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Abstract

We study the average performance of a simple greedy algorithm for finding a matching
in a sparse random graph G, ./, where ¢ > 0 is constant. The algorithm was first
proposed by Karp and Sipser [12]. We give significantly improved estimates of the
errors made by the algorithm. For the sub-critical case where ¢ < e we show that the
algorithm finds a maximum matching with high probability. If ¢ > e then with high
probability the algorithm produces a matching which is within n/5+t°M) of maximum
size.

1 Introduction

A matching in a graph G = (V, E) is a set of edges in E which are vertex disjoint. A
standard problem in algorithmic graph theory is to find the largest possible matching in a
graph. The first polynomial time algorithm to solve this problem was devised by Edmonds
in 1965 and runs in time O(|V|*) [10]. Over the years, many improvements have been made.
Currently the fastest such algorithm is that of Micali and Vazirani which dates back to 1980.
Its running time is O(|E|y/|]V]) [L7]. These algorithms are rather complicated and there is a
natural interest in the performance of simpler heuristic algorithms which should find large,
but not necessarily maximum matchings. One well studied class of heuristics goes under the
general title of the GREEDY heuristic.

GREEDY

begin
M + 0;
while E(G) #  do
begin
A: Choosee={z,y} € E
G« G\ {z,y}
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M+ M U{e}
end;
Output M
end

(G\ {z,y} is the graph obtained from G by deleting the vertices z,y and all incident edges.)

There are many variations on this theme which depend on the exact choice of edge in Step A.
There is also the issue of whether to study the worst-case or the average-case. In this paper we
study the average case — for work on the worst-case see Korte and Hausmann [14], Dyer and
Frieze [8] or Aronson, Dyer, Frieze and Suen [1]. For the average case we need a model of a
random graph. We will use the standard model G, pr which has vertex set [n] and M random
edges. We will consider the sparse case where M = |¢n/2| and ¢ > 0 is an absolute constant.
(The average vertex degree then is ¢ + O(n~!).) The simplest method of choosing an edge
in Step A is to choose e uniformly at random from all remaining edges. This algorithm was
analysed by Dyer, Frieze and Pittel [9]. They proved (among other things) that X (n, M), the
size of the matching produced when GREEDY is aplied to Gy, u, is asymptotically normal
with mean n¢(c) and variance n(c); here

c
p(c) = m
v = S

As one should expect, ¢(c) = 1/2 as ¢ — oo, which corresponds to a (near) perfect matching.

One can deduce from earlier results of Frieze [11] that this version of GREEDY is not asymp-
totically optimal, i.e. as n — oo the ratio of the size of the matching produced to the size
of the maximum matching does not tend to one in probability . On the other hand in an
earlier seminal paper, Karp and Sipser [12] describe a modification which gives a remark-
able improvement in average performance over GREEDY. We refer to their algorithm as
KSGREEDY:

KSGREEDY

begin
M « B
while E(G) # 0 do
begin
A1: If G has a vertex of degree one, choose one, x say, randomly.
Let e = {x,y} be the unique edge of G incident with z;
A2: Otherwise, (no vertices of degree one) choose
e = {z,y} € E randomly

G « G\ {z,y};
M+ M U{e}
end;
Output M
end

The idea here is that while there are vertices of degree one, it is correct to choose edges
incident with such vertices. By correct we mean that for any edge chosen in this way, there



will be a maximum size matching containing this edge. Let Phase 1 of the algorithm end, and
Phase 2 begin, at the first instance when G has minimum degree at least two. We exclude
isolated vertices in this computation and note that z,y are considered to be isolated after
Step A2. Thus the minimum degree of G is considered to be either one or at least two. Then

Fact 1 No mistakes are made by KSGREEDY in Phase 1.

Therefore the size of the maximum matching in G is equal to the number of edges in M at
the end of Phase 1 plus the size of the maximum matching in the graph left after Phase 1.

To describe the results of Karp and Sipser requires a little notation. Initially G = Gy s is
likely to have a large number = nce™ ¢ of vertices of degree one.

Let R(n, M) denote the number of vertices remaining in the graph at the start of Phase 2.
Let L(n, M) denote the number of vertices in the graph at the start of Phase 2 which are not
covered by the final matching. Note that Fact 1 implies that the final matching produced
is within L(n, M)/2 of optimal in size. Karp and Sipser found a function r(c) such that the
following is true:

Theorem 1 Let M = |en/2] and let € > 0 be arbitrary. Then

(a) lim, o Pr [

—R("AM) — r(c)‘ > 6] =0.

(b) lim, o Pr [@ > e] =0.

(c) If ¢ < e (the basis of natural logarithms) then

lim Pr [M >e] =0.

n—00 n

Part (b) means that KSGREEDY is whp (with high probability i.e. with probability
1 — o(1)) asymptotically optimal! The surprising threshold result described in (c) is re-
ferred to as the e-phenomenon. The main aim of this paper is provide more detail on the size
of the error terms. We prove the following theorems:

Theorem 2 If ¢ < e then R(n, M) converges in distribution to the sum R of a sequence
of independent random variables kPoisson(v*/2k), k > 3, where «y is the solution to the
equation ¢ = ve7. In particular

o At the end of Phase 1 the graph is whp a collection of vertex disjoint cycles.
¢ E(R) = 5.

o Pr(R=0)=((1—v)e 7 7/2)/2,

o KSGREEDY finds a maximum matching whp.

Thus in this case, instead of concluding that R(n, M) = o(n) whp, we can conclude the much
stronger result that R(n, M) is bounded in probability and that whp KSGREEDY finds a
maximum matching.



Theorem 3 If ¢ > e then whp
Q(n'/®/(logn)™"*) < B(L(n, M)) < O(n'/*(logn)"?).

Remark: There is a gap of order (logn)°/? between the upper and lower bound here. We
have not been particularly careful in reducing the exponent of logn, but on the other hand
we do not know how to remove it completely.

Conjecture: E(L(n, M))/n'/® — £(c) as n — oo for some function £(c).

Remark: The reader will notice another gap. What happens when ¢ = e? Karp and Sipser
show that R(n, M) = o(n) and L(n, M) = o(n) whp.

Problem: determine the likely growth rate of R(n, M) and L(n, M) when ¢ = e.

As a corollary of our work, we obtain the following tight estimate for the size u(n, M) of the

largest matching in G,, ps. This result was already obtained by Karp and Sipser (in different
notation), but we repeat it here because of its importance.

Theorem 4 Let € > 0 be fixed. Then

u<naM>_(1_w)‘Z€]:0,

2c

lim Pr [
n

n—oo

Here v, is the smallest root of the equation x = cexp(—ce *) and v* = ce 7.

More precisely, we show that the Karp-Sipser € can be replaced by n~/6%¢ for ¢ < e, and by
n /7 for ¢ > e.

For ¢ < 1, when v, = v* = ~, Pittel [19] proved that p(n, M) is asymptotically Gaussian
with mean n[l — (2y + 7?)/(2¢)], and variance no?(c). It seems plausible that pu(n, M) is
Gaussian in the limit for every c.

Among the techniques used in this paper, we derive two systems of differential equations
whose solutions provide a deterministic approximation for the dynamics of the deletion pro-
cess. These seemingly complicated equations have unexpectedly simple integrals which lead
to an alternative proof of the e-phenomenon. We use the integrals to construct certain
supermartingales, and to provide the probabilistic bounds for the deviations of the actual
realizations of the process from those solutions. Analogous techniques had been used by
Pittel, Spencer, and Wormald [20]. The notion of differential equations as an approximation
tool in random processes has long been known, of course, but their first serious application
in the random graph setting seems to have been Karp and Sipser’s use of Kurtz’s Theorem
[15].

We should also mention a recent work by Bollobas and Brightwell [5] on the independence
number of a sparse bipartite graph. Their approach is technically quite different since it is
based on analysis of an algorithm that deletes, at each step, all the vertices of degree one.
This was the approach used in Aronson [2].

2 Random Sequence Model

A slight change of model will simplify the analysis. Given a sequence x = z1,%2,...,Zam
of integers between 1 and n we can define a (multi)-graph Gx with vertex set [n] and edge



set {(z2i—1,72;) : 1 < i < M}. If x is chosen randomly from [n]? then Gy is close in
distribution to G, pr. Indeed,

Lemma 1 (a) Conditional on being simple, Gx is distributed as Gy pr-

(b) lim,_,o Pr(Gx is simple) = exp {—% - 64—2} , if M = |en/2].

Proof (a) If Gy is simple then it has vertex set [n] and M edges. Also, there are M!2M
distinct equally likely values of x which yield the same graph.

(b) Let N = (7). Then
e - (-3)"T1-)

(s S0} .
O

Given the above lemma, we will be able to analyse the likely evolution of KSGREEDY on
Grn,u by changing the input to x. (We will show later how to translate our results back
to Gp,m). As the algorithm progresses it produces some conditioning. Consider the first
iteration. When an edge is removed we will replace it in x by a pair of x’s. This goes for all
of the edges removed at an iteration, not just the matching edge {z,y}. Thus at the end of
this and subsequent iterations we will have a sequence in Z = ([n] U {x})?™ where for all i,
Za;—1 = « if and only if x; = x. We call such sequences proper.

For a proper z € Z and vertex j € [n] we let its degree d,(j) be the number of occurrences
of j in z. We denote d, = {d,(j)};e[n), and call d, the degree sequence of z. Let V(z) =
{j : ds(§) > 0} and S(z) = {i : 221 = 29; = *}. For a tuple v = (vg, v1,v,2m) with
vg+v1 +v=nand m < M we let Z, denote the set of proper z € Z with

e vy vertices of degree 0,
e vy vertices of degree 1,

e v vertices of degree at least 2 and

e 2m non-x entries.

This corresponds to a multi-graph G, with m edges. Note that
v + U1 +v=mn,
since x,y are treated as vertices of degree zero after Step 2 of KSGREEDY.

Given z € Z, and a permutation 7 of [2M] let zx = zra),Zr(2)s---»2r(2m)- We call 7
proper if the % entries of z are fixed under 7. For a proper w, z, is certainly proper. Let
Ay(z) = {2z : 7 is proper}. The sets A = {A,(z)} partition Z, into the equivalence classes.
If two proper sequences z’' and z" are equivalent then d,» = dg», and {25;,_q,25,.} = {*,*}
iff {z4,_;,28,} = {*x,*}. So the z from the same class have the starred pairs at the same
locations. Clearly, the size of an equivalence class with a common degree d = {d(j)} ;e[ is
(2m)!/[I1; d(5)Y]. The following simple fact and its immediate Corollary will be instrumental
in our proofs.



Fact 2 For a given v, let A be a fized equivalence class from A. If z is a random member of
Zy, then conditional on z € A, z is a random member of A. In other words, the conditional
probability of each feasible value of z is the same, namely [(2m)!/ ]—[j d(5)!]7, where d is the
degree of the sequences from A.

Recall that (z), =z(z —1)---(z —a + 1).

Corollary 1 Given A, let t = {t; < ... < t.} be such that all {2t, — 1,2t,} are non-
starred. Let is, js € [n] be given, s € [r]. Denote by P(t;1,]) the conditional probability that
(22t,-1,%2t,) = (is,Js), s € [r], given z € A. Then

. [Trepn) (d(R))
P(t;1,j) e(%nT’ (2)
pe = pr(i,3) 0 = Hs:is =k} + |{s:Js =k},

We now study the random sequence z(0) = x,z(1),z(2), ..., of sequences produced by KS-
GREEDY and the corresponding sequence v(0),v(1),v(2),..., where z(t) € Zy(.
)

We let A(t) be the equivalence class of z(t) and G(t) = G for t > 0.

Lemma 2 Suppose that z(0) is a random member of Z,qy. Then given v(0),v(1),...,v(t),
the vector z(t) is a random member of Z ) for all t > 0, that is, the conditional distribution
of z(t) is uniform.

Proof We prove this by induction on #. It is trivially true for ¢ = 0. Fix ¢t > 0,v =
v(t), v/ = v(t + 1). We start by proving

Claim: Each z' € Z, arises by a transition of KSGREEDY from the same number D(v,v')
of z € Z,. Suppose for example that v; > 0, so an edge incident to a pendant vertex is to be
deleted, together with other incident edges. To recover z € Z,, from z' € Z,/, we are

1. choosing a subset J C S(z') of cardinality m — m/'.
2. choosing element = € V°(z').

choosing element y € V¢(z') \ {z}.

choosing i € J and assigning {z2;_1, 22:} = {z,y}.

choosing ¢ = v} — vg — 2 vertices uy, ua, . . ., ue from V¢(z') \ {z,y}.

