1. Let H, = min{t | X; = 0}. Then
for any A >0,
Pr(|H, —r/(1 — \)| > Art/?) = O(e™). (3.13)

Also, we have for any A > 0 that
Pr(3t < H, st. X;>r/(1 =X+ ATI/Q) = O(e_A). (3.14)

Proof Simply observe that H, is distributed as a sum of r independent copies of Hy,
and so H, equals 7, in distribution, which gives (3.13). Equation (3.14) follows from (3.13)
and the fact that X; decreases by at most 1 in each transition. a

Lemma 3.3 Let Ny be the number of times that X; equals 0 in the time interval [0,T],
given that Xo = O(log'® T'). Then for any A > 0, we have for any constant A’ > 0 that

Pr(| Ny —T(1 —\)| > ATY?) = O(e™ + T74). (3.15)

Proof Use H to denote the minimum value of ¢ such that X; = 0. Using (3.13) with
r = O(log" T), we have for any constant A’ > 0 that

Pr(H > log" T) = O(e™ ¢ Ty = O(T~).

Hence if N is the number of times that X; = 0 in the interval [0, 7] given that X = 0, then

N} > Np > N,}_lognT with probability at least 1 — O(T~4") for any constant A’ > 0. Now

Lemma 3.1 implies that as t — oo,
Pr(| N —t(1 — \)| > At}/?) = O(e=4/(0-N) = O(e™4).

The lemma now follows by taking t = 7" and ¢t = 7' — log"* 7. a

Lemma 3.4 Suppose that Xq = 0. With 7y (7, with r = 1) as defined in Lemma 3.1, we
have for any A > 0, there exist a constant p € (0,1) and a constant C' > 0 such that

Pr(r, > A) < Cp. (3.16)

For each t, let Ry = min{k > 1 | Xyyr = 0}. That is, R; is the waiting time after time t
until the next return to 0. Then for any A > 0, there is a constant p € (0,1) such that as
T — oo,

Pr(max R, > A) = O(Tp™*), (3.17)
and
Pr(max X, > A) = O(Tp™*), (3.18)

11

Proof Since 1; equals Hy in distribution, we have
Pr(m > A) < Mx(0)exp(—A0).

Inequality (3.16) follows by putting 8 = r3/2. To show (3.17), let S; be the time elapsed
between the (¢ — 1)-th and the ¢-th return to 0. That is, each S; equals 71 in distribution.
Let N be the number of times that X; = 0 for ¢ € [0,7]. Then N < T and (3.17) follows
from (3.16) because
> A) < > A) = -4
Pr(l?gz%rx R, > A) < Pr(r%z%rx Sy > A)=0(Tp™).

Inequality (3.18) follows from (3.17) and the fact that X, decreases by at most 1 in each
transition. O

For the rest of the section, we will require coupling chain X; with another chain X/ having
the same transition probability. The coupling is such that if Xy < X} then X; < X] for all
t > 0. This coupling is specified by defining the transition probabilities of the coupled chain
(X:, X)) as follows:

AX; = AX, = B(m,p) — 1, if X; >0 and X;41 >0
AX,—1 =AX] = B(m,p) — 1, if X; =0 and X;41 >0
AX; = AX] = B(m,p), if X; =0and X;4; =0
AX; =AX,—-1 = B(m,p)—1, if X; >0 and X;;; = 0.

Lemma 3.5 Suppose that Xo = O(log™® T'). Then for any A > 0 and for large T, there is a
constant p € (0,1) and a constant C > 0 such that

Pr(Xr > A) < Cp™ + O(T™),

for any constant A’ > 0.

Proof Use H to denote the minimum value of ¢ such that X; = 0. Note that for ¢t > H,
it follows from coupling X; with the steady state chain X; that the distribution of X, is
stochastically at most the steady state distribution. Hence,

Pr(Xp > A) < Pr(Xe > A|HLST)Pr(H<T)+Pr(H>T)
< Pr(X, > A)Pr(H <T)+Pr(H > T).
Now from (3.13), we have
Pr(H >T)=0(T™"),

for any constant A’ > 0. (Note that although Pr(H > T') should be exponentially small,
our bound here will suffice for future applications.) To bound Pr(Xt > A), we note that
according to (3.2) and the comments that followed, the moment generating function M, (9)
of X, is properly defined for § < logr;. Hence, similar to proof of (3.16), there are constants

p € (0,1) and C > 0 such that
Pr(X, > A) < Cp~™.

12

The lemma now follows. a
For the next lemma, we let X; denote the chain with initial state Xy = O(log” n) and compare

it with the steady state chain X after h = |log” n| steps.

Lemma 3.6 Asn — oo,

Proof We shall show the lemma for the case where Xy = [log”’n]. Let € be the event
that Xo > log?n. Then from the last equation in the proof of the previous lemma, we have

Pr(&) = Pr(X; > log’n) = O(n™*), (3.19)

for any contstant A. Next, let H be the waiting time until X, first hits 0. Then from (3.13),
we have

Pr(H > h) = O(n™), (3.20)

for any constant A. Now in the coupling of X; and Xt, if £ does not occur, X; must equal

X, if H<h. (This is because Xy = Xy = 0 on the event .) Thus
Pr(X, = 0) < Pr(E) + Pr(H > h) + Pr(X, = 0),
and so the first assertion of the lemma follows. Also,
[BLX,] — BLX]| < E[1X) — Xi]

in the coupling. Let x(D) be the indicator for the event D. Then

E[|X, — Xul] = EN(E)|Xk — Xul] + E[(1 — X(E))X(H > h)]X; — X
< EN(E)X, — Xu[] + E[X(H > h)[X), — X,]]
< E[Xox(6)] + (log” n)E[x(H > h)]
< E[XZPr(E) + (log n)Pr(H > h),
which equals o(1) from (3.19), (3.20) and the fact that E[XZ] = O(1). 0

4 Proof of Theorems 1.1(a) and 1.1(c)

We shall first assume Theorem 1.1(b) and prove Theorem 1.1(c) by a monotonicity ar-
gument to show that when ¢ > ¢3, the probability that GUC succeeds is o(1). We first
consider the monotonicity argument. Suppose that we have two random instances of k-
SAT on n variables with m and m clauses of size k respectively. Assume m < . Let

N(v) = (No(v), Ni(v), Ny(v), Ns(v)) and N(v) = (No(v), Ny(v), Na(v), N5(v)) denote their

13

respective states in GUC when there are v variables whose truth values remain undeter-
mined. We aim to give a coupling of N(v) and N(v) so that N(v) < N(v). Note that
the transition probabilities of N are given at the end of Section 2 and that the transition
probabilities of N are defined similarly with A replaced with A and N with N. Note also
that N(n) = (0,...,0,m) and N(n) = (0,...,0,m) and so N(n) < N(n) We shall show
that if N(v) < N(v), then N(t) < N(t) for t < v by coupling arguments.

Lemma 4.1 If N(v) < N(V), then the chains N and N can be coupled so that N(t) < N(t)
fort <w.

Proof Let i > 1 be the minimum integer such that Ni(v) # 0. Now for j # 1,

A A

(V) = 0 and xi(N(»)) = 1. Thus, for j # 1,

Nj(v) = x;(N(v)) < Nj(v) = x5 (N(v)).
For j = i, we have N;(v) > 1 and note that if N;j(v) = 0 then

Ni(v) = xi(N(1)) = 0 < Ny(v) = 1 = Ni(v) = xs(N(v)),
and that if N;(v) > 1 then vi(N(v)) = 1, from which we have
Ni(v) = xi(N(v)) = Ni(v) = 1 < Ny(v) — 1 = N;(v) — xi(N(v)).