I

choosing m" : £ <m" <m —m' —1, (unless £ = 0, in which case m" = 0).

[m'" is the number of edges joining y to vertices other than z which become isolated by
the step.]

7. choosing @ > 0 such that £’ = v} —v1 + @+ 1+ X{m=m/41} > 0.

[ is the number of of uy,us,...,up, which are of degree one in z]

[¢' is the number of vertices which are of degree 1 in z’, but of degree > 1 in z.]

8. choosing a surjection ¢ : [m'"] = [£] such that a = |{u | e s.t. #(e) = u}|.



9. choosing indices K = {ki,ka,...,km»} C J\ {i} and assigning pairs {zak,.—1, 22k, } =
{ug(r),y} for 1 <r <m'.

10. choosing vertices wy,ws,...,we of degree 1 in z'.

11. choosing m" : £/ <m"' <m —m'—m" —1 (unless £' = 0, in which case m"' = 0) and
a surjection ¢ : [m"'] = [£'].

12. choosing ¢’ indices hi, ho,...,he in J\ ({i} U K) and assigning pairs {zan,-1, 22n, } =
{wy(s),y} for 1 < s < 2

13. assigning to each of the remaining m —m' — m" —m"' — 1 pairs of *’s a set {y,y} or
{w,y} where each w is of degree at least 2 in z'.

In each step, the number of options is the same for all z' € Z,/. The statement (for v; > 0)
follows since the total number of ways to recover z € Z, equals the product of those numbers.
The exact value D(v,v') of the product will not be important to us.

A similar accounting is possible when v; = 0 which we leave to the reader. This completes
the proof of our claim.

If ' € Z,(441) then the inductive assumption and the Markov property of the process {z(t)}
implies — via conditioning on v(t) — that
1

Pr(z(t+1) =2z | v(0),v(1),...,v(t) = 7

Z Pr(z(t+1) =12'| z(t) = z).

z€Zy

Now, let N(v) denote the number of choices of transition T available for KSGREEDY on
sequence z € Z,. The notation underscores the fact that this number depends on v only.
Indeed, it equals v; if v; > 0 and m otherwise. Hence, if T refers to the t¢-th choice of
transition

1
Pr(z(t+1)=z'|z(t)=z)=—§ 1i,ami 2T
NE) — {z'arises from z,T}
Using our claim, we obtain

Pr(z(t +1) =2 | v(0),v(1),...,v(t)) = %

This probability is independent of z' € Z,.. But then so is
Pr(z(t+1) =2' | v(0),v(1),...,v(t + 1)), since it equals the ratio of the above probability
and Pr(z(t + 1) € Zy | v(0),v(1),...,v(t)). O

As a consequence
Lemma 3 The random sequence v(t),t =0,1,2,..., is a Markov chain.

Proof Slightly abusing notation,

Pr(v(t+1) | v(0),v(1),...,v(t) = Z Pr(z' | v(0),v(1),...,v(t))

2'€Zy(141)

= Z Z Pr(z',z | v(0),v(1),...,v(t))

z’EZ‘,(H_l) ZEZ‘,(t)



= Z Z Pr(z' | v(0),v(1),...,v(t —1),2)

2' € Zy(1+1) ZE Dy (1)
xPr(z | v(0),v(1),...,v(¢))

= z Z Pr(z' | Z)|Zv(t)|_1,

2' €2y (141) ZE2Zv(1)
which depends only on v(¢),v(t + 1). O
We will also need the following corollary of Lemma 2 and Lemma 4.

Corollary 2 Let T be a stopping time adapted to {v(t)}. Conditioned on v(T), the sequence
z(T) is distributed uniformly on Zy(ry.

The proof of this intuitively clear statement is simple, and we omit it for brevity. O

3 Transition Probabilities

In the light of Lemma 2, we will discuss the following problem: let tuple v be given. Suppose
z is chosen randomly from Z, and one iteration of KSGREEDY is carried out. This will
yield z' € Z,,. What can we say about v'? As a preparation we discuss the degree sequence
of z.

Lemma 4 Let z be chosen randomly from Z,,. Let J = J(z) = {j € [n] : dz(j) > 2} and let
X; (j € J) denote the degrees of vertices from J. Let Z; (j € J) be independent copies of a
truncated Poisson random variable Z, where

ok
Pr(Z:k):k!f(z)’ k=23,....
Here
fz)=ef—-1-2
and z satisfies
s 1
A= Q

where s

C:E’ s::2m—v1 (4)

being the total degree of vertices from J. Then {X;}jc is distributed as {Z;};cs conditional
on Y e Zj=s.

Proof Note first that the value of z in (3) is chosen so that
E(Z) = ¢
Assume without loss of generality that J = [v]. Let

s={zels’

Z z; = s and Vj, z; 22}.

1<j<v



Fix £ € S. Then, by the definition of z and {Xi}Yiemn)

. s! s!

On the other hand,

N i
Pr|Z=¢| > Zj=s| = H—( — / ZH—_I_M,
1<j<wv 1<j<v FeS1<j<v
_ ((ez—l—z)_”zs>/ Z(ez—l—z)_vzs
61'52'50' Fes a:l!:cg!...a:v!
= Pr(X =9

O

The reader has certainly noticed that the statement holds for every z > 0. Intuitively, one
wants to avoid conditioning on a “thin” event, and our z almost maximizes Pr(3_ ;. ; Z; = s)
in the interesting cases. Estimational advantages of our choice will be seen shortly. The
chosen parameter z is extremely important to the ensuing analysis. It is a measure of the
density of the residual graph. It is initially (close to) ¢ and we expect it to tend to zero, in
which case G has mainly vertices of degree two. A simple first moment calculation shows that
whp G(n, M) contains no subgraph with average degree 3¢ or more. We therefore restrict
our attention from now on to v with 2m — v; < 3cv. For those v’s, according to (3) and (4)
the parameter z is bounded above by an absolute constant.

To use Lemma 4 for approximation of vertex degrees distributions we need to have sharp
estimates of the probability that ), .., Z; is close to its mean s. In particular we need
sharp estimates of Pr(3}_, <, Z; = sj and Pr(}s<;<, Zj = s — k), for k = o(v). Those
estimates are possible precisely because E(}_; . <j<wv Z;) = s! The well known local limit
theorem (Durrett [7], Theorem 5.2, p 113) is not sufficient, since we need to cover the case
z 3z

2:=Var(Z) = % = 0(1). Fortunately, using the special properties of Z, we can

refine a standard argument to show (Appendix 1) that for vo? — oo

Pr|Yz=s] = —=(1+00 10 ?) (5)
and
. 1 2 ~1_—2
Pr ;Z]=s—k = a\/%(1+0((k + 1w te7?)), (6)

if, in addition, k = O(v'/?0). Whp the maximum degree of G(n, M) is o(logn) and our
process will be closely analysed only while vz > n'/5t°(1) When applied, the offset k
represents the sum of one or two vertex degrees. Since 02 = z/3 as z — 0 we see that
k = O(v'/?0) is where our interest lies.

Borrowing a term from Knuth, Motwani, and Pittel [13], we say that an event & = £(n)
occurs quite surely (gs, in short) if Pr(€) =1 — O(n~%) for any constant a > 0.



Lemma 4, (5) and (6) plus a standard tail estimate for the binomial distribution shows
that there is an absolute constant K > 0 such that the following event D(t) occurs gs: let
v, = v (t) denote the number of vertices of degree k in G(t); then

vz

b = { U H )

A simple first moment calculation shows that whp G(n, M) contains no subgraph with
average degree 3¢ or more. We therefore restrict our attention from now on to v with
2m — v < 3cv.

k

< K, (1+ fuz’“/(k!f(z))) logn, 2§k§10gn}. (7)

Lemma 5 (a) Assume that logn = O((vz)/?). For every j € J and 2 < k <logn,

Pr(X; =k|v) :k!z—lzz) (1+0 (ki;'l)).

Furthermore, for all j1,js € J, j1 # j2, and 2 < ky, ks < logw,

zkl sz 10g2U
Pr(Xj, =k, X;, = = T BT \ L '
0 =k X =k ) = s (140 (221

(b) For all k> 2

k
Pr(X;=k|v)=0 ((Uz)l/zk!;(z)) .

Proof Assume that J = [v] and j = 1. Then
Pr(Zy=kand Y, | Z; =s)
Pr (2221 Zi=s)
¢ Pr (2222 Zi=5— k)
RfG) Prii,Zi=s)

Pr(X;=k|v) =

Likewise, with j; = 1,j5 = 2,

Zkl Zk2 Pr (2;23 Z, =85 — kl - kg)
Pridi=h %=k V= 0o RGP Zi=s)

The statements (a),(b) now follow immediately from (5) and (6). O

Our aim now is to use this lemma to compute E(v' — v | v) for both Step Al and Step A2
of KSGREEDY.

Lemma 6 Assuming that logn = O((v2)'/?) and 0 < v, = O(v), and abbreviating f = f(z),

2.4, 2 2z 2
U1 vizte vv2°€e log™ v
E[v — = —-1-— - O——
b =V om T @mpRE  @m)f ( vz ) ’
2.4,z 2
U1 vizte log“ v
E[v — = -1+————=+0
[ = olv] + 2m  (2mf)? + ( vz > ’
E[m' —m|lv] = —-1- vete” +0 log” v
N 2mf vz )
v — 1 ' U1
< — v — <0(—=
Q( — ) < E[vy —vo 2|v]_0(m),

where the lower bound assumes vy < m.

10



Proof

Let z,y be as in Step Al of KSGREEDY. Introduce the parameters d,, (1 < r < 3); they
are the total number of neighbors of y in the multigraph G, that have degree 1, 2, and at
least 3 respectively. Set d := d; + dy + d3. Let £, § denote the number of loops and multiple
edges incident with y, and let d = 2¢ + § (an edge of multiplicity k counts k — 1 towards ).
Thus d + d is the degree of y.

We show first that

Ed|v)=0 (l> : (8)

m

Let A be the equivalence class that contains z, and let d = {d(j)}¢[, denote the corre-
sponding degree. Using Corollary 1, we compute
2m(2m — 2)

E@2t] 4) = WZ(d(k))s
k

1
= em-DnEm-3 Xk:(d(k))g.

(Here 2m(m — 1) counts the number of ways to pair a fixed vertex of degree one and a fixed
vertex k, and to form a pair {k,k} in the sequence z.) Likewise

2m (™, )22

E(d|4) < W Z(d(j))Q(d(k))S
,1 .
B 2(2m —1)(2m — 3)(2m — 5) Z(d(J))2(d(k))3.

J:k

(The number of multiple edges joining j and k is at most the number of ways to sample—
without order and replacement—two pairs among {z2;_1, 22:} = {j, k}.) Combining the last
two estimates with Lemma 5 we obtain

B 2
Bd|v) = O(L:E(E VB |v)

0 (%) . )

The estimate (8) will allow us to handle easily the annoying complexity of possible neighbor-
hoods of y due to loops and multiple edges incident with it.

Consider two possible alternatives.

Case (a) d > 2. Then the deletion of all the edges incident with y leads to the new state
v = (vg,v1,v',2m'), where

Ui = Ul—d1+d2+0(d), (10)
v o= v—(1+dy) +0(d),
2m' = 2m —2d+ O(d).
Case (b) d =1. Then
’Ull = ’111—2, (11)



o=,

2m' = 2m —2.

Let xa, xb be the indicator of the event Case (a) and of the event Case (b) respectively.
Let us compute E(d,xa | V), (r =1,2,3). We start with the conditional expectations, given
the equivalence class A. Let d = d(A) be the degree of z’s from A. By (2), the (conditional)
probability that a vertex ¢ with degree 1 is incident to a vertex j is

2m . d(j)
= . 12
oo 40) = 5 (12)
This formula implies directly that
Exa|4) = 1-E(w|4)
-1 9m—
S [P St (13)

2m — 1 2m — 1
Furthermore, the probability that a vertex i of degree 1 and a vertex ¢ are neighbors of a
vertex j, (d(j) > 2), is

d(6) (d(j))2 _ 0 ( (d(£))2(d(5))s )
(2m —1)(2m - 3) (2m —1)(2m — 3)(2m — 5)

___dOWG)- e
= @m-nem-g O 06N (14)

We have used
> Pr(B,)— Y Pr(B., NB,,) <Pr(U,B,) < ZPr (15)

81<82

So, using (12) and the last relation with d(¢) =1,

B(dixa|4) = —— 3 d({j)+ : o1 IDORCE)H

2m =1, i 2m = 1)@m= 3) (552
— et G S (16)
within an error O(m~2 3_, d*(j)). Thus, by Lemma 5,
Bldixa|v) = o=y o0 pix,),) 4 0m )

2m—1  (2m—1)(2m — 3)

2m — v v1—1
2m—1  (2m—1)(2m —3)

+ O ((vz)1/2 ))
d>|_10gnj

2m — vq (v — v 2

T B 7 (O <1g)>
+0(m™")

2,z 2
_ v vvZe€e log“wv
=1 o + 7(2m)2f(z) +0 <—vz ) . (17)

UognJ d(d - 1 140 log® v
d'f vz

12



Next, using (14) with d(¢) = 2,
2

E(daxa | A) = d(i))s
(xald) = G —PEm—3) j#:dug,dw( (7))
2 -
T @2m-1)@2m-3) (02 = x{agi)=2)) (@d(5)2,

J

within an error O(m~? )", d*(j)); here vy is the total number of vertices of degree 2. So, by
Lemma 5 again,

2 2 2
E(doxa|v) = (;%P%E[(Xl)g] (1 +0 (105;’)) +0(m™Y)

o vPteR log® v

= a0 () (%)
Indeed,

V2 = ZX{d(j):Z}a
J

and, for j # k,

E(X{d(j):Z}(d(k))2 | v)

(o () [75 5 4]

1/2 5 27
O | (v2) Z dm

d>|logn|
_ 2%)22%F <log2 v>
@ fe PO\ e )

+

Likewise, summing the right hand side of (14) over £ # j such that d(j) > 2 and d(¢) > 3,

Edsxa|4) = Go—Dham—3) #j:dmzz&d(jmd(e)(d(j))Z (19)
- @m- 1)1(2m —3) Y @m—v—2v; = d()x{ag)>s)) ()2,

J3:d(5)>2

within an error O[m > 37, d?(¢) 3=, d*(j)]. Then, as twice before,

s = g -] (100 (359)

+0(m™)
_ v2z3e” @
= G o) 20)

after using (4).

13



We use (8), (10), (13), and (17)—(20) to compute E[(v] — v1)xa | V] Then we combine (8),
(11), and (13) for a very simple computation of E[(v; — v1)xb | V], and complete the proof
for v, via

Efv; —vi | v] = E[(v] —vi)Xa | V] + E[(v] —v1)xe | v].
The same holds for computing E[v' — v | v] and E[m' —m | v].

We now turn to v§ — vo. Notice first that

d=0= vy —vo=di +1. (21)
Then,
E(wy—wvo |v) < E(@h—wo|v,d=0)+uvPr(d#0)
= E(v(’)—vo|v,cl=0)—}—0(1;n—1)7
by (9)-

It follows from (9) and (21) that
E(vy —vo | v,d=0) = (1+0(1/m))(1 + E(d; | v)).

Now, by (16),

m — 1 m?2 &
J

B(dixa|4) <1- - +0 ( (d(jm) .

It follows from (7) that gs >_,(d(j))2 = O(m) and so

E(d,|v) = E(dixa|V)+E(xb|V)
_ vy — 1 U1 v —1
=1 2m—1+0(m)+2m—1
- 1+0(%).

On the other hand,

]ﬂ)k (k — 1)(1}1 — 1)
2m —1 2m — 3

E((di —Dxal4) =

k>2
(’Ul - 1)(2m - Ul)
~ o(taone
- 0 v — 1
m )
provided v; < m. O

Corollary 3 Under the assumptions of Lemma 6

| (logn)?
EW, — ) < —min{ 20—, —— .
(v —v1) < — min { 200’ 20000} +0 ( vz )

14



Proof We observe first that (3) and (4) imply

vz f
— <
2m ~— e* -1 (22)
and then that for z > 0 X
d z°e?
— | —= ] <0. 2
dz ((ez—1)2> =0 (23)
(From Lemma 6
2,4,z logn)2
E(y! — < 4 U (
(v —m |v) < + @) +0 e
22e? (log n)?
< -1 22 24
< -t oo () e (24)
1 =2k -2 —k(k—1) , (logn)?
= _(6:4—1)2;:4 ;1 z +O< ve )
22 (log n)?
< -2 K AU 2
- 200 +0 ( vz ) (25)
for z < 1/10. For z > 1/10 we use (23) and (24). O

We now compute the conditional expected changes in v for Step A2 of KSGREEDY, that is
for the case v; = 0.

Lemma 7 Assuming that logn = O((vz)'/?) and v; =0,

1
E[v) — = 2+0(—
h-wh] = 2+0(= ).
2,4,z 2
, _ v2e log” v
E[U1—1)1|V] = W+O( s ),
v2zte? log® v
E[v'—v|v] = _2_W+O< vz ),
2,z 1 2
E[m' —m|v] = 1 Ee —|—O<Og v)_
mf vz

Proof In Step A2, KSGREEDY chooses a random edge {y1,y2} of the multigraph G,
and deletes it together with all other edges incident to y; or ys, including loops at y;, y2 and
other edges that join y; and ¥, if any are present.

First consider the case where y; # ya; we refer to it as Case (c). Introduce the parameters
ds, d3; they are the total number of neighbors of y1 or ys2, or both, in G, that have degree
2 and at least 3 respectively. Let d” denote the total number of loops and multiple edges
incident to y; or y» and of the common neighbors of y; and y,. The new state v’ is then
given by

vy = dy+0(d"), (26)
v = v—2-—dy+0(d"),
m = m—l—dg—d3+0(d").

15



Analogously to (8),
Ed'|v)=0 (i> . (27)

m

So it remains to compute E(d.xc | v), (r = 2,3). We use again (2) and (15). Conditional
on the equivalence class A, the probability that two vertices ji, j2 are joined by an edge and
that a vertex i # j1,j2 is a neighbor of j; or js is (cf. (14))

e ((dl))ade) + ) (A0

+ O(m=*d(D)d* (j1)d" (52))- (28)

Pr(i; {j1,j2})

So
1 ..
E(daxe | A) — > P(i; {j1,42})
i,{j1,g2}:d(3)=2,i#j1,j2,51#j2

ot () (i) + 0 A a G (29

J2

Consequently (cf. (17)), with the help of Lemma 5,

E(dyxe | v) = &e) (1 +0 (1°g2“)> +0(m™Y)

2m?2 f2(z vz
v2zte? log® v
— o 0 (2. (30)

Analogously, we also obtain from (28)

Bloxe | 4) = 22 3 (i) Y dlso)
+ 0t RO d'6)?).

Therefore (cf. (20))

2m_2W2—z/2 vz2e? log? v
B 1) = =5 (10 (252) ) o)

2,3,z 2
_ vze)+0(logv>‘ (31)

2m2f(z vz

Here we have used ( D 5
z(e? — m
= A== 32
ER: 32)

when v; = 0.
The explicit formulas for E[(v' — v)xc | v] follow immediately from (26), (27), (30) and (31).
They are the right-hand side expressions in the statement of the lemma and it can be easily

proved that
E[(V' = V)Xe: | V] = O(m™).

16



To handle vj — vgp — 2 observe that z # z,y becomes isolated after the deletion of z,y only
if z,y, 2 is a triangle in G(0). The expected number of triangles in G(0) is O(1) and so the
probability that z,y lie in one is O(1/m). m|

To handle the technical problem of the (unlikely) existence of ¢t with |v(¢t 4+ 1) — v(t)| > logn
(| | denoting Euclidean norm) we define the event

£(t) = {Iv(t + 1) - v(t)| <logn}.
Now |v(t + 1) — v(t)] = O(A(G(0))) and Lemma 5 implies that A(G(0)) = o(logn) gs and
so [, £(t) occurs gs.
It is also convenient to introduce a stopping time

T = min{t : |v(t + 1) — v(t)| > logn or D(t) does not hold if such 7 exist,
=1 n otherwise.

Note. We choose 77, = n when the unlikely events do not occur simply because T}, the total
number of steps is at most [n/2]. If not otherwise stipulated, n will be the “closing”value
for other stopping times in the sequel. It is also convenient to define v(t) = v(T,) for
t € [Th,[n/2]].

As a bit of notation, whenever we write v,m etc. without specifying an argument, we will
mean by default v(t), m(t) etc..

4 Approximation by Differential Equations

Lemma 6 suggests that, for Phase 1, the random sequence {v(t)} must be close to the solution
of the following system of differential equations.

dvy o n v2zte? _ vivzle?

dt 2m  (2mf)2  (2m)%f’

dv vy vZzte?

- = 1+ —-— 33
dt tom T @mp? (33)
dm vz2e?

dt 2mf

We need to integrate these equations subject to the initial conditions
v1(0) = ce™°n, v(0) =p(c)n, m(0) =cn/2, (34)

where as usual f = f(y) = e¥ —1—y, p(y) = e ¥ f(y). The conditions and the equations (3),
(4) imply that z(0) = ¢. (Indeed, the degree of a vertex in Gp ar, M = cn/2, is in the limit
Poisson with the parameter c.)

Lemma 8 The solution to equations (33) is:

2m = ﬁz2,
v = np(2)B(2), (35)
u o= [ - 2eBx) 1),
n 1. 5
to= Zle(l-B() - 5log? A(2) |



where
BeP = e

So, the solution is given in a parametric form, as functions of z, the hidden parameter.

Proof First observe that

Rz =
Var[Z(z)] = E[Z(2)(Z(2) - 1)] + E[Z(2)] - E*[Z(2)]
_2%eF zf'(z)  (2f'(2) >
- ot e (5
and
'R\ _ @, 2" (FR)
(5 - (%
1
= ;Var[Z(z)].
Explicitly Va2 = (e — 1Y — e
- f2(2)
Consequently
d (2m — v 1 dz
7 ( 5 ) = ;Var[Z(z)]a.

On the other hand, using the differential equations (33),

i 2m — vy _ _2m—v1 _1+v_1_v2z4ez
dt v B 02 2m  (2mf)?

vTrze

1 vz2e? U1
—12({-1— —— 1+ — —
+U [ ( 2mf>+ +2m (2mf)2+

1 om—uv\> 2m—uv 2%e*
- 2m v v f

zie? 22e? V12
+(2m—v1)—+( + o

@mf)2 "\ 2mf " (2m)’f
1 2f! vzte? 2f! wz?e?
= ——var[z]+ 2L -
2m VT G T T Gy
1 vz2e* z%e* — z(e* — 1)?
- —_ Var[Z
2m A Gy P
1 vz2e?
Comparing this with (40) we obtain
1dz 1 vz2e?
b
z dt 2m 2m f
_ Lldm
 2m dt’

(36)



see the third equation in (33). Integrating,

22
— = constant,
2m

so by (34)
2’n
Z _—=c 42
o = € (42)
Next, we rewrite the second equation in (33):
dv v ozf  vP2te”

dt— 2m f  (2mf)?
Here, using the third equation in (33) and (41),

dv _ v dm
dt dm dt

_ d_v _l_vz2ez
- dm 2mf

_ oz | v
T 2mdz 2mf )’

So the equation for v becomes

The form of this equation suggests a substitution
v=mnp(2)B(2), p(z) =e*f(2). (44)
Then (see (34))
B(c) = 1. (45)

Plugging this formula into (43) and using (42) and p'(z) = ze™*, we obtain, after cancelling
—%(e~*2°n/2m) on both sides,

ag

d
—e ‘28— L cpPB 4

EZ

—B(1—e7).

Since

l1—e*—ze?=€e%(*—1-2) =p(2),

the equation for 8 simplifies to
1.

Bdz " dz T

Integrating and using (45) we obtain

Ldp | df _

BeP = e*. (46)

Next, usi
ext, using F) om—n

f) v

19



we obtain from (42), (44),

v = %z2 —nz(l —e ?)B(z).