Therefore, we have for all i = 1,..., k,

Ni(v) = xi(N(v)) < Ni(v) = xi(N(v)). (4.1)

Observe next that for any two binomial variables B = B(r, p) and B = B(#,p) with 7 < 7,
we can couple B and B so that

where the coupling is obtained by identitying B as the sum of the first 7 Bernoulli variables
from the 7 independent Bernoulli variables in B. It follows from (4.1) that we may couple

Nanstothatforizl,...,k

?

A

Ao(v), A (4.2)
Ni(v) = xi(N(r)) = Bio(v).

K3

o(v)

A, <
Ni(r) = i N(#)) = Ailv) <

It follows similarly from (4.2) that we may couple N and N so that for i = 1,...,k,
Air(v) < Aip(v). (4.4)

Combining (4.3) and (4.4) gives that N(v —1) < N(v—1). We can then repeat this coupling
forv—1,vr—2,...,1 to give the lemma. a

14

Proof of Theorem 1.1(c). For ¢ > ¢3, we have ¢ > ¢3—¢ for any ¢ > 0. Now for a random
instance Z, of 3-SAT with |(¢3 — €)n] clauses and n variables, Theorem 1.1(b) gives that the
limit (as n — o) of the probability that GUC succeeds when applied to Z, is arbitrarily
close to 0 for sufficiently small € > 0. Theorem 1.1(c) thus follows from monotonicity. a

To show Theorem 1.1(a), we apply a result of Chvatal and Reed [4] which can be stated as
follows. Suppose that ¢ < 2/3 and consider applying algorithm SC to a random instance
of 3-SAT with n variables and |cn| clauses. Then the probability that SC succeeds equals
1 —o(1) as n — oo. Theorem 1.1(a) now follows from the following lemma.

Lemma 4.2 Consider applying both GUC and SC to a random instance of k-SAT with n
variables and m clauses. Then

Pr(SC succeeds) < Pr(GUC succeeds).

Proof Consider applying both SC and GUC to a random instance Z of k-SAT with n
variables and m clauses. Let N(v) = (No(v),..., Ni(v)) and N'(v) = (Nj(v),...,Ni(v))
denote the respective states of Z in GUC and SC when there are v variables whose truth
values remain undetermined. Note that N(n) = N’'(n) initially and that the transition
probabilities of N(v) and N'(v) are given at the end of Section 2. Note also that if N(v) <
N'(v) then A’ and A can be coupled so that A’ ; < Ajo. Thus, by following the coupling
arguments in proof of Lemma4.1, we have that if N(v) < N'(v) then the chains N and N’ can
be coupled so that N(t) < N'(t) for 1 <t < v. This shows in particular that No(v) < N)(v),
and so the lemma follows. O

5 Proof of Theorem 1.1(b)

Assume ¢ € (2/3, ¢3). Recall that

3
f(2) = fia) = T(1—2*) +loga, @€ (0,1),
and ¢z is the maximum value of ¢ such that f(z) <1 for all z € (0,1). Let o = a(c) (for
¢ > 2/3) be the root of the equation f(z) = 0 that is strictly less than 1. Note that « is
uniquely defined and that « is positive. By investigating the behaviour of f(a(l + €)) for
small € > 0, we see that ca? < 2/3 and also if

ap = « + n—0.24

then
nf(ag) = O(n°™).

Note that both an and agn equal (n). We shall show that if ¢ € (2/3,¢3), then Ny(v) can
be approximated by vf(v/n) as v decreases from n to agn. We shall also show that if ¢

15

and v are within these ranges, then N3(v) can be approximated by cv(v/n)*. (Thus, when
v = |agn|, we see that Ny(v) = ©O(n%™) and N3(v) =~ cain). These estimates enable us to
find the limit of the probability that GUC succeeds.

In order to minimize subscripts, we write W(v) = Ny(v), Y(v) = Na(v) and Z(v) = N3(v).
We shall also consider a process X (v) which runs alongside N(v), and so we have a Markov
chain (No, W(v), X(v),Y(v), Z(v)). The transition probabilities of (Ng, W, Y, Z) are same as
N, but those of X need defining. For completeness, we write down the one-step transitions

of (W(v),X(v),Y(v),Z(v)) below.

AZ(I/) = —Ag,o - XS((N07 W> Ya Z))
AY(I/) = Az;— Ay — X2((N0, WY, Z))
AX(V) = AQ,l_Xl((Nonvyaz))v
AW(r) = A1 — A o— x1((No, W, Y, Z)),
ANo(v) = Aqq(v),
where
Aszo=ADs0(v) = B(Z— x3((No, WY, Z)),3/v)
A3,1 = A3,1(1/) B(AS,Oa 1/2)7
ANgo=2Ago(r) = BY —x2((No, WY, 7)),2/v),
Azy = A2,1(1/) = B(A2 0, 1/2)
Ajo=A1p(v) = BW —xa(((No, W, Y, Z)),1/v)
Ay = AI,O(V) = B(ALOa 1/2)

The initial state of the process is (No(n), W(n), X(n),Y(n), Z(n)) = (0,0,0,0, [cn]). As the
transitions of X (v) ignores the effects of —Ao(v), we have W (r) < X (v) always (which can
be checked by considering the cases where X (v) = W(r) and X(v) > W(r)). We shall see

that X (v) is a good approximation of W(v).

We shall need the following bounds for sums of independent binomial variables. Let By(m,p1),
., Be(7, pr) be independent binomial variables. Write 7 = 7+ ...+ 7 and p = >, 7ypi /7.
Then for A satisfying 0 < A < 7p/3

Pr<|Bl—|—...—|—Bk—Tp|Z ,/3A7p) < 2exp(—A). (5.1)
Also, for a binomial variable B(7,p), we have for u > e,
Pr(B > urp) < (e/u)"". (5.2)

All our subsequent error probabilities regarding sums like 3~ Az are derived from one of
the above inequalities. We shall be bounding such sums by sums of independent binomial
variables. Although the variables in sums like)~ Aj are usually not independent, it is not
difficult to show the stochastic dominance by induction and by conditioning on the outcomes

16

of the partial sums. Also, we say that an event € occurs with high probability (w.h.p. for
short) if

Pr(&) =1-0(n™*), (5.3)
for any constant A > 0. Now the events &£ usually contain bounds, involving some big O
terms, for random variables. In this situation, it will be clear that equations like (5.3) hold
for any A > 0 by choosing sufficiently large constants (which may depend on A) in the big O
terms. We first prove the following lemma which will be useful for future inductive proofs.
Note that we make no attempt to minimize the powers of log n.

Lemma 5.1 Suppose that v > agn. Let h = [n'?|, v/ = v —h and [= {v' +1,...,v}.
Suppose that at stage v,

Z(v) = cz/?’/n2 + z(n),

Y(v) = vf(v/n)+y(n),

W) = w(n) < log'n,

where z(n) = o(n) and y(n) = o(n®™). Then with high probability,

Z(v') = 01/'3/n2 + O(z(n) + nl/4 log n), (5.4)
Y(') = Vfi{'/n)+ Oy(n) + z(n)n_1/2 + n'/*log n), (5.5)
W) < logn, (5.6)

(The constants in the big O terms are independent of v.)

When proving the above lemma, we shall obtain the following estimates which will be useful

later.