Finally, from the third equation in (33), and (44), (41), (46),

d
1+ 2m f
_ (2m/2)dz
==
n zdz
= —= . 47
cl+cp (47)
Here, denoting y = ¢, and using (46),
1
dz =d(=logec+logy +y) = %dy,
so that ) |
gt — " (Floge +logy +y)dy_
c )
Integrating, and using the initial condition y(0) = ¢£(0) = ¢, we arrive at
n 1. 5
t=—lc(1-08)—=1 .
o1 ) — 3 log* 0
O

Let us see for which values of ¢ the solution v(t) reaches a point such that v; = 0, but v, z
are still positive. At this moment, call it t*, by the formula for v; we can write

tE
7= B, (48)
Vo o= c/Be_z*.
Observe that, from (36),
Ye=ce TV, AT =ce . (49)
Indeed
ce = ce P =che? = Yy
e = cef ~P =cB=n"

Since vy, < 7*, the equation (49) can be satisfied iff ¢ > e. Indeed, y*e™ 7" = v,e
which implies 7. < 1 < v* and 4"y, < 1. Thinking of v*,¢ as functions of v, we get
de/dy. = (1 = v*v.)e? /(1 —=~*) < 0. ¢ > e then follows from ¢(1) = e. See also Lemmas 9
and 10 below. The formula for t* determines the total number of matched pairs in Phase 1,
and using v.,v*, we can write it as follows:

*_n * ]'2
t" = [c ¥ 27*]- (50)

In this case (see 49) ~. and v* are the smallest root and the largest root among the three

roots of
x = cexp(—ce™). (51)
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The middle root, denote it -y, is the only root of

T =ce . (52)

For ¢ < e, v1(t) remains positive until z(¢) (whence v(t) and m(t)) reaches the zero value.
According to (36), the terminal value 3 satisfies 3 = e~?, so that

p="1.
c

So, by (35), the likely number of matched pairs in Phase 1 (whence the likely maximum
matching number) is given by

n 1
t'=—(c—7-27"). 53
. (c =57 ) (53)
If ¢ > e then Phase 1 ends with v of order n, so Phase 2 should be expected to deliver
many more matched pairs. Let us “derive” the differential equations that should provide an
accurate approximation of the actual Markov chain. To this end, we observe first that, for
the moments ¢ such that v; (t) = 0, we apparently have to use the equations

dvi  _ vPte? (54)
dt 2m2 f2(z)’

dv v2zte?

a7 2m2f2(z)

dm vz2e?
@ " T e

suggested by Lemma 6. Since dvy/dt > 0, the representing point v(t) is pushed back into the
region {v : v; > 0}, so instantly we have to switch to the equations (33) with v; set equal 0:

dvy v2zte?
o L YEC
d * emi (55)
d_v - _1_ v2zte?
d 2mf(2))?’
d_m 4 vz2e?
dt 2mf(z)
Here, by (32),
dvy 22e?
hab I Tl
dt + (e —1)2
z/2 2

which  means  that  v(t) moves back  toward the  boundary  set
B = {v : vy = 0}. These instantaneously alternating attractions to, and repulsions from B
strongly suggest that a proper system of differential equations is obtained by mixing the right
hand expressions of (54) and (55) with “weights” (relative time frequences) 1 — w(t), w(t).
Here w(t) has to be such that the resulting equations admit a solution v(¢) with v, (¢) = 0,
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that is dvy /dt = 0. (In the language of dynamic systems control theory, we have encountered
here a so-called sliding mode (trajectory)). Explicitly, see the first equations in (54), (55),

v2zte? vizte?
w(t) |-14+ ———35 +1—wt7§0,
D1 mrer] T W
so that -
w(t) = T (57)
L+ e
Using w(t) to mix the remaining equations in (54) with their counterparts in (55), we obtain
dv
= = _9 58
& , (58)
vz2e®
dm _ mf(2)
dt 1+ 4;’nzzf§(’z)

The first equation is strikingly simple; it means that, on average, we lose —one way or
another— exactly two heavy vertices (i.e. of degree two or more) per step of Phase 2. Since
at each step two vertices get matched, we can see that the total number of matched pairs
delivered by Phase 2 must be asymptotic to v(t*)/2. That is, almost all vertices present
at the moment ¢* get matched. Combining the second equation in (35) with (49)-(50), we
obtain that for ¢ > e the maximum matching number of G, ., /2 is asymptotic to

n<1_w)'
2c

Of course, this argument is too superficiall The actual analysis of Phase 2 is much more
technical, and revealing. Curiously our proof does not require justification of the first equation
n (58), nor have we tried to prove it as the limit property, using our analysis.

Let us use the equations (58) to determine the parametric solution analogous to (35). We
have (cf. Phase 1 computation): by (40),

2 =z
dz d [(2m 2m 2 T
_Var( )% = Z|l—)=-F "2+ |-1- i(z)%z
dt di \ v v v 1+ Am2f2(z)
1 o2m\> 2m  22e*
- om [\ v f()
2 =z
L 2 e

ze*  z(e® —1)2 — 2%¢?

m mf(z) 2% + (e — 1)?
ze* f?(z)Var(2)

mf(z) z2e* + (e* — 1)2

1dz _l 1+ z€e* f(2)
z dt m 22e* + (e* —1)2 )’

22

Cancelling Var(Z), we get



Invoking the second equation in (58), we exclude ¢ and obtain

dz  2%e* + (e —1)? +2z(e* —1)e* _ dm
2z 22* + (e —1)2+ze*(e* —1—2) m’

1 e* ze* dm
4 — dz = —.
z e*—1 e*—1+ ze? m

Integrating from 2z* := z(t*), m* := m(¢*) to z, m, we obtain
2(e* —1)  z*(e* —1) /Z et
1 + = ———d¢. 59
og[ m m* -~ e8(1+¢8) -1 ¢ (59)
The last relation and (32) provide the desired parametric description of the sliding trajectory

{v() tesee-

Note. We should technically use notation for the deterministic trajectory that differs from
that for the random process, but this would have been cumbersome. However from now on
we will refer to the latter as v(¢) and v* will stand for v(¢*).

or, after simple algebra,

The above analysis provides an insight into what is going on. We now have to carefully justify
the fact that our process is likely to follow the trajectories computed above.

5 Analysis of Phase 1

We wish to show that random variables, m,v; and v, tend to stay close to the solution of
differential equations (33).

As we showed in Section 4, along the trajectory (35) the following four functions remain
constant.

Jl(V) = E,
v
T ELEY
vy
falv) = nh(z)’
It = = —g),

where
M) = 201 eBE) (1 - e/,
o) = 1-f(2) = o log’ B,
BeP = ¢~

Initially whp z =~ ¢ and we expect v(t) to follow the trajectory (35) and so we expect v(t)
to lie well within the set V of v satisfying

% < m o< o2n
aw()B(z) < v < 20p(2)B(2),
52h(z2) < v <2%h(2).
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Before proving that v(t) stays within these bounds whp, let us look at the behavior of the
deterministic approximation v(t) as ¢ increases. Let z* be the largest nonnegative root of
h(z) = 0, the same z* as in (48). [Observe that h(0) = 0.]

Lemma 9 For ¢ <e, h(z) >0 for z >0 and so z* = 0. Also ¢'(0) = 0.
Proof If h(z) = 0 then 1 — cf(1 — e7#)/z = 0. Since Be® = e* we get r(3) = 0, where

r(y) := exp(—ce~Y) —y.

Clearly the solution to 8 = e~ is a root of 7() = 0. This corresponds to e* = 1i.e. z = 0.
For a positive root to exist we must have some root of r'(3) = 0. This is not possible as
c®e=F exp (—ce™F) < 1. To see this let = e~°/. By simple calculus c*ze™*" < £ < 1.
Finally

zp

! —-_— —_——
g (Z) - Cﬂ ’
yielding ¢'(0) = 0. O

Lemma 10 If ¢ > e then z* > 0.

Proof Clearly 7(1) < 0 and r(2¢) = L —I2¢ > (. (See Karp and Sipser). A root must
exist for some B € (22¢,1). This corresponds to z* € (Inlnc,c). O

We will be able to show that v(t) provides whp a sharp approximation for the actual process
at least as long as the hidden parameter z exceeds z* + n~* where a > 0 is a constant, such
that a < 1/6 if ¢ < e, and a < 1/4 if ¢ > e. When ¢ < e we have m,v,v; = O(n2z?) as
z = 2* = 0. For ¢ > e we will have m,v = ©(n) as z = z*. The variable v; is another story,
and to estimate it we will need to use h(z) = h(z*) + (2 — 2*)h'(2*) + O((z — 2*)?h"(z*)).
Using 8 = —2. we have

— 1+4cB
ooy e — 1 B oer—1 1
W(z)=2z—cf " _Czl—l—cﬂ " —czﬂe—z.
At z =2z we can use 5+ = cff to get
* z*_12_ *2 _2*
iy = e D= ] (60)

(e#" —1)(z*e*” + e —1)
To see that this is strictly positive just compare the Taylor series of e*” — 1 and z*e* /2.
Therefore

v = O(n(z — 2%)). (61)

Note that h'(z) > 0 is associated with dstl < 0, at least along the trajectory (35), (cf. (47)).

Turn now to the random sequence {v(t)}. Set a € (0,1/6), a9 = (1 — 6a)/2 if ¢ < e, and
a€(0,1/4), a0 =(1—4a)/2ifc>e.
Let

W={veV:z>z"+n"%,

and introduce
T = { min{t < 77, : v(t) ¢ W} if such 7 exist,
W —_

n otherwise.
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Lemma 11 Assume v(0) € W. If 0 < a < ag then gs,

max [Ji(v(t) = Ji(v(O) Sn7% i=1,2,3, (62)

a

Consequently, if v(t) ever leaves W, it happens qs only because z(t) falls below z* +n=?.

Proof To prove this we will use a technique from Pittel, Spencer and Wormald [20]. Tt
is based on showing that {Q;(v(t))}:>0, where

Qi(v) = exp{L(J;(v) — J;(v(0)))}, i=1,2,3,

is almost a supermartingale for L = n® | o € (a, ag), essentially because J;(v(t)) is constant
along the deterministic trajectory.

Suppose ¢ < e. We consider only @)» since the two other cases are very similar.
We define Q(t) = Q2(v(t)) if t < Tw, and Q(t) = 0if t > Tw. We also let J(t) = Ja(v(t)).
For t — 1 > Ty, we obviously have Q(t) = Q(t — 1) = 0. For t — 1 < Ty we can write

E@Q(t) [ {v(s)}s<t) < Q(t = NE {1z exp [L(J(t) = J(t = 1))]|v(t=1)}. (63)

Since v(t — 1) € W, each of m(t — 1) and v(t — 1) is of order n'~2%/logn at least. The same
holds then for v(t) € B(v(t —1),logn) = {v: |v—v(t —1)| <logn}. Consequently v(¢)z(t)
is of order n!32/logn at least. Moreover, it can be easily verified that, uniformly for such

vandi=1,2,3, z,y = vg,v1,v, m,
oJ 1
— o(— 64
oz (vz) ’ (64)

0%J 1
Ox0y © (U2z2> ’ (65)

So, assuming v(t) € B(v(t — 1),logn) and expanding the exponential function,

exp{L(J(t) = J(t = 1))} = [1 + LVJ ()" (v(t) — v(t — 1)) + O(L*(log n)* / (vz)*)],

(66)
since
Llogn = o(vz). (67)
Consequently, equation (63) becomes
EQ®){v(s)}s<t) < QU —-1){1+LVJ@H)"E[v(t) —v(t —1)|v(t —1)]}
+0(Q(t — 1) L*(logn)?/ (v2)?). (68)
Here, denoting the vector-valued right-hand side of (33) by F(v), and using Lemma 6,
VJA)*E[v(t) —v(t = 1)|v(t—1)] = VJ(t—1)*[F(v(t—1))+ O((logn)*/vz)]
= O(IVJ(t - 1)|l(logn)*/vz)
(log n)?
o(fE). (69)
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(VJ(v) L F(v) since J(v) is constant along the trajectory (35) of dv/dt = F(v)!)

Therefore, for t — 1 < Ty and hence for all ¢,

EQ(t) | {v(s)}s<t) < Q(t = 1) (1+ O(L*(logn)*/(v2)?)) -

So we can find 1 < w < 2 — 6a — 2¢/ such that the random sequence

{R@®)} :=={(1+n"*)"'Q(1)}
is a supermartingale.

Introduce a stopping time

7 = {

Now, applying the Optional Sampling Theorem (Durrett [7]) to the supermartingale {R(t)}
and the stopping time 7y;,, and going back to {Q(t)}, we get

E[Q(Tw)] < (14+n*)"-E[Q(0)] (70)
= (0
= 0(1), asn — oo.

min {t < Tw : J(t) — J(0) >n~*/2}, if such t exist,
Tw, otherwise.

Since obviously
E[Q(Tyw)] > ™ /- Pr{Ty, < Tw},

we have then

Pr{max [J(t) — J(0)] > n"*/2} Pr{Ty < Tw}

t<Tw
= 0™/,
Analogously,
Pr{min [J(t) — J(0)] < —n™%/2} = O(e—”“ _“/2)‘
t<Tw
So gs

max |J(t) = J(O)] <n”%/2.