Lemma 5.2 With hypotheses of Lemma 5.1, we have with high probability that for all j € I,
2(j) = Z(v)+0(n'?), (5.7)
Y() = Y(0)+ 0@, (5.3)

Let 7 be the minimum value of k > 0 such that W(v — k) =0, and for j € I, let 7; be the
minimum value of k > 1 such that W(j — k) = 0. Then we have with high probability that

7 = O(w(n) 4+ y/w(n)logn), (5.9)
7 < logn, forj<wv-—r. (5.10)

Also, we have with high probability that for 3 > v — 7,

W(7) = O(w(n) + \/w(n)logn), (5.11)

and that for 3 <v —r,
W(j) = O(log®n). (5.12)

17

Note that (5.9-5.12) imply that if w(n) = O(log®n), then we have with high probability that
forall 3 €1,

W() = Ollog*n), (5.13)
7; = O(log*n). (5.14)
Proof We shall prove Lemma 5.1 and point out from where the statements in Lemma

5.2 follow. Note first that since agn = Q(n), both v and Z(v) equal Q(n). Define A’'Z as
the number of times that Y (j) = W(j) = 0 for 7 € I, and A’Y be the number of times
that Y(5) # 0 but W(j) = 0. Similarly, let A’'W be the number of times that W(j) = 0.

Therefore, we have

Z(W) = 2(v) = =Y Agolj) — A'Z, (5.15)
Y(/') - Y(v) = z; (As1(j) — Agolf)) — A'Y. (5.16)

To estimate Uy = Y ;1 Aso(j), we note that Asg(y) is bounded above in distribution by
a binomial variable with parameters Z(v) and 3/v’. Thus it is not difficult to obtain that
> ;er Az o(7) is bounded above by a sum of independent binomial variables, each with param-
eters Z(v) and 3/v'. This gives an upper bound (w.h.p.) Uz = O(h) for the sum of the vari-
ables. Since Z(v') < Z(j) < Z(v), we have with high probability that Z(j) = Z(v) — O(h),
which is (5.7). Hence, with high probability, Aso(7) is bounded below by a binomial variable
with parameters Z(v) — Uz and 3/v. Since as n — oo,

3Z(v) — O(h) 3Z(v)

_ -1/2
v—0(h) v + 0™,
we have with high probability that,
3hZ
E Asp(y) = & + 0(711/4 logn). (5.17)
jel v
Similarly, we have with high probability that
3hZ
> Asa(y) = 327(1/) + O(n'*logn), (5.18)
v

Jjel

which gives us an upper bound Y (v) + O(h) for Y(j) where 7 € I. As each Ajg(j) is
distributed as a binomial variable with parameters Y(5) + O(1) = O(n) and 2/5 = O(1/n),
we have with high probability that

> Az0(j) = O(h).

Jjel

Since A'Y = O(h), we therefore have a lower bound Y(v) — O(h) for Y(j) where j € I.
Thus, we have Y (j) = Y(v) + O(h) with high probability (which is (5.8)). Hence, with high

18

probability, each Aj(7) is bounded above and below in distribution by binomial variables

with parameters Y (v) + O(h) and 2/(v + O(h)). It thus follows that

ZAmm:2“w”+m#M%m (5.19)

jel v

with high probability. To estimate A’Z, note first that if v < n — n%™ (but v > agn), then
from the hypotheses in the lemma, we have

Y(v) = Q(n0'76).

Note that during the entire time interval I, the number of size two clauses removed is at
most .7 Ago(7) + h, which equals O(n'/?) with high probability (using (5.19)). Thus the

quantity Y (), for j € I, is never zero and so when v < n —n°7,

A'Z=0 (5.20)

with high probability. For the case where v > n — n%™, we consider stage k € I with

k < v—n"! and write b’ = v — k. Then similar to (5.18), we have with high probability that

> Al = 22 oy = 2 o) = M o).)

i=k+1

Also, note that Y (v) = O(r%") (for v > n — n%) and so similar to (5.19), we have that for
any fixed ¢ > 0,
Z Ago(j) < el (5.22)
7=k+1

with high probability. Now in order for Y (k) = 0, we must have

v

Y (Aga(i) = Agpi)) < I

i=k+1

which, since ¢ > 2/3 and according to (5.21) and (5.22), occurs with probability O(n=4), for
any constant A > 0. This shows that with high probability, Y (k) # 0 for all £ < v — n%%.
Thus with high probability, there are at most n°! times when Y (j) = 0 (where j € I).
Combining this with (5.20), we have with high probability that

A'Z = 0n"h). (5.23)
Using (5.15) and (5.17) and (5.23), we have with high probability that

) - ym()

N

+ O(n'/*logn)

(1 - Sh/l/) + O(n 1/410gn)

(1/’/1/) (L+0(1/n))+ 0(711/4 log n)
W%+ O(=(n) + n'/ logn).

(v) —
= Z()
= Z(v)
— CZ//S/

19

This proves (5.4). Next, we like to estimate A’Y and A’'W. In view of (5.23), we have
A'Y = A'W — O(n®') with high probability. To estimate A’W, we consider a process
{X(j) | 7 £ n} with transition probabilities as defined in the beginning of this section. We
also let X (v) = W(v). Then as observed before, we have W(j) < X(j) forall j < v. Let A’X
be the number of times that X (j) = 0for j € I, and so A'W > A’X (as W (j) < X(7)). Next,
observe that similar to our proof of (5.19), we have with high probability that Ay ;(7) (for
all j € I) is bounded above and below in distribution by binomial variables with parameters

Y(v)+ O(h) and 1/(v + O(h)). Now according to the hypotheses of the lemma,

Y(v)+ O(h)

0< = o0)

= f(v/n)(1 + o(1)),

which is bounded above by a constant less than 1 (since ¢ < ¢3). Hence, with high probability,
we have that X (j) (for all j € I) is bounded above and below in distribution by the states of
two Markov chains similar to the Markov chain described in the previous section. It therefore

follows from Lemma 3.3 (by taking A there as (Y (v) + O(h))/(v + O(h)), T there as h, A
there as O(log h)) that with high probability,

NX::hO—X%H%¥g+OMWby0

Y 1/2
= nl/? _ ﬂ + O(n1/4 log n). (5.24)
v
We shall show next that A'W and A’X do not differ by much. We do this by finding an

estimate for

2 (X () = W),

jel
which will also be useful later. Let 7' = max{k < v | X(k) = 0} and use 7] to denote
the minimum value of k£ > 1 such that X(; — k) = 0. Note that when X(j) = 0, W(y) is
necessarily equal to 0 (as W < X). Hence whenever Ay o(j) > 1, its cumulative effect on
> W stops when X next gets to 0. Thus,

SXG) -WE)S Y XG)+ D Al

Recall that as argued above, X (j) behaves like the Markov chain X; discussed in the previous
section. To estimate 7/, note that if w(n) = 0, then 7’ = v; otherwise we apply (3.13) (with
n there as w(n), and A there as O(logn)) to obtain that

v—1" = 0(w(n) + /w(n)logn),

holds with high probability. (Since W(j) < X(7), this gives (5.9).) Similarly, using (3.14),
we have with high probability that for all j between v and 7/,

X () = O(w(n) + y/w(n)logn), (5.25)

20

from which (5.11) follows. Thus, with w(n) < log'n, we have v — 7/ = O(log'’n) and
X(5) = O(log" n), from which we obtain that

v

> X(j) = Olog®n)

=741
holds with high probability. Next, for j between v+ 1 and 7', we have from (3.18) that with
high probability,

W(j) < X(j) < logn, (5.26)

and so (5.12) follows. Next we use (3.17) to obtain that with high probability,
7 < log® n, (5.27)

from which (5.10) follows. (Note that strictly speaking, we have only showed that X(j)
can be approximated by a Markov chain X; defined in the previous section for j € I. This
creates a problem when estimating 7 for j “close” to v’. However, as it can be seen easily

that our previous approximations for Z(j) and Y(j) work for j between v’ — log®n and v/
also. This means that X(j) can be approximated by X; for all j between v/ — log®n and v.
As (3.17) gives that 7/, = O(log® n), inequality (5.27) now follows from (3.17) too.)

Note that A;o(7) is a binomial variable with parameters W(35)+0O(1) and 1/7. Thus it follows
from (5.26) that Z;I:yq.l Aj0(7) is bounded above by a binomial variable with parameters

O(hlog®n) and O(1/n). Hence (5.2) gives that
Z A7) = O(logn)
j=v'+1

with high probability. It thus follows from (5.27) that

Z ALO(]')TJ{ = O(log® n)

j=v'+1
with high probability. We thus conclude that with high probability,
Y (X(5) = W(5)) = O(log® n). (5.28)
jel

It follows that with high probability, we have
A'W — A'X = O(log* n).

This together with (5.24) give that with high probability,

Y (v)nt/?

14

Hence, combining (5.16), (5.18), (5.19), (5.29) and the fact that A'Y = A'W — O(n"'), we
have with high probability that

AW =nl/? — + O(n1/4 logn). (5.29)

_3hZ(v) _RY(r) +O(n'* log n). (5.30)

2v v

Y(')—-Y(v)

21

It follows from the hypotheses of the lemma that

Y (V')
1/2 9. 1/2 9
= Y(v) (1 1) + 362 (K) —n'/? + O(n1/4 logn + Z(n)n_l/Q)
v n
: 1/2 2
= fw/n)(v —n'?)+ SCT; (K) —n'? + O(y(n) + n'/*logn + z(n)n~*/?).
n

On the other hand,
V(v n)

- e (i)

1/)2 3ent/2 pl/?

= (v—n'? (f(z//n) + (5 - —) +0(1)

14

3enl/? 2
= (V—nl/Z)f(l//n)—l- cz <K) —n1/2+0(1).
n
This proves (5.5). For (5.6), we use the fact that W (v') < X (v'). Since as observed previously
that X(j) can be approximated by a Markov chain X; defined in the previous section,
inequality (5.6) follows from Lemma 3.5. a

We now make use of Lemma 5.1 to show Theorem 1.1(b). Let h = |n'/?| as before, and
write n; = n —th and I; = {n; + 1,...,n;_1}. Define J as the greatest integer such that
ny = n—Jh > agn. Note first that by using induction and by applying Lemma 5.1
repeatedly, we have with high probability that for all z < J,

Z(n;) = eni/n®+ O(in1/4 logn), (5.31)
Y(n;) = nif(ni/n)+ O(in1/4 logn), (5.32)
W(n;) < log*n, (5.33)

where the constants in the big O terms are independent of i. Note that since: < J = O(n'/?),
the error terms in the (5.31) and (5.32) are both equal to O(n**logn) = o(n®™). This
implies that the values of Z(n;),Y (n;) and W(n;) (¢ < .J) satisfy the hypotheses of Lemma
5.1, and so induction works by applying Lemma 5.1 repeatedly. In particular, it follows from

(5.13) that with high probability,
W(v) = O(log* n), for all v > ny. (5.34)
We shall now prove the following two lemmas from which Theorem 1.1(b) follows immedi-

ately.

Lemma 5.3

: , v fe)? .
lim Pr(GUC does not fail before stage ny) = exp —/ md:ﬂ . (5.35)
o T - x

n—oo

22

Lemma 5.4 Suppose that at stage ny,

N

3

b
|

enf + ofn),
Y(ns) = nsf(ns/n)+o(n®™),
Wi(ns) < log'n.

Then
T}Lrgo Pr(GUC creates an empty clause at and after stage n;) = 0. (5.36)
Proof of Lemma 5.3 Let ¢, be the number of empty clauses created at stage v and

¢, = min{l, ¢,}. Note that conditional on W(r) = w, ¢, is a distributed as a binomial
variable with parameters (w — 1)* and 1/(2v). Thus

Pr(¢)u # & | W(V) = w) = PI‘((Z),, > 2 | W(V) = w)
= O(w*/v?).
So if

(D:Z¢U> E:Z&/
v=njy

V=ng

then (5.34) implies

Pr(d #£Z) = O <nlogzn)
= o(1).

Since our aim is to show that ® is asymptotically distributed (as n — oo) as a Poisson
random variable with parameter

O
[=i ey

we need only show that = is asympotically Poisson distributed with the right mean.

We shall do this by the method of moments. The r-th fractorial moment of = is

EEEZ-1)...E—-r+1)]=r Y Pr(&), (5.37)

(¢1,82,.0r)ESy

where S, = {(i1,72,...,%) ng <y << ...<ipand & ={& =&, ==&, =1}
We next partition S, into S.US! so that S! = {(i1,%2,...,%,) € S, 1 i3 < n—log'n and i1 —
iy >log'n,k=1,2,...,r—1} and S” = S, \ 5.

Let us first deal with S”. We have

157 = O(n" "' log' n) (5.38)

23

and we claim that for any (i1,72,...,%,) € 5,

Pr(§,) =0 ((bg;")) . (5.39)

Combining (5.38) and (5.39) we will have

S Pr(&)=0 (nf—l log™ n (1°g2 ”)) = o(1). (5.40)

(31,82,. 027)ESY

To prove (5.39) we write
Pr(&) =[] Pr(&, =1]&-1). (5.41)
t=1

We now consider a typical term in the product (5.41).
Pr(&, =1[&)= Y Pr(&=1]A0,1), E1)Pr(Alor,t) | &)

O'tENS
where if 0, = (w,y, z) then A(oy,t) = {W (i) =w,Y (i) =y, Z(1;) = z}.

Now &;_; refers to events in the history of the algorithm up to the start of stage ¢; and so
by complete independence

Pr(é, =1 | Aoy, t),E-1) = Pr(&, =1 A(os,1))
< 2
(27
w
< —.
nj
So
Pr(fit = 1 | gt—l) S n—JZ O't PI' O't,) | gt 1)
< —ZwPr (i) = w | &-q)
nJ ”
< —Z wPr(W (i) = w)/Pr(&_1)
ny
1 nPr(W(i;) > Blog®n)
< — [Blog®
S (g n+ Pr(&1)
Blog*n n=2r
<

Qpn + Pr(Et_l)

from (5.34) (B denotes the hidden constant in (5.34)). Now either Pr(&_;) < n™" and we
are done since Pr(&,) < Pr(&_4) or
Blog*n

-7

Pr(fit =1 | gf—l)

IN

+n
Qon

2Blog’ n

Qgn

24

Substituting in (5.41) gives (5.39).

We next find an estimate for Pr(&,) when (i1,42,...,¢,) € Let h = Uog n|. Let
Iy = {(w,y,2) : 0 < w < log?n,y = i:f(i/n) + O(n™®),Z = ci}/n? + O(n'™)} and
=Ty xI'y x---xTI,. For 0 = (01,09,...,0,) € [le t A(o) = Nj_; A(os,t). Then for

(i1,22,...,1,) € S’ we have, where D = {31 <t <r: (W (i), Y (), Z(i;)) & T4},
Pr(&) = E Pr(&, | A(o))Pr(A(o)) + Pr(&, A D)

5 ITPri = 11 &, A())Pr(A()) + Pr(€. A D)
:9 f[l Pr(&, = 1| A(oy, t))Pr(A(o)) + O(n™4), (5.42)

where the last equation follows from complete independence.

We now estimate Pr(¢;, = 1| A(oy,1)). As argued in our proof of Lemma 5.1, W(v) can be
approximated by a Markov chain defined in Section 2. Thus using (3.4), (3.5) and Lemma
3.6, we have

E([W(ix) — 1+ x(W(ix)) | Alos,1)]) flie/n)(2 — f(ix/n))

2(1 = f(ix/n))
fix/n)?