It remains to notice that on Tw < Ty,

J(Tw) — J(Tw — 1) = O(n~ 7304y = (=),
The case ¢ > e is essentially similar. The real difference is that the first order derivatives and
the second order derivatives of Js in the ball B(v(t — 1),logn) are O(n1+22), O(n~2+12),
respectively. (This comes from h(z*) = 0, h'(z*) > 0.) For each of Ji, Ja, the orders are even

better, O(n=1) and O(n=?). These better estimates result in (62) for a < ag = (1 — 4a)/2.
O

We now turn to Jy and prove that gs it also stays close to its initial value.

Lemma 12 Assume v(0) € V. If 0 < a < ayp, then gs

[Ja(v,t) = Ja(v(0)) <n=%, (8 <Tw).
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Proof We consider ¢ < e only. We start by choosing o’ € (a, ag), retaining L = n® and
defining

Q) = exp(Lai(v,0) =exp {L | £ = g0 }

if t < Tw, and setting Q4(t) = 0 for t > Ty . Then, for ¢t < Ty,

Qﬁi(f)l) = e {L (% —[g(=(8)) — g(a(t - 1))])}
= exp {L (% ~ B (aft) — 20t~ 1)) + O((=(0) — 2(t - 1))2))}
= e {L (% - 9at) ~ (- 1)) +0 (M))}
= 1423 - et - ste- 1)+ 0 (LR ) w0 (HloEn)

(71)

with dg/dz computed at z = z(t — 1). Here the estimate (71) follows from v = Q(nz?) =
Q(nl—2a)7

dg z
dz ~ c(1+¢pB) (72)
= 0(1),
and
|2(t) —2(t—=1)] = O(logn/v(t—1)), (73)
as |[v(t) —v(t — 1)| < logn.
Hence, analogously to (63), for t — 1 < Ty,
E[Q4(t){v(s)}s<i]
< Qu(t—1) [1 + LE (% - %(z(t) —z(t=1))|v(t - 1)) +0 <L(1v072gn)>] )
(74)

We proceed to find an estimate for the expectation in the RHS of (74). Write v = v(t—1),v' =
v(t),z = z(t — 1) and 2’ = 2(¢) and

2f'(z)  2m—v1  2'f'(Z) _ 2m/ -
fey v 7 f) W
It follows from (38) and (73) that
Zf'(Z) _2f'(z) _ 1 ' ((10gn)2)
119 o - zVar(Z(z))(z z)+0 2 .
On the other hand

2m’l—v{ _2m—uv _ 2(m'—=m) v —wu _(U,_U)2mv—vl L0 ((logn)2)‘
v v v v



Taking expectations conditioned on v, using Lemma 6 and then simplifying, we obtain
2

vz<e* n)?
E(z’ — z|v)%Var[Z(z)] = —%V&I‘[Z(Z)] - anr[z(z)] + 0 ((10;512 ) ) )

E(z — z|v) = —% (1 n %) +0 ((1052")2> _ (75)

Now along the trajectory (35) (see (47))

Thus

dz _ c(1+cB)

dt nz

and so using (72) we expect to find that

Z—‘ZE(z(t) —2(t=1) | v(t-1)) ~

S|+

Indeed, by (75),

%E[z(t) — (=)t —1)] = % +0 (% + (1052")2) : (76)

provided that |J;(v(t)) — J;(v(0))] < z,i = 1,2,3. We let z = n=% for some & € (o/, ap).
Applying (76) in (74), we obtain: for t — 1 < Ty,

Bl < Q-1 [1+0 (e + ZET)]

Qalt— 1) [1+0 (niw)]
def

w = 1+ min{a—a,1—4a—2a" +o(1)} > 1.

here

The last estimate certainly holds for ¢ — 1 > Ty because Q4(t) = Q4(t — 1) = 0 in this case.
Introduce the stopping time

Tore = rnin{t < Tw: maxj <;<3 |JZ(V(t)) — JZ(V(O))| >n~% ifsucht exists,
W = Tw, otherwise.

Define
T — min{t < Tw- : [Ja(v(t),t)| > n~*/2}, if such ¢ exists,
L Twe, otherwise.
The above estimate for E[Q4(t) | {v(s)}s<¢] means that {(14+n~“)tQ4(t)} is a supermartin-
gale for t < Ty . Then (by the optional stopping theorem)

E[Q«(T")] < (14n7*)"E[Q4(0)]

= (L+n7)" = 0(1),

whence

Pr(T" < Tiw-) = 0 (e /%),
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Therefore gs, for ¢t < Ty, the process {v(t)} satisfies
|Jz(v(t)) - JZ(V(O))| S niaa 1= 172737 (77)

and .
(0,01 = lae(0) ~ &| <n7e/2 (78)

(To be sure, we have proved only the upper bound for g(z(t)) — t/n, but the lower bound is
handled in exactly the same way.) It follows then, as in the proof of Lemma 11, that

o(e(T)) = | <

5.1 The subcritical case: c<e

We set a = 0.1,a = 0.2 —¢, (€ < .1, say), in Lemma 11. Then z(Tw — 1) > n~!, and whp ,
for t < Tw, v(t) satisfies:

| < (79)
L -1 < TL_'2+€. (80)
np(z)B(z) -
Y1 1 —.24€
n(z2 — zeB(2)(1 —e-7)) ¢ < pTEte (81)
and
V() — vt~ 1)| < logn. )

This implies that v(7w) > nz?/logn and so on exit 2(7Tw) < n~"! whp. Assume that (79)—
(82) hold. We see from (79), (82), and z(Tw — 1) > n~-! that Ty # n. It follows from (80)
that v(Tw — 1) = Q(n®) and then applying 2(Tw) < n~! and (82) we see that

A(Tw) = n~'+0m™), (83)
BTw) = L1+00), (84)
m(Tw) = n2—z§+0(n'922), (85)
o(Tw) = n;j2+0(n‘9z2), (86)
n(Tw) = M+O(n‘gz2), (87)

Tw = ng(z(Tw)) + O(n**). (88)

here, and in the immediate sequel, 2 = 2(Tw),v = v(Tw) etc..
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{From Corollary 2 we know that z(7y ), conditioned on v(7y ), is distributed uniformly on
Zy(Tyw)- It follows then from (7) that qgs

vz2e?

. - o2 locn
j:);z2(XJ)2 f(Z) + O( IOg )
= 204+ 0(n?7?), (89)
v22(e* — 1 1/2
= 0(n?°2?). (90)

We use these formulas to show that whp G, has no heavy cycles i.e. cycles containing
vertices of degree 3 or more. Indeed let C, be the number of heavy cycles of size r in Gj.
According to (89) and (90), it suffices to show that lim, o0 Y~ 5 E(Cy|A) = 0 uniformly for
the equivalence classes A such that the degree sequence d = d(A) satisfies

Y ()2 = 20+0(n’2?), (91)
j:d() 22
Y @) = 0@ (92)
j:d() 23
Using (2)
B(C,14) = DTV S~ ), (93)
(2m)ar B scB

where the sum is over all B € [n] such that |B| = r and maxscp d(s) > 3.

Let us explain the numerator. We choose a set I of r indices such that, for every i € I, the
location {2i — 1,2i} is not starred, which can be done in (') ways. Next we choose a cyclic
ordering of the set B, in (r — 1)!/2 ways. Finally we assign the edges of the cycle to the r
chosen locations {2i — 1,2i}ier, in 277! ways.

The sum is bounded as follows:

S IIEs): < > @i D>, JJ@):

B s€B j:d(3)>3 B:|B|=r—1s€B
> (d(j))2-< ) (d(s))2> -
§:d(3)>3 5:d(s)>2

= 022w +0m?2?) 12" /(r — 1)!
by (89) and (90).
So, combining this inequality with (93), we obtain

47(m),
(2m)2T

BC/1A) = 0 (G (0 + 0y —tns?)
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By (85) and (86), v and m are both of order nz? and
v
— = O(n™h).
—=7+0(@™")
Since v < 1, we easily obtain

Y E(Gr|4) = 0~ (v/m)*) = O(n~),

r>3

so that
Pr(G, contains a heavy cycle|A) = o(1),

for a likely class A. We can now remove the conditioning on the class A to obtain
Pr(G, contains a heavy cycle) = o(1).

So whp at this point the graph consists of isolated trees and cycles. KSGREEDY has not
made any mistakes and cannot do so from now on.

Now let us consider (isolated) cycles without heavy vertices. Let ¢, denote the number of

such cycles of size r, r > 3. Then,
n
va) (r=1)1 27
A
) Z ( r ) 2 (2m),
1
r

r=3 r=3
n Va\T
< X ()
< logn. (94)

So whp there are fewer than (logn)? isolated cycles.

We want to show, in addition, that almost all of m edges belong to isolated paths without
multiple edges. Let D denote the total number of those edges. Then

v )2 ()2 = 1),
E(D|A):(2>Z(r—1)(2) 2(, )27~ DL, , (95)

>2 (2m)2(r—1)

where vo = |{j : d(j) = 2}|. (To construct a path of length r, we (a) choose two endvertices,
in (%) ways; (b) select and order r — 2 intermediate vertices of degree 2, in (vs),_» ways;
(c) select r — 1 non-starred locations {2i — 1,2i}, in (,™,) ways; and (d) assign each of r — 1
edges of the path to one of the selected r — 1 locations, in (r — 1)! ways. Needless to say, the

factor 272 /(2m)a(,_1) comes from (2).

By (7) we see that for a likely class A
vy = v+ O0(n°2?).

After simple computations based on (83)-(87), the above sum for E(D | A) simplifies then to
2
5 +0(n?2%) =m - 0(n?7%).

So we obtain
Pr(m — D > n9'2%|4) = o(1),
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and unconditioning
Pr(m — D > n"%2%) = o(1).

Now in general G, is a multigraph and we are interested in simple graphs. But applying
Lemma 1 to the input graph Gx we see also that
Pr(G, contains a heavy cycle or m — D > n*'2* | G, is simple) = o(1).

Thus, for the algorithm applied to the random graph, whp at time Ty the graph consists of
a set of vertex disjoint cycles C plus a forest of trees that are almost all paths, with all other
trees and cycles containing fewer than n'%! edges. By the end of Phase 1 the only remaining
vertices will be those of C. Denote by G the subgraph of G, which is a union of those cycles
and paths. We know that whp

nz>

* _ *\ _ 9.2
m*: = m(G}) = 50 +0(n7z%),
2
v = (@) = T+ 0,
n(l —7y)z?

v o= ul(Gy) = +0(n*2?),

c
and that L(")| the total length of the cycles, satisfies L(™ < n9122. Denote the latter event
B. Also denote (m*,v*,vF) = v*. Observe that, conditioned on v* and the event B, the
graph G} is distributed uniformly on the set of all graphs G, of the structure in question,
such that v(G) = v* and L(G) < n'?'22. We may and shall assume that the vertices of
degree 1 and 2 are specified, and moreover that vy vertices of degree 1 are paired in a fixed
way as the endvertices of v; /2 paths in the graph G.

Let V(") = (Yk(”),k > 3) where Yk(") = Yi(G}), k > 3, denotes the number of cycles in G}
of length k, and V() = {Yk(n)}kzg. Given a (finitary) sequence j = {ji}x>3 of nonnegative
integers such that r := Y, kjr < (logn)?, introduce N(v*,j) the total number of those
graphs G such that Y3 (G) = ji, k > 3. Then

v = (eIl )" ()

Here is why. (”:) is the number of ways to choose r vertices for the cycles. The second factor
is the number of ways to partition an r-element set into j3 (undirected) cycles of length 3,...,
jr cycles of length k, etc . The last two factors account for the number of ways to use the
remaining v* — r vertices of degree 2 to build v /2 paths. (The last binomial coefficient is
1/2
=1

the number of nonnegative integer solutions of Y"1 £, = v* —r.)

Since v* & v, m* & m, v* +v}/2 = m* and r? = o(v*),r = o(v}), the formula for N(v*,j)

becomes )
. . 1/2 = 1)! kNTE T
Vo) = ey SRR (3) f

This easily implies that for every fixed j, conditioned on v* and the event B, whence uncon-
ditionally, we have

Pr(y(™ =j) = [[e""/% (4" /2k) /i,
k
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that is the components of Y™ are asymptotically independent, with Yk(") close in distribution
to Poisson Y} with parameter v*/2k. By the Borel-Cantelli lemma, almost surely ¥ =
{Yi }k>3 € J, the countable set of all finitary sequences j. Therefore we have

lim Pr(Y™ € B)=Pr(Y € B), VBelJ.

n—oo

Consequently, the total number of cycles, >, 5 Yk(") converges —in distribution—to ), <, Y.
In particular, - B

k
Pr(V{" =0,k>3) — exp|-— ;—k (96)
£>3
= (1-7"exp(y/2++2/4). 97)

The total length of the cycles, > k>3 kYk(") converges to L = Zk23 kY, with
3

_ Y
B(L) = 502

This proves Theorem 2.

Note. The limiting distribution of Y'(™) is the same as for the random graph G, = G(v,yv/2),
v — 00, ([3]). However the latter graph whp contains plenty of tree components that are
not paths.

Now consider the size of the matching p; produced. From Lemma 12, (86) and Lemma 9 we
see that whp

m = Tw+O(Tw))
— nglal7) + 0(5**) + 0z i)
= nlg(0) + 0(22(TW))] + O(n.8+e) =ng(0) + O(n'8+e),

2
- _r_r Bte
= n (1 - 2C> +O0(n°Te),

since when z = 0, 8 = v/c and log ¢/ = . This proves Theorem 4 for the case ¢ < e.

5.2 The supercritical case: ¢ > e

This time we take a = 1/6 and a < 1/6 —¢, € < 0.01. We see that whp (79) — (82) hold with
n~1/6%¢ on the right, and so we assume this for the remainder of the section. Then Ty # n
by (79) and, since v = Q(n) here,

2(Tw) = 2" +n Y8 1 0(n%), (98)

where z* is the root of h(z) = 0 (see (48)). v(Tw) < nz(Tw)?/logn is again ruled out by
(79) — (82). Using (98) and Lemma 12, we assert that whp

Tw = ng(z(Tw)) + On*/%) = ng(2*) + O(n|2(Tw) — 2*| + n*/**°)
= ng(z*) + O(n®/%%e).
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Now (81) (see (61)) then implies that
vy = O(nb/6+¢). (99)

We complete the analysis of this section by showing that whp Phase 1 terminates in at most
75 further steps. The proof combines previous ideas and the tail inequalities for martingales
with bounded differences — see for example Bollobés [4] or McDiarmid [16].

Let 7* be the first time ¢t > Ty when either (i) vy (t) = 0, or (i) t > Tw + n®7, or (iii)
t>Tr.

But then gs
{vi(T*) =0} or {T* > Tw +n"/}.
Furthermore, for Ty <t < T*, we deduce from Lemma 11 that

TL(Z*)2

m(t) = —5 = +0@), (100)
o(t) = np(z*)B(z*) + O(n*/0%), (101)
vi(t) = O+, (102)
and from ¢ < 77, that
2(t) = 2*+ O(n™1). (103)
Introduce
t—1
b)) =vi(Tw)+ D> Ady(r)
T=Tw
Ay (1) = [va(T + 1) = v1(T)]1{j0y (r41)—v1 (7) | <log n} -
Clearly gs

171(t) = 'Ul(t), te [Tw,T*]

Applying Lemma 6 and (100)-(103), we see that, for 7 € [Tw, T*),
n’p(z*)*B(2*)* (2*)*e”

n?(2*)te=2 f(2*)?
= —1+8(z*)*¢e™™ +o(1)
e? (Z*)Z
(e —1)2
(From h(z*) = 0 it follows that ¢B(z*) = 2*(1 — e~#* )~1.) Consequently, using (60) and

assuming 7* < 7Tz, for 7 in question we have

E(At (7)) < —d,

1+

E(v1(r +1) —vi(7) | v(7)) +o(1)

= -1+ +o(1). (104)

where d > 0 is an absolute constant. We recall the classic inequality (see for example [16])
stating that if X is a random variable such that X € [-1,1] a.s. and EX < 0 then

E(eM) < /2, (105)
We apply this now with X = (A?;(7) + d)/logn and A replaced by Alogn to get
E" ) | {v(j)} ry<jcr) < per ), (106)
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where
p = exp{—Ad + X?log” n}.

We deduce that the sequence (Z, = A (") /pt~Tw),5 - is a supermartingale. The factor p
attains its minimum value of exp [—d?/(2logn)?] for A = d/(2(logn)?), which we now impose.
By the optional stopping theorem we obtain

ero (7 Ao (Tw) — Ao (Tw)
T T v(Tw) | <e =e -
So, given (102),
E(Z7 | T* > Tw + 087, v(Tw))Pr(T* > Tw + 7 | v(Tw)) < ™+ (107)
Now
E(Zr | T* > Tw + 0% v(Tw)) > exp{d®nS/" /(2logn)?}. (108)

So from (107) and (108) with € small, we deduce that
Pr(T* > Tw + 0" | v(Tw)) = o(1)

and consequently

Pr(vi(T*) > 0| v(Tw)) = o(1).

That is, whp at time 7* < Tyw +n8/7¢, v;, the current number of pendant vertices, becomes
zero, which signals the end of Phase 1.

We can now prove Theorem 4, assuming the truth of Theorem 3. It follows from (99) and
Fact 1 that whp the size pu; of the matching produced by Phase 1 satisfies

p = Tw +0(n™) = ng(z") +n/o+e.

According to Theorem 3 whp the size us of the matching produced in Phase 2 satisfies
pe = v(T*)/2+ 0> = u(Tw)/2 + O(n®/7+e)
= np(z*)B(z%)/2 + O(nS/7e).

Now if G(Tw) denotes the graph remaining at time 7y then

w(Gn, M) = i +p(G(Tw)) (109)
<+ v(Tw)/2.

Equation (109) is well known and follows from the fact that if u is a vertex of degree one in
a graph H and v is adjacent to w in H, then p(H) =1+ p(H \ {u,v}). Thus whp

w(G(n, M)) = n(g(z") +p(z")B(=*)/2) + O(n®/7*).

Now use the substitutions z* = v* — 7., 8(2*) = v*/c, log B(2*) = 2* — ¢f(2*) = —7« and
e* =~*/7, (see (48) and (49)) to obtain the expression given in Theorem 4.
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6 Analysis of Phase 2

For simplicity we split the ensuing analysis into three stages. First of all let
Wy = {v s 2 >n 10 4> AnZ? v <m, v < n1/5(10gn)6} .
The positive constant A will be revealed later — see (128), but it will be small enough so that
(101) implies v(7*) € Wy.
Then let

min{t < Tz : v(t) € W1} if such 7 exist,
T = .
n otherwise.
Let 76,7 = min{t : vz < (logn)?}. The conclusions of Lemmas 6 and 7 are valid for ¢ < Tg.7.

Let Z; = vo(t + 1) — vo(t) — 2 denote the number of unmatched vertices which are created at
time ¢. Then by Lemmas 6 and 7, if ¢t < T¢,7,

1
E(Z |v)=0 (”” ) (110)
m
Consequently,
Te,7 Te,7 oy +1
E Z | = ! .
oz |=0(E| > — (111)
=T+ t=T*

We will later define a stopping time 73 such that

Pra7* <t < T;: vi(t) > 2n'/5(logn)®)

E(number of isolated vertices created after 73)

o(1/n). (112)
O(n'/5(logn)*?). (113)

(111) and (112) imply that

o($:2)

t=T+

1/5 9 1
0 (n (logn) t;* E)
= 0(n'/5(logn)?). (114)
The upper bound of Theorem 3 then follows from this and (113).
We first prove below that

Pr(37T* <t < Ti : vi(t) > 800n'/%°(logn)?) < n=2. (115)

We prove (115) by proving the following lemma. Let £(t1,t2) denote the event

{’1)1 (tl) =0,v1 (t) >0 for t; <t <ty and vy (t2) > 800”1/50(10g n)3}

In the proofs of next two lemmas we will use

o =n"1/%0/200.
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Lemma 13
Pr(37* <ty <ty <Ti: E(t1,t2)) = O(n™?). (116)

Proof Fix t; € [T*,71] and t2 > t; where v1(t1) = 0. Let Xy = v1(t + 1) — v1(¢) for
t1 <t < min{ts, 71 }. Define

_ [ min{7 <min{ty, 71} : vi(r) =0} if such 7 exist,
n= min{ts, 71} otherwise.

For t; <t <1 welet ¥; = X; and for 1y <t < ¢, we let ¥; = —a. Note that |Y;| < logn for
t1 <t < ty. jFrom Corollary 3 and v(t) € Wy for t; <t < 71 we see that E(Y; | v(7),7 <
t) = —a; where a; > a for t; <t < ty. The occurrence of E(t1,t2) N {t2 < 71} implies that

T = t2 and
to

Z Y; > 800n'/*°(logn)®. (117)
t=t,

By (105) applied to (Y; + @)/(logn + ), Ay = e*¥* satisfies
E(A; | v(7),7 < t) < ¥ (legm)*—2a VA > 0.
Hence, for L > 0 and A = (L/a+ aT)/(2(logn)?), (T = t2 —t1),
t2 t2
Pr (Z Y; > Lja|v(r),7 < t1> < e M/eE (H Ay | v(t),t < t1> (118)
t=t1 t=t1

t2
= e M EA | v({t),t <t)
t=t1
< exp{—AL/a — XaT + A>T (logn)?} (119)

= exp{—m (g +aT>2}
exp { o |-

Putting L = 4(logn)® proves the Lemma. m|
Similarly, if T = [16(logn)®/a?] then

IA

Lemma 14

PrA37T* <t <Ti —T: vi(t)) =0, v1(t) >0 fort; <t <t+T)=0(n"*).

Proof Putting L = 0 and A = a/(2(logn)?) in (118) and (119) we obtain

t1+T
Pr<z Y; >0

t=t

v(r),rgtl) < = T/(4(logn)?)

= 0O(n™).
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Our next task is to find the likely shape of v when v first leaves W;. We follow the ideas of
Lemma 11. Let M = 2m — v;. From Lemma 6, if v; > 0, v € Wy and T* <t < 71, then

O 1) T e ()
- —1—%—%+0(%+%> (120)
EQW —v|v) = —1—%+;—;+0((l°§7:)2>
g oz ) o
Similary, from Lemma 7, when v; = 0,
EM -M|v) = -2- 21;;;62 - ;’:;;2 +0 <%) (122)
EW —v|v) = —2- Zi:;;; +0 <(10§:)2) . (123)

The important thing to observe here is that E(M' — M | v)/E(v' — v | v) is the same in both
cases, up to error terms. We are therefore left to consider the differential equation,

2
dM 1+ "fn; + Z,,fz]%
W - 1+ v2z4e?

Am?f2

The solution of this was obtained in (59) — see (58) (M = 2m (up to error v;) accounts for a
factor 2 here):

_ M*(e* - 1)z 2 £et
M= mexp {—/z Wd{} (124)
where M* = M(T*) = 2m* etc.. Then (up to a v; error term)
2m f(z)
o z(er—1)
2m* f(2) = et
PP exp {— /z mdﬁ} . (125)

So we define

B v 2 et
T = nf(z)exp{/z Wdﬁ}

_ m z et
o = mxp{/ Wdf}-

Lemma 15 Assume v(T*) € Wi. Then

and

Pr (T*rél?f}g(ﬂ |Ji(v(T)) = Ji(v(T*))| > nl/ﬁ) =o(l), i=35,6.
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Proof We follow the proof of Lemma 11. Observe first that equations (64) and (65) can
be extended to include i = 5,6. Now fix i = 5 or 6 and let J(t) = J;(v(t)). Let now L = n'/3
and define Q(t) = exp{L(J(t) = J(T7*))} for T* <t < T;. Let Q(¢t) = 0 for t > T;. Equations
(66) and (67) are still valid, as is (68). In place of (69) we obtain

VI Efv(t) — v(t — Div(t—1)] = O (i (”_1 + M))

vz \m (4

since we use (120) — (123) in place of Lemma 6.

So
B 3 5 [ (logn)? +v12
BQO) | {vhe) = Q- (140 (22 (FELENE))) g
= Q(t—1)(1+0(n=2/29)), (127)
The proof of the lemma is completed as in Lemma 11. m|

At time T; either (i) z < n~ Y190 (i) v < Anz?, (iii) v1 > min{m,n'/5(logn)®} or (iv)
Ti > Tz (iv) is unlikely and (125) shows that v(7; — 1) &~ Cnz? where

_ m* z* feE
C_EH?THVW{_A za:gfﬂ%-

This rules out (ii) and (iii) if we take

L [C (T
A—mln{a,%(,}_*)z}, (128)
and so we can assume that at time 7y,
2~ pol/100 (129)
v & Cnz? (130)
m ~ Cnz’ (131)
2(T1) = 2(Ti = 1) = O((log n) /v) (132)

is the justification for (129), (now assuming 71 < 7). m = v comes from z = o(1) and

5 < 2m—wv _ z(e* — 1)
v f(2)
Now let 7{ = max{t < 71 : v1(¢t) = 0}. It follows from Lemma 14 that whp

-2 (1 + g + O(z2)) . (133)

T = T{ = O(n'/*(logn)®).
This and Lemma 13 implies that whp (129) — (131) also hold at time 7. Indeed,

m(T{) —m(T1) (71 = T{)logn
O(n*/?>(logn)*)

o(m(T1)),

A



and so m(7{) =~ m(7T1). Similarly, v(7{) =~ v(71). Furthermore, applying (132) we see that
whp

A7) - x(m) = o ({B=Ten)
n'/25( logn
- O( 1,97/100 )
= 2(71

and so z(7T{) = z(7T1) holds at time T;'.