— 1+ (1= f(ir/n)) + o(1)

o(1).
31— Sy T
Hence,
I Pr(é,, = 1A 1) = (1 +o(1)) [T —L 04 o),
k=1 * k=1 4lk(1 - f(”f/n))
and o(1) can be made independent of (¢1,22,...,¢,). Then applying (5.37), (5.40) and (5.42)

o _ . J(ix/n)?
E=Z=Z-1)...(E2=r+1)] = (1+o(1))r! - - + o(1)
2 ()

(i1 yi2 yororir

= (14 o(1))r! Z H f(Lk/n)Q + o(1)

(31,3227)ESy k=1 4lk 1 - (Lk/n))

= (1+o(1) X H f(i/n)’ +o(1)

ny<t1,..tp<n k=1 4”“ 1 - (Lk/n))

= (1+0(1)) (:an i (_L/sz/n))) +o(1)

(To obtain the second equation from the first we use the fact that f(x)/(z(1 — f(z)) is
bounded in the range [1,a].)

Note that n;/n — «a, and so

y f(L/n)Q = IL‘W X o
2 - gt = L i ey o

25

This gives that

EE(E-1)...(E—r+1)] = (1+0(1)) (/1 —4:0({(_‘””}2(:6))@) +o(1).

Thus, for any fixed integer r > 1,

lim EE(E—1)...(E—r+1)] = (LIM{(_—%dx)T.

This means that = (and hence ®) is asymptotically distributed as a Poisson variable with

mean L f(I)Q
| wi =y

The lemma now follows. O

Proof of Lemma 5.4 It is useful to note that as remarked when we defined «, the quantity
ca? is bounded above by a constant less than 2/3. Note also that from the hypotheses of
the lemma, we have Z(ny) = ca®n(l + o(1)) and Y(n;) = o(r"®). We consider a further
R = |n®®| stages after stage n;. We claim that by that stage, GUC will have arrived at
a stage n* where Y (n*) = W(n*) = 0. To see this, it is not difficult to check that in these
further A’ stages, with high probability,

(I) at most 3ca?n®®/2(1 + o(1)) new clauses of size 2 are created by GUC,

(II) at least A’ clauses of minimal size are removed by GUC.

(Note that (I) is similar to (5.18) and can therefore be proved similarly.) Since ca® < 2/3
and Y(ny) + W(ny) = o(n"®), it is not possible to have (I) and (II) unless some of the
clauses of minimal size removed are of size 3. This shows that with high probability, there is
n* > ny — h' such that Y(n*) = W(n*) = 0. Note also that similar to (5.17), we have with
high probability that between stages ny and ny—h', only O(n°®) clauses of size 3 are removed.
Thus at stage n*, we have with high probability that there are Z(n*) = ca®n(1+o0(1)) clauses
of size three remaining, and that there are n* = an(l 4 o(1)) variables whose truth values
remain unassigned. Since the ratio of number of size three clauses to number of variables at
stage n* is strictly less than 2/3, we know from part (a) of Theorem 1.1 that the probability
that GUC creates an empty clause at and after stage n* is o(1). It therefore remains to argue
that for n between n’ = ny; — A’ and ny, GUC creates no empty clauses with probability
tending to 1 as n — oo. To do this, note that as in (I) above, we have with high probability
that
Y(v) = 0(n°)

for all v between n' and ny. Since both n’ and ny equal Q(n), we have with high probability
that Y(v)/v = o(1) for all v € [n/,ns]. As indicated when showing (5.24), we have with
high probability that for v € [n/,ns], W(r) can be bounded above in distribution by a
Markov chain X,, defined in the previous section with one-step transitions governed by

26

a binomial variable with parameters O(n®®) and 1/n’. Using (3.14) and (3.18) and by
following arguments used in showing (5.11) and (5.12), we have with high probability that
for all v € [n',ns], W(v) <log'' n. This in turn gives that

nJj W

> W) = O(n %%log' n).
v=n' v

with high probability. Since the expected number of empty clauses created at stage v equals

O(E[W (v)/v]) (see definition of A;;), the above equation gives that the expected number

of empty clauses created at stages v € [n’,n;] equals o(1). Hence, as n — oo,
Pr(GUC creates an empty clause at stage v € [n',n;]) = o(1). (5.43)

This completes our proof of Lemma 5.4. O

6 GUC with backtracking and proof of Theorem 1.2

Since GUC succeeds with probability 1 —o(1) when ¢ < 2/3, we consider only the case where
2/3 < ¢ < ¢5. Note first that empty clauses can only be created by GUC when N;(v) # 0.
As our previous analysis shows, Ni(v) behaves like a Markov chain in steady state with a
reflecting barrier at 0. Also, given Ny(v), the probability that GUC creates an empty clause
is at stage v is O(Ny(v)/v). By allowing GUC to backtrack when it makes a “mistake”, we
shall see that a random instance of 3-SAT almost certainly has a satisfiable truth assignment
when ¢ < cs.

Consider applying GUC to a 3-SAT problem. With n, > n., we use [n;, n.] to denote a “run”
in which N;(v) is non-zero. That is, a run [ng, n.] is such that Ny(ny +1) = 0, Ny(k) > 0
(ny > k > n.), and Ni(n.) = 0. We next describe how we allow GUC to backtrack. Recall
that N(v) is obtained from N(v 4 1) by setting a literal z,4; to 1 at stage v + 1 (using
z, to denote the literal that is set to 1 at stage v, and recall that z, is a literal picked
randomly from a randomly chosen clause of minimal size). Also, use S(v) to denote the set
of clauses at stage v. Suppose that GUC is in a run with Ny(n' + 1) = 0, and Ny(k) > 1
for k =n'.n" —1,...,n" where n” < n' is the present stage. GUC then sets a literal x,» to
1. The backtracking is performed if the setting of x,» to 1 gives rise to the occurrence of
two size one clauses {y} and {y} for some variable y. If this occurs , then GUC is allowed

a limited backtracking (see also the failure condition (B) later) by resetting the literals

Tty Tpty Tpi—1, - - -, Ty t0 0. We have to update the set of clauses by

(a) removing all clauses that contain z; (k = n' + 1,n',...,n") from the set S(n’ + 1) of
clauses,

(b) removing all occurrences of z;, (k=n'+1,n/,...,n") from clauses in the set S(n’ + 1).

Hence this new set of clauses becomes S(n” — 1) and the algorithm then proceeds as before
by choosing a literal x,»_; and setting it to 1 to obtain S(n” — 2). Stages n” —2,n" —3,...
are carried out similarly as before. We call this algorithm GUCB. We say that GUCB fails
if:

27

(A) An empty clause is created in the backtracking when resetting the truth values of some
literals to 0, or

(B) It creates an empty clause in a stage after a backtracking and before the next time when
the number of size one clauses becomes zero i.e. two separate occurrences of empty
clauses in one run.

We use N(l/) = (NO(V),Nl(I/),NQ(V),NS(V)) to denote the state of GUCB at stage v when
applied to a random instance of 3-SAT. With n’ and n” defined as above, we claim that at
stage n” — 1, the set S(n” — 1) of clauses remains uniformly random.