It will be useful in what follows to know that once z gets “small”, it is unlikely to ever grow
“large” again. We make this precise with the following lemma:

Lemma 16 Let 2o, = n~ *(logn)” for 1/100 < a < 1/5 and —100 < v < 100. Suppose that
at time tg we have
Zan/2 < 20 = 2(to) < 22q,5-

Let
W ={v: vz >n'’(logn)'2, v; < 2n'/>(logn)°}.

Then
Pr(3t > to: v(t) €W, 2(t) > Oz | v(ty) € W) = o(n™2), (134)

where © is a sufficiently large absolute constant.

Proof We prove the lemma by showing that for ¢ > tg,

Pr(z(t) > Oz | v(1) € W, 2(7) < Oz9, to < 7 < t) = 0o(n3). (135)
Lemma, 5 shows that if ¢g < ¢ and
A = [4/a]
then B
Pr(A(G(t)) > Ay | v(to) € W) = o(n™?). (136)

We let Gy = G(to),and assume from now on that A(Gy) < A,. We wish to probabilistically
bound z(¢) from above for ¢t > to. Since G(t) is a subgraph of Gy we can do this by bounding
z(K) for all vertex induced subgraphs K of G (which are suitably large).

Here we have

2m(K) — v (K) _ 2(K) () — 1) (137)
v(K) e*(K) —1 - 2(K)
> 2 (1 n z(K)> .
6
The inequality can best be seen from
z(ef=1) 29—, (Zk>3 bk 3)
ef—1-2z 21@2 z’;c—'Q
So,
(K) < 3(v3(K) + 204(K) + - -+ + (Aq — 2)va, (K)) (138)

02 (K) + v3(K) + v4(K) + - - +va, (K)
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If 2(K) > azp, then (138) implies that

CG(K) =3AL(v(K) — v3(K)) — azoua(K) > 0. (139)
We use this first with a = ©/2.
We deal first with subgraphs K which are connected. Let K* denote the vertices of K which
are of degree at least 3 in Go. Let k = |K*| and let H = H(K*) be the (multi)-graph with

vertex set K* and an edge joining (z,y) for every path P joining z € K to y € K all of whose
internal vertices are of degree 2 in Gy. The connectedness of K implies that H is connected.

Let T be a spanning tree of H. Let the edges of T be {ej,es,...,e,_1} and let w(e;) be the
number of vertices of degree 2 on the corresponding path joining the end points of e; in K.
If (o/2(K) > 0 then, from (139),

6ALk
E w(e;) < vp(K) < —2=. (140)
4 (CF)
i=1
So now let us consider the following event A; (k): there exists a set K* = {uq,uz,...,ux} of

vertices of degree at least three in Gy, plus a set L of at most A = 6A,k/(©z) vertices of
degree two in Gy which together induce a tree. Condition on the equivalence class A (as in
Fact 2). Then

Pr(A.(k) | A) < Zkk_z Z(Uz(to))x (m) x4k 1 22X TFTLATR [ (2m) (x g 1m)- (141)
K*

The second sum isover 21 +---+zp_ 1 < Aand X =21 + 2o+ --- + x4 _1.

Explanation: We sum over sets K* of vertices of degree at least three. For a fixed K* we
choose a labelled tree T' on k vertices. We take a canonical ordering ej,es,...,er—1 of the
edges of T' and then decide on the number of degree 2 vertices z1,z2,...,z,—1 of the paths
corresponding to these edges. We then choose a set L of X vertices and place them on the
edges, z; vertices to edge e;. This can be done in at most (v3(t9))x ways. This defines the
sets K*, L and the tree T containing them. We now have to estimate the probability that 7'
exists in Go. (m)x+x—1 counts the ways of choosing positions in z for the edges of T". There
are 2X %=1 choices for ordering the corresponding entries in z and then if d;,¢; denote the
degrees of vertex j in Go, T, Corollary 1 gives

11 (@)e; /(2m)ax4h—1y < 2XAZF/(2m)o(x4a-1)
jEK

for the probability that these edges all exist.

Now (see (7))

gs there are fewer than vzo/2 vertices of degree at least 3 in Gy. (142)

Assume A satisfies this condition. In which case
4A v

X+k<A+k< <em

where € = 4A, /0O can be made arbitrarily small. It follows after simple estimations that

22X R (05 (#0)) x () x 41—1 AZF Az
(Zm)Q(X_;’_k_l) = 2k1((1 — €)m)k—1
A2k
S
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A+k—-1

The number of choices for z1,z2,...,Tr_1 is at most ( b1

K* is at most (“*/%). Hence,

) and the number of choices for

Pr(A;(k) | A) k mk—1

vzoe k k=2 A2k
2k mk-1

(=),

Thus if K = 4/ log(©/(6e2A2)) then we have, after removing the conditioning on A,

+k— 1> (vzg/2) kk—2A2k

(A
L

Z Pr(A;(k)) = o(n®). (143)
k>kKlogn
So now let us condition on the non-occurrence of Uk>n]ogn¢41( ). Let C1,Cs,...,C; be

the components of G(t) with |[C}| < |C5| < --- < |CF| < klogn < |Cry| < - < |Ch]
which are not paths or cycles. Note that from what we have just shown we know that whp

Co/2(Ci) <0 for i > r. Let Cyuy1,Cuya,-..Cs be the components which are paths or cycles.
Now if 2(G(t)) > ©z then

0<e(G) = i(@(cz

< 3A, Z|C’*|+ Z Co/2(C Z (Ce(Ci) — Co/2(Cy))
i=r+1 i=r+1
@zo °
< 3Aukrlogn + Z C@/z(ci)_T Z v2(C5)
i=r+1 i=r+1
< 3Aukriogn — 220 Z (Ch) (144)
< akrlogn — — i:Hlvz i)

Let T denote the length of the longest path in G(¢) whose interior vertices are of degree 2 in
G(t). We will show later that if v(t) € W then either z(t) < 2 (and we are done) or with
probability 1 — o(n=3)

I' <20(logn)/(©z). (145)

Assume that (145) holds. Now |C;| < A, T'|C}| and hence

s

Z v2(C;) > va(G(t)) — 20Kr A, (logn)?/(Oz).

i=r+1
Substituting in (144) we obtain

21k(logn)>Ayr Ozov2(G(t))
z(t = 1)(v2(G(t - 1)) — Aq)) (146)

n'/%(logn)'*/2,

vV IV V

since v(t —1) € W.
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Thus
r = Q(n*?(logn)'?). (147)

Let r = v’ + 7" where 7' is the number of C;, i < r, which contain a vertex of degree one in
G(t) and 7" is the number of C;, i < r, with minimum degree at least two in G(t). Now

P <o (t) <o (t—1) + Aq < 3n%(logn)® < r/2. (148)

Let v = [logn] and suppose r” > vklogn. Then there exists k < klogn and v indices i < r
each with |C}| = k and C; having minimum degree at least two. No C; is a cycle and so each
contains at least 2 cycles. In which case we see that C; spans at least |C;| + 1 edges in Gy.
We let As(k) denote the event: G contains v disjoint sets of vertices K; with |K}| = k, and
each H(K}) spanning at least k + 1 edges.

Condition on the equivalence class A. Arguing as in (141) we see that

v 22X+V(k+1)AiV(k+1)

(0
Pr(Ay(k) | A) <> bl D (wa(to))x (M) x40 (kr1)

The first sum is over Ki,K3,...,K;. The second sum is over zy,...,Z,(y41) and X =

1+ T2+ Ty(kt1)-

Explanation: We sum over disjoint sets K{, K3, ..., K, of vertices of degree at least three.

For a fixed K7, K3, ..., K} we choose fixed graphs H;, Hs, ..., H,, each with k vertices and

k 4+ 1 edges. We take a canonical ordering €1,€2, .+, Ey(ki1) of the edges of H; U Hy U
--U H, and then decide on the number of degree 2 vertices z1, s, ..., Z,(x41) of the paths

corresponding to these edges. The rest is as before. We estimate

(149)
(2m) (X 4v(k+1))

(’U2 (to))X (m)X+V(k+1)22X+V(k+1)A%(V(k+l) - (’U2 (to) ) X A?xy(k+1)

(Zm)2(X+u(k+1)) m 2v(k+1) (1 — €)m)v(k+1)”
where € = (X + vk)/(2m) = o(1) using (145) and X = O(v(logn)?/z) = o(m), since

V(t(]) S W

Now (see (7)) we can assume that v2(to)/m < 1 — zp/4. Indeed, assume va(to)/m > 1 — 29/4
and hence that v & m. Then from (7) at t = #o,

(Y2 5 3us
m —  2m
= vz’ + O(vvzlogn/m)
T ini() ¢
z
> R
- 4

which is a contradiction.

Thus,

v(k+1) 2v(k+1)
vzpe\*v (ke Ay X +v( k+1)
Pr(d(k) [4) < (5F) (7) (1= )T Z ( 2] I (
~ (vzoe)k ke k+1 AZk+2 4 k+1
N 2k 2 2k+1((1 — e)m)*+1 \ 2o
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_ ve? A2 k A2 ke Y
B 21 —e)ym /) (1 —e€)mz
ve?A2 \*  2A2ke0 !
2(1—€)ym /) nl/5(logn)i2

For the last inequality follow (146). Thus after removing the conditioning on A and choosing
& sufficiently small (i.e. © is sufficiently large),

S Pr(Ay(k) = 0 5),

k<klogn

for any constant K > 0. Thus gs r" < vklogn which contradicts (147). Thus z(K) < Oz
for all K and it only remains to verify (145).

Proof of (145)

Let Ay, denote the number of induced paths of length k in G(¢). Condition on the equivalence
class A. Then

(5) (,22,) (m) 22+ 1 A2

E(A; [ 4) <

(2m)2k
21)2Ai V2 k-1
< =)
202 A2 £\ *!
< %(1-%) . (150)

Now either 2(t) < Oz and we are done already or z(t) > @z and the RHS of (150) is o(n2)
when k > 20(logn)/(©z).

This completes the proof of Lemma 16. |

So now let

T - min{t > 77 : v(t) € W and 377 <t < t such that z(t) > ©z(t')} if such t exist,
Tl n otherwise.
Let

Wo={v: 2z(t)>n"%(logn)?, vz >n'/5(logn)'?, vz® > (logn)’
vy < n'/5(logn)®, m < 3v, Anz®> < m,v < 2Cnz%}.

Note that Wy C W. Let
7= { min{71 <t < T AT, :v(t) € Wa} if such t exist,
5 =

n otherwise.

We now repeat the analyses that we did for v € W7, but we take greater care with estimating
the size of v;. Let

B(t) be the event {m(t +1) =m(t) — 2, v(t+1) = v(t) — 2, v1(t + 1) = v1 (¢)}.
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Lemma 17 Suppose T; < t < Tz and vy (t) > 0. Thus whp z(t) = O(n=/1). Then for
v(t) € Wy
Pr(B() | v() =1 — 2+ o(2).

Proof B(t) occurs when y is of degree 2 and its neighbour other than z is also of degree
2. Then

Pr(B(t) | A(t)) = Q:lvi 1 22(2 - ;)'

[Recall that A(t) denotes the degree sequence at time ¢.]

Now D(t) (see (7)) occurs by assumption in which case

vo = 21},2(1) + 0% logn)
= o(1-2/3+0(z?)) + O0@w/?logn)

= v(1-2/3+0(2)).

Thus

Now (133) shows

I
—
+
|
+
o)
™
M
+
&
~
N

Il
—_
+

|
+
2
&

when v € W>. Hence,
Pr(B(t) | A(t),D(t)) =1—z+ o(2).