Claim. If V,»_; is the set of variables whose truth values remain unassigned at stage n” — 1,
then for ¢ = 1,2, 3, a size ¢ clause in S(n” — 1) is equally likely to be any clause in C;(V,n_1).
Proof Let C be a clause of size s in S(n’ + 1). Note that s > 2. It is clear that if
CN{x;,z;} = 0 for all i = n' + 1,n',...,n", then C is equally likely to be any clause in
Cs(Vin—1). On the other hand, if C N {z;,z;} # 0 for some i = n' 4+ 1,n',...,n", then let
J be the greatest value of such ¢’s. If z; € C, then no sub-clause of C is in S(n” — 1) by
definition of S(n” —1). If z; € C, then €7 = C'—{x;} is equally likely to be any clause in the
set of all clauses with size |C; | made up of variables whose truth values remain unassigned
immediately after stage j. Now since C contains z;, C' is not considered by GUCB until
backtracking. During the backtracking, C is removed from S(n’ 4 1) if C' contains z; for
somet =73 —1,7—2,...,n". Otherwise Cy = C — {&p41,2p,..., T} is in S(n” — 1), but
then C5 is equally likely to be any clause of size | C3| made up of variables in V,n_y. O

Hence the behaviour of GUCB can be analysed by considering N(Z/) As before, we shall
allow GUCB to continue after empty clauses are created, that is, we allow GUCB to continue
even when it fails in cases (A) and (B) above. We shall show that the probability that GUCB
fails is o(1). This is done by showing that the effect of backtracking on N is negligible, and
that with high probability, there are at most log® n times when GUCB backtracks. Note
that we make no attempt to minimize the powers of logn in this section.

To minimize subscripts, we write W(l/) for Nl(l/), Y(l/) for NQ(I/) and Z(V) for Ng(l/). Recall
that 3
f(z) = f(l —a?) +logz, € (0,1).

The constant « is defined to be the unique root of f(z) = 0 within the range (0,1), and
ap = a+n~%?% Also, the integer J is defined as the greatest integer such that n—Jh > agn,
where h = Lnl/ZJ. We next define some new quantities. Let bp = n+ 1, [= n+ 1 and
fo =n+ 1. For integers 1 < : < log5 ng, if GUCB backtracks for at least ¢ times before
stage ny, then define b;,[;, f; so that b; equals the stage number at which GUCB backtracks
for the i-th time, [; equals the greatest integer £ < b; such that W(k) = 0, and f; equals the
smallest integer & > b; such that W(k + 1) = 0; if GUCB backtracks for less than ¢ times
before stage ny, then define b; = b;_1, l; = [,_1 and f; = fi_1. (That is, [f; \, ;] is essentially
a “run” corresponding to GUCB in which the backtracking takes place at stage b;). We shall
use induction to show that with high probability, we have for all i < log® ng that

A

Z(b;—1) = cb?/n®+ O(in**log n), (6.1)

28

}A/(bi—l) = bif(bi/n) + O(*n**logn), (6.2)

W(b; —1) = O(log*n), (6.3)

where the constants in the big O terms are independent of :. Note that the quantities
ZA(bZ- - 1), Y(bZ - 1), Vi/(bZ — 1) respectively are the numbers of size three, size two, size one
clauses immediately after the backtracking at stage b;. When proving the above estimates
using induction, it is convenient to show at the same time the following estimates that for

i < log’n,
Pr(GUCB creates an empty clause at stage j € [b; — 1\, ; +1]) = O(log®n/n)(6.4)
Pr(GUCB creates an empty clause at stage b;) = O(log®n/n)(6.5)

That (6.1 - 6.3) hold for 7 = 0 is trivial. We assume therefore that they hold for ¢, and show
that (6.1 - 6.3) remain valid for 7 + 1. Note that after stage b;, GUCB behaves like GUC
until the next backtracking. Therefore, consider applying GUC to a random instance Z of
a satisfiability problem on b; — 1 variables with ZA(bZ — 1) size three clauses,)A/(bz — 1) size
two clauses and Vi/(bZ — 1) size one clauses. Use Z(3),Y(j) and W (j) to denote the numbers
of size three, size two and size one clauses at stage 7 < b; — 1. Also, for j < b; — 1, use 7;
to denote the minimum value of k > 1 such that W(; — k) = 0. Note that until the next
backtracking at stage b;11, we have 7 = Z, V=Y and W =W.

Note that the values of Z,Y, W satisfy the hypotheses of Lemma 5.1. Thus, we pply (5.9)
and (5.11) to obtain that with high probability,

b —l; = O(log"n), (6.6)
W(j) = O(log*n), forallje[b;—1,1] (6.7)
We therefore have with high probability that
li+1 -
2 W p
> ﬁ = O(log®n/n).
7=b;—1

Hence, the expected number of empty clauses created in stages j € [b; — 1 N\, {; + 1] equals
O(log® n/n) (please refer to comments before (5.43)). Equation (6.4) now follows.

Next, we apply Lemma 5.1 to obtain that with high probability

Z(n') = cn'S/n2 + O(in3/4 logn + n/4 logn),

Y(r') = n'f(n'/n)+ O(i2n3/4 logn + (i + 1)n1/4 logn),

W(n') < log’n,
where n’ = b; — 1 — h. These estimates satisfy the hypotheses of Lemma 5.1. Therefore, if
n’ > agn, we may apply Lemma 5.1 repeatedly. Since we need only apply Lemma 5.1 at

most O(n'/?) times before we go past the stage |agn|, we have by using (5.7), (5.8), (5.11),
(5.13), (5.10) and (5.14) that with high probability,

Z(5) = cj3/n2+O((i+1)n3/4logn), (6.8)
Y(j) = 5f(/n)+ 0+ 1)*n** logn), (6.9)
W(j) = O(log’n) (6.10)

7, = O(log’n), (6.11)

29

for all j € [I; \, ns]. Note that if there are at most ¢ backtrackings before stage n;, then
(6.1 - 6.3) remain valid for ¢ + 1. Otherwise, we have [; > fi11 > biy1 > ny by definitions of
fix1 and b;11. Therefore, using the above estimates, we have with high probability that

Z(biz1) = cbi®/n* +0((+ 1)n3/4 log n), (6.12)
V(bisn) = bipaf(birn/m) + O((i + 1) logn), (6.13)
Z(fis1+ 1) cfipr’/n* + O((z + 1)n3/4 logn), (6.14)
Y(far +1) = fuaf(firr/n) + O((i + 1)*n**log no). (6.15)

Note that from (6.11), we have with high probability that the length of every “run” equals
O(log? n) in the entire history when GUC is applied to a random instance Z defined above.
Thus, when GUCB backtracks at stage b;41, we have with high probability that GUCB need
only reset the truth values of v = O(log? n) variables. Also, we have with high probability
that

fiy1 — biy1 = O(log? n). (6.16)

We next show that the backtracking does not change the numbers of size three and size two
clauses by much. Note first that by (6.12 - 6.16), we have

Z(fim+1) = chiyi®/n? + O((: + 1)n3/4 logn), (6.17)
Y(fir+1) = bigaf(bira/n) + O((i + 1)*n**log n). (6.18)

Recall that in the backtracking at stage b;;1, GUCB resets the truth values of v = O(log® n)
variables and obtain the set of clauses at stage b;41 — 1 by updating the set S(fi41 + 1) of
clauses at stage fi11 + 1. We next observe that in the initial set of |en| (random) clauses
of size three, the number of clauses containing a given literal is distributed as B(m,3/n).
Thus, we have with high probability that for any literal =, the number of clauses containing
equals O(log®n). Hence, with high probability, the number of size three clauses in S(fi;1-+1)
containing (at least) one of the v variables is O(log* 7). This gives that with high probability,

Z(big1 — 1) = Z(fig1 + 1) = O(log™ n). (6.19)

For size two clauses, we note first that at most ZA(bZ-_H -1)- ZA(fH_l + 1) clauses of size two
are added to S(fiy1+1). Also, similar to (6.19), we have with high probability that at most
O(log* n) size two clauses are removed from S(fiy; + 1) in the backtracking. Therefore, we
have with high probability that

Y(bigr —1) = Y(fiz1 + 1) = O(log* n). (6.20)

Similarly, it is easy to see that with high probability, at most O(log*n) clauses of size 1
are created from clauses of size two and size three in S(fi41 + 1). We thus have with high
probability that

W (bip1 — 1) = O(log* n). (6.21)

The induction proof of (6.1 - 6.3) is now complete by noting that (6.1 - 6.3) follow from (6.17
- 6.21) and the fact that Z(fZ_H +1)=Z(fis1+ 1), Y(fZ_H +1)=Y(fis1 +1).

30

We next would like to show (6.5). Let I = {b;,b;+1,..., f;, fi+1} and use V; to denote the set
of variables whose truth values remain unassigned immediately before stage b; — 1. For j € I,
use z; to denote the literal that was set to 1 at stage j. (Note that v = f;—b;+2 = O(log* n).)
Now in the backtracking at stage b“ GUCB resets these v literals to 0 and update the set

S(fi+1) of clauses. For j € I, let S be the set of clauses of size ¢ in the set S(7) of clauses
at stage j containing the hteral x;. That is,

S ={CeS8(j)|z;eCand |C|=i}.

Note that if C' € 8](1), then C' must come from a clause C’ € S(f; + 1) where C' contains
a literal z;, for some 3’ € [and ;' > j. Thus, no clause in U]-GIS](-U can become an empty
clause during backtracking. Note also that if C' € S](i) (1 = 2,3), then the entire clause C is
removed from §; at stage 7, and so no sub-clause of C' can appear in S](-?) U S](?) for all ' € 1
and j' < j. Thus, if C' € S]@ (1 = 2,3), then during backtracking, C — {x;} is equally likely
to be a size ¢ — 1 clause chosen from the set

Cia(Vo U {2 | j" € I and j' < j}),

where & here denotes the variable of the literal x. Thus, if C' € S](-i) (1 = 2,3), then the

probability that C' becomes an empty clause after the backtracking is O(v/b;) = O(log® n/n).
Note that for a clause C' € S(f; + 1) to become an empty clause after backtracking, the

clause C' must be contained in Ujer Uj=a 3 S](-Z). As argued in (6.19) and (6.20), the size of
Ujer Ui=2,3 S]@ is O(log® n). Hence the probability that an empty clause is created in the
backtracking at stage b; equals O(log® n/n). This proves (6.5).

It now follows from (6.4) and (6.5) that

Pr(GUCB creates an empty clause at stages j € [b;,; + 1], for some i < log® n)
= O(log"n/n).

Therefore, it remains to show that
Pr(GUCB backtracks at least log® n times before stage ny) = o(1), (6.22)

and that
Pr(GUCB backtracks at and after stage ny) = o(1). (6.23)

To show (6.22), suppose that [; is given and note that GUCB behaves like GUC after each
[; until the next backtracking at stage b;11. Note that using (6.8) and (6.9), we have with
high probability that for i < log® n,

Z(L) = i /n? + 0(n**log®n),

Y(I;) = Lf(li/n)+O®n**log" n).

Also, W(ZZ) = 0. Next, consider applying GUC to a random satisfiability problem Z' with
l; variables, Z'(l;), Y'(I;) and W'(l;) clauses of size three, two and one respectively, where

31

Z'(l;) > ZA(ZZ'), Y'(l;) >)A/(ZZ) and W'(l;) > W(ZZ) Then by the monotonicity argument used
in showing Theorem 1.1(c), we have W(J) < W'(j) for j > biy1. Thus, if ¥’ is the minimum
value of v < [; such that when GUC is applied to Z’, the set of clauses at stage v contains
two clauses {y},{y} for some y, then it is easy to see that b;1; < &' in distribution. We
apply this idea with Z’, Y, W' obtained by applying GUC to a random instance Z’ of 3-SAT
with [¢'n| clauses of size 3, where ¢’ € (¢, ¢3). Note that by definitions of [; and ¢/, we have
l; > ny > ajn (where o is defined as ag but with ¢ replaced by ¢’). Thus, we apply Lemmas
5.1 and 5.2 to obtain that with high probability, the numbers of size three, size two and size
one clauses with respect to ' satisfy that for i < log® n,

7)) = dIP/n*+ O(n3/4 log® n),
Y'(L;) = Lg(li/n)+ O(n3/4 log!! n),
W'(l;) = O(log"n),

where g(z) = 3¢/(1 — 2?)/4 +log x. Let N’ be the number of stages v before n; such that in
applying GUC to 7, the set of clauses at stage v contains two clauses {y}, {y} for some y.
Since Z'(l;) > Z (), Y'(l;) > Y (I;) and W'(l;) > W(l;) with high probability, it follows (by

considering the waiting times &’ defined above) that

Pr(GUCB backtracks at least log”n times before stage 1)
< Pr(N' >log’n) + o(1).

Using (5.13), we see that when GUC is applied to Z’, we have with high probability that
for all j > ny, the number W'(j) of size one clauses at stage j is O(log®n). Therefore,
the probability that there is a contribution to N’ at stage j equals O(E[W'(5)?/4]). Since
W'(j) = O(n), we have E[W'(j)] = O(log? n), and hence

E[N'] = O(log* n).

It therefore follows that
Pr(N' >log’n) = O(1/logn).
This shows (6.22).
To show (6.23), we have from (6.8 - 6.10) again that with high probability

2(nJ) = cns®/n? + O(n3/4 log® n),
Y(nj) = nyf(ns/n)+ O(n3/4 log'' n),
W(nj) = O(log*n).

(Note that in the unlikely event where n; € [b;—1,[;] for some ¢, we may apply (6.1 - 6.3) and
(6.6 - 6.7) to obtain the above estimates at stage n;.) These values of Z.Y, W satisfy the
hypotheses of Lemma 5.4. Thus, we obtain (6.23) from Lemma 5.4. Our proof of Theorem
1.2 is thus complete.

32

7 Proof of Theorem 1.3

We shall only give a sketch proof here. Consider SC when applied to a random instance of
k-SAT with n variables and m = |cn] clauses. We restrict our attention to

= Jo — 123
“C\k=3) k-2 k

for otherwise SC succeeds with probability 1 —o(1) (see Chvatal and Reed [4]). Let ¢;(v) be
the probability that a randomly selected clause from Ci(V},) is of size ¢ immediately before
stage v. It is not difficult to check that forz =3,... k,

(k:i) (2) 9—(k—i)

(+)
Let N!(v) be the number of size ¢ clauses at stage v. The above equation implies that with
high probability, we have for ¢« = 3,..., k that

qi(v) =

N'(v) = (k) T (w/n)i(1l - v/n)t 4 O(n logn), (7.1)

i) 2k
whenever v = Q(n). This gives a fairly accurate estimate for Nj(v) in particular.

Fix a (small) constant € > 0. Recall that 3 is the largest root of the equation

k
ps(x) = (3) ca?(1 — z)F327(:=3) = 9/3,
Let 1 = f1+ e and B = B1 —e. Note that Nj(v—1)4+ Nj(v—1)— N{(v)— Ni(v) is bounded
above by

Ay (v), if Nj(v) + Ny(v) =0,

Aj 1 (v) — 1, otherwise,
where Aj,(v), defined in Section 2, is the number of new size 2 clauses created at stage v.
Since Aj(v) is a binomial variable with parameters N3(v) and 3/2v and since for v > Bin,

< ¢ k
Né(z/)i = %()(y/n)2(1 —v/n)F227 =3 L O™ logn) < 1
2v 2 \3
with high probability, it follows from Lemma 3.4 (see also proof of (5.13)) that for v > gin,
Ni(v) + Ny(v) = O(log" n)

with high probability. This gives an upper bound for N)(v) which in turn gives that with
high probability,
> Ni(v) = O(log®n).

33

The expected number of empty clauses created before stage 3in thus equals O(log? n/n) =
o(1). Hence
lim Pr(SC fails at or before stage 8in) = 0. (7.2)

n—oo

Furthermore, for v between 3n and fin, it is not difficult to obtain that there is v1(€) which
tends to 0 as € — 0 such that
Ni) < m(e)n (1.3

with high probability. This gives an upper bound for N{(v) and it is not difficult to obtain
in a similar (but simpler) fashion as our proof of Theorem 1.1(b) that there is v2(€) where
v2(€) — 0 as € — 0 such that

lim Pr(SC fails at a stage between Bin and Bin) < y2(e). (7.4)

n—oo

Suppose we allow SC to have limited backtracking (as in GUC described in the previous
section). Then in view of (7.2) and (7.4), the theorem follows from the following lemma.

Lemma 7.1 For all small ¢ > 0,

lim Pr(SCB fails at or after stage 57n) = 0.

n—oo

We do not prove Lemma 7.1. Instead, we give a sketch proof of Lemma 7.2 below. (¢ < ¢
means that Lemmas 7.1 and 7.2 can be proved similarly.)

Lemma 7.2 Lel ng = |Bin] and V be a set of ng variables. Let T be a random formula
with N;(ng) clauses of size t, where fori=3,...,k,

A

Ni(no) = (]:) cn(no/n)i(l — no/n)k_i + O(n1/2 logn)

and Ni(no) =0 fori = 0,1,2. Fach size i clause in T is chosen at random (with equal

probability) and independently from C;(V). Then

lim Pr(SCB, applied to Z, fails at or after stage ng) = 0.

n—oo

This lemma can be proved in a way similar to our proof of Theorem 1.2. The key point is that
when SC (without backtracking) is applied to Z, we can follow our proof of (5.5) to obtain
an estimate for the number Nj(v) of clauses of size two. Indeed, if h = [n'/?], n; = ng — ih,
I;={n;+1,...,n;_1} and J is the greatest integer such that ng — Jh > an + n"" where «
is defined later, then we have with high probability that

ken;

Ny(mi) = S (4 (k= 2me/n)(1 = ni/n)*2 = (14 (k = 2)B1)(1 — 51)* 7]
+n;log(n;/(Bin)) + O(in1/4 logn), (7.5)

34

which can be proved using induction and difference equations as in Lemma 5.1. Intuitively,
the above equation can be obtained as follows. Let

k
pa(z) = 2]:1 (14 (k—2)z)(1 — m)k_2 + log x.

Note that py(z)— p2(f1) is an approximation to Ni(|zn])/|zn| according to (7.5). We define
a < f as the smallest number so that py(z) — p2(81) = 0. Note also that

Thus py(x) is maximized when « = 5. Note that

P2(50) - P2(ﬁ1) =

1 (1 k-3 1 k-3

e \Et m T F A)* 5o/ 1)

which is less than 1 according to the hypothesis of the theorem. Thus, taking (7.5) as
induction hypothesis, we see that Nj(n;)/n; is, with high probability, at most a constant
which is less than 1. This means that we can apply the results in Section 2 to approximate
Ni(v), and in particular obtain that (see o before (3.2))

Pr(N{(v)=0) = 1— Ny(v)/v.
This shows that

E[Ny(v = 1) = Ny(v)] =~ E[A;,(v) = Ajo(v)] = Pr(Ni(v) = 0)

%

LBV - 1.

14

BN

Putting p(z) = E[N(|an])/|zn]), we have for small A > 0 that

ol —) — (o)
~ (14 hfa+ O(K)-—EINj(|en — hn])] ~ —BINy([en])
1

— (E[Nz([zn — hn]) = E[Ny([zn])]) + %E[NQ(LMJ)] +O(h)

rn r°n
h /3

— | = —1].

= <2P3($))

So () should stay close to the solution of the differential equation (7.6). The induction
proof of (7.5) is completed by showing that Nj(n;11) — Nj(n;) is close to its mean.

%

%

It can be shown that the Claim in Section 5 remains true for SCB when applied to Z. That
is, the set of clauses after each (limited) backtracking remains uniformly random. Therefore,
our proof of (6.22) and the statement before it can be extended to show that

Pr(SCB, applied to 7, fails at a stage between n; and ng) = o(1). (7.7)

35

It therefore remains to show that
Pr(SCB, applied to Z, backtracks at and after stage n;) = o(1). (7.8)

Proving (7.8) requires a result similar to Lemma 5.4. Since the backtracking in SCB does
not change N/(v) by much, we have in particular estimates for NZ(nJ) (similar to those given
in (7.1) and (7.5)). Thus as in the proof of Lemma 5.4, there is (with high probability)
n* ~ an such that Nl(n*) = Ng(n*) = 0 and that for : = 3,...,k and for v < n*, NZ(I/) can
be approximated by estimates similar to those given in (7.1). Note that for v < n*, N3(v)/v
is less than a constant which is less than 2/3. Thus similar to (7.2) and (7.4), we have (7.8).

& Other Models

We observe that repacing m = |en| by m = [(¢+ o(1))n] yields exactly the same results
above.

(a) Suppose we allow z,z in the same clause. Remove such clauses as they are always
satisfied. With high probability there are o(n) such clauses and what is left is random.

(b) Suppose we do not allow repetition of the same clause. Remove repetitions and argue
as in (a).

(c) Suppose clauses are distinct but unordered, as are the literals in a clause. This follows
from (b) as each instance in this model gives rise to the same number m!(k!)” instances

of Model (b).

(d) If we allow a clause to have a repeated literal then this is the same as starting with a
few clauses of size k — 1 (with high probability no smaller clauses will occur). Nothing
significant will happen, but one has to check that the analysis is essentially unaffected.

Acknowledgement: We thank Boris Pittel for pointing out errors and providing help on
an earlier version of this paper.

References

[1] A.Z. Broder, A.M. Frieze and E. Upfal, On the satisfiability and maximum satisfiability
of random 3-CNF formulas, to appear in SODA 1993.

[2] M.T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfability
problem, SIAM Journal on Computing 15 (1986) 1106-1118.

[3] M.T. Chao and J. Franco, Probabilistic analysis of a generalization of the unit-clause
literal selection heuristics for the k satisfiabiable problem, Information Science 51 (1990)
289-314.

36

[4] V. Chvatal and B. Reed, Mick gets his (the odds are on his side), Proceedings of the
33rd IEEE Symposium on Foundations of Computer Science, (1992) 620-627.

[5] V.Chvatal and E.Szemerédi, Many hard ezamples for resolution,

[6] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of

the ACM 7 (1960) 201-215.

[7] A. Goerdt, A threshold for unsatisfiability, to appear in 17th International Symposium
on Mathematical Foundations of Computer Science, Prague, Czechoslovakia, August

1992.

[8] A.Goldberg, Average case complexity of the satisfiability problem, Proceedings of 4th
Workshop on Automated Deduction, (1979) 1-6.

[9] A.Kamath, R.Motwani, K.Palem and P.Spirakis, Why Mick doesn’t get any: thresholds
for (un)satisfiability, to appear.

[10] D.Knuth, R.Motwhani and B.Pittel, stable marriage
[11] T. Larabee, Evidence for the satisfiability threshold for random 3CNF formulas.
[12] A.El Maftouhi and W.Fernandez de la Vega, On Random 3-sat, to appear.

[13] D. Mitchell, B. Selman and H. Levesque, Hard and easy distributions of SAT problems.

37