The lemma follows on removing the conditioning on A(t), D(t). O

Lemma 18 Suppose that T{ < t < Tz and that v1(t) = 0 eg. t =T/. Let T = T(t) =
K(logn)?/z(t)3, for some large positive constant K. Then

Pr(t+T < Tz and vi(7) >0 for t <17 <t +T | v(t)) = O(n™%), (151)
and

Pr(3r € [t,min{75,t + T} : vi(r) > n'Plogn | v(t)) = O(n™*). (152)
Proof Fix t' > t. Let b = b(t') denote the number of non-occurrences of event B(r) in

the interval [¢,t']. Note that if ' < 7T then

|m(t) — m(t') —2(t' —t)| < blogn. (153)
[v(t) —v(t') —2(# —t)] < blogn. (154)

2m(t) —ui(t)  2m(t) —wn(®) _vi(®)  oi(t) | AF =) (m(t) —v(f) + O(bu(t)logn)
u(t') v(t) () o) v(t)(v(t) — 2(t' —t) + O(blog n)2155)
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We observe next that

since t < T5. Thus

vr(t")] |vi(t) ‘ 2n'/5(logn)°z(t)
o) |7 v(t) | — v(t)z(t)
22(t)
(logn)3 (156)
since t < t' < T5. Similarly,
4 v
2(t' —t) + O(blogn) = O ((12%13) ) =0 ((1022)3) .
Thus the absolute value of the RHS of (155) — denoted |(155)] — is at most
z(t) 5(t" —t)(m(t) — v(t)) blogn
0 (ognr) + = o ()
Now z(t) < On~1/190 (156), (133) and v(t) € W imply that
m(t) —v(t) < v(t)z(t).
So,
z(t) 5" —t)z(t) blogn
059 < 0 (o) + o (55
2(t) 2(t)(logn)? blogn
< 0 () +© et ) +o ()
z(t) blogn
< o () o () (150
If (#' —t)z(t)? < (logn)? then
blogn _ (' —t)logn _ (logn)3z(t) 2(t)
o) ST o) S @@ S (ogn)t (158)
and then (157) gives
_ z(t)
[(155)| = O ((10gn)3> , (159)

which is what we are after. For (' —t)z(t)? > (logn)? we prove that (158) holds gs.

Let X,,7 € [t,Tz2] be the indicator random variable for the event B(7) and let X, = 0 for
T€[T+1,t+T]. Let S; = Xy + - -- + X,. It follows from Lemma 17 that if 7 < 7, then

E(X, |v(r), 7 < 1) <20z(t).
So, see (105), for any A > 0,

E(exx, |v(7-’),7-’ <7)< e}\2+2®z(t)/\,
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and hence
E(e)\b—(t’—t)()\2+2®>\z)) <1

Then by the Markov inequality, with A = ©z/2,

Pr(b > 30z(t' —t)) ot —t)(A?—20z)

IA

< e 9ogn)*/4 (160)

ef(t'ft)®2z2/4

and so (159) holds gs. In which case

2 (1 + z(él) + O(z(t')2)> -2 (1 + ? + O(z(t)2)> =0 (%)

and
z2(t) = (1+0(1))2(¢) for 7 € [t,min{t + T, T2}]. (161)

So we introduce yet another stopping time

{ min{7 > t: z2(7) < 2(t)/2} if such 7 exist,
7= -
n otherwise.

Next let Y, = v1 (7+1)—v1(7) for t <7 < min{7s, T¢,t+T}. For min{75,7¢,t+T} < 7 < ¢t+T
we let Y; = 0 with probability 1 — 2z(¢) and equal —z(t)/400 with probability 2z(¢). Then
using Corollary 3 and Lemma 17 we see that the random variables (Y;) satisfy

o |Y;| <logn.

o Pr(V; £0 | {v(0)}oer) < 22(%).
o E(Y; [ {v(0)}o<r, Y7 # 0) < —2(t)/400.

So, for § = 2(t)/400 and X = 6/(2(logn)?),

< (1-22)eM + 2ze>" (o)
e/\6(1 + 22(6A2(10g’n)27ké ~1))
(1 + 22(e %/ (4los ™)) _ 1)

e* (1 — 26%/(3(logn)?)
e/\67z62/(3(10g n)?) .

E( Y [ {v(0)}s<r)

IN A

Now in order that t + T'< T and v1(7) > 0 for t <7 < ¢+ T, we must have

t+T

> (Y, +6) > To.

T=t

But, then using the Markov inequality

T 52
Pr (Z(YT+6) >Té v(t)) < exp{—%}

= O(n™).
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This proves (151). To prove (152) we let Z; = 0 and Z, = Vi +---+ Y, for t < 7 <
min{75,7¢,t + T}, where Y;,Y341,..., are as defined above. The above analysis shows that
the sequence

S, = exp{A\Z, + (1 —1)26%/(3(logn)?)}

is a supermartingale. By the maximum inequality, see for example Chung [6] Theorem 9.4.1
(2), for any v > 0, we have,

P S, >~) <E(S) =1
v r(tSTSmh{r{l%ch’HT} > ) <E(S)

Putting v = n® we see that
Pr(3r: AZ, > 5logn + T26°/(3(logn)?)) < n~°

Equation (152) follows as v;(7) = Z, under the assumption v;(¢) = 0 and v;(¢') > 0 for
t<t <t 0

We must now check that (130), (131) are still valid when v first exits from Wy. With J5, Js
as defined prior to Lemma 11,

Lemma 19

. — 7. < _1/40 ) — .
7_{1;1?2(7_2 |Ji(v(t)) = J;(v(0))| <n , as, 1 =5,6

Proof We follow the proof of Lemma 15 with L = n'/2? and obtain (see (126)) that for

t>T/
E[Q(t) | {v(s)}sct] = Q(t — 1) (1 +0 <L2 (%)))

where vy, v, z are evaluated at ¢ — 1. Hence,

T2 2 2
EQ(T:) < B ]] <1+0(L (Ulz;gogn) )>)> (162)
=T,
{ 2.0 Ulz,:z Szog i )> }) (163)
=T/
T2 nl/2[2 2 2
~ {z v o))
T

o)

- (166)

IA
=

We use m < 3v for v € Wy to go from (162) to (163). We use Anz? < m < 2Cnz? for
v € W, to go from (163) to (164). We use the fact that m(73) = m(Tz — 1) = Q(n3/5—0()
and v; < n!/5t°(M) o go from (165) to (166). The proof can then be completed as in Lemma,
11. O

At time 75 either (i) z < n~1/3(logn)?, or (ii) vz < n'/5(logn)'2, or (iii) vz® < (logn)7, or
(iv) v1 > n'/%(logn)?, or (v) m > 3v, or (vi) m & [Anz?,2Cnz2?] or T, A T, < n (unlikely).
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Now Lemma 19 shows that whp (130) and (131) hold at time 75 —1. In which case (assuming
To < T1) v(T2) > v(Tz — 1) —logn ~ Cnz(Tz — 1)? = Q(n3/5(logn)*). Similarly for m(7z).
Also, 2(T3) = 2(Tz — 1) + O(logn/v) = 2(Ts — 1) = Q(n"/?(logn)?. Hence whp (130) and
(131) hold at time 73. Furthermore, v(72)2(7z2)® = Q((logn)'®) and then (iii) will not hold
on exit. (130) and (131) rule out (v),(vi) and (152) rules out (iv). So we are left with two
possible exit cases having a significant probability.

Case 1: vz < n'/5(logn)*?

The number of isolated vertices that are created from 75 onwards is bounded by the sum
of (i) Y >3vk(72), (ii) the number k1 of components of G(72) which are paths, and (iii)
the number ks of components of G(73) which are cycles. It follows from (7) that whp
Siss k() = v(T2)2(T2)/3 = O(n'/>(logn)'?). Also, k1 < vi(73) = O(n'/5(logn)®).
Finally, if vy = v5(73), then

( ) —1)! 2%

(2m)s
1
k

E(k2 | v2,v(T2))

et
k=3
< logn.

The upper bound holds after removing the conditioning on vs. Thus in this case, the expected
number of isolated vertices created from 7> onwards is O(n'/?(logn)'?). This completes the
proof of (112) and (113) for this case.

Case 2: z < n~'/5(logn)?.

In this case we exit Wy with

z &~ n Y5(logn)? (167)
v ~ Cn®®(logn)*

m &~ Cn®/5(logn)*

v < n'/%(logn)°.

Let

Ws ={v: 2 < 0z(Tz), vz > n**(logn)'2, v; < 2n'/*(logn)®} C W,
where O is as defined in Lemma 16.

Then let ' .
Ta = min{ Toa<t<Tr v(t)¢gWs if such t exist.

n otherwise

We prove

Lemma 20

PrAT <t < Ts: wi(t) > ui(T) +n'/>(logn)’) = O(n?).

We observe first that z(7z) is small enough that Lemma 5 implies

Pr(A(G(Tz2)) > 30) = O(n™). (168)
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Also, (7) implies that gs if v € W3 then

vy = v+O0(z+v"?logn)

vy = % + O(vz? + (v2)?logn)
Z v = O(vz? + (V122 +1)logn)).
k>4

For t € [T2, T3] let Xy = vy (t + 1) — vy (t) if v1(¢) > 0 and |v1 (¢ + 1) — v1(¢)| < 30. Otherwise
let X; = 0. Let § = n~'/5. We show that exists a constant -y > 0 such that

E(e?Xt | A(t)) < exp{y(02% + 622 + &* + dv™! + du™"/22) logn}. (169)

Here we condition on the degree sequence A(t) of G(t) and assume it satisfies (7). Let
pr =Pr(X; =k | A(t)). Then pr, =0 for k > 30 and

0 (2) k<2
—&32”;; +0((22+vt+v 22 logn) k=-1
Pk=19 Z+0((z2+vt+ovY22)logn) k=0 (170)
% +0((22 +v " +v™22)logn) k=1
O((z*> + v~ +v1/22)logn) kE>2.

Consider for example p_;: O(v™!) (see Lemma 6) accounts for the probability that there is
a loop or multiple edge within distance two of z. O(viz/m) = o(2%logn) accounts for the
case of y being of degree at least 3 and having a degree 1 neighbour other than z. Excluding
these cases, we lose one vertex of degree one if y is of degree two and its neighbour (other
than z) is of degree at least three. Thus
oy = 2W2Lvi : 3vs + 411247:_ 3+ 30v30 N O(U_l + 22 log n)
3’[)21]3
2m?

The other probabilities are computed similarly.

+O0((22 + v +v™Y%2) logn).

It follows that the moments

E(X] | A(t)) < { g((Z2 +ot+ul2)logn) i=1,3

(z+ @t +v Y22)logn) i=2. (171)

So,

30
3k
D e

E(e’X | A(t))

k=-30
30
2k 5°k3
= > (1+5k+T+T+O(64))
k=-30

14+ 0((622 + 6%2 4+ 8* + vt 4 dv™22) logn),
and (169) follows.

Removing the conditioning A(t) does not change the validity of the upper bound in (169).
Thus for v(t) € W3,

E(e®Xt | {v(8)}to<s<t) < exp{y(022 + 622 + 6% + 6v™! 4 6v~/22) logn}.
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Fix tg € [T2, T3]. We define the stopping time

to<t<T3AT,: vi(t)=0 if such t exist.
T3 otherwise.

T = min{

For t > tg define Y; = Zt X, and

T=to

t
S = exp{dY; — vlogn Z (62(1)% + 822(7) + 6* 4+ dv™t + dv™1/22(7))}.

T=t0

Then

E(S¢ [ {v(7) }ho<r<t)
E(Si_1 exp{dX; — v(622 + 622 + 6 + 6v™" + v~ /22) logn} | {v(T) lo<r<t) =
Sy_1E(exp{0X; — v(62% + 622 + 6* + v~ + v /22) logn} | {v(T) bo<r<t) < Si1.

Thus the sequence Sy, to <t < 7' is a supermartingale. Applying the maximum inequality,
we see that for any A > 0,

Pr( max S;>A) <
to<t<T'

==

Putting A = €L, L = n'/5(logn)? we obtain

t
Pr(Ftg <t<T': Y; > L+ylogn Z (2(1)2 4 62(1) + 8% +v(7) "L + v (1) "2 2(1)) < e7L.

T=t0
Now observe that t — to < v(73) < (1 + 0(1))Cn®/5(logn)*, z(7) < ©z(T3) and v(r)~! <
2(1T)n=/%(logn)~"2. So

t
Z (2(1)? + 0z(1) +v(1) "t + 8% + 51}(7’)_1/2z(7')) < 2Cn1/5(10g n)8.

T=to

and
Pr(3ty <t < T': Y; > 3C0%*n'/5(logn)®) < n 187,

Observe next that (168) implies that
Pr(3t > to: Vi #vi(t) —wvi(to) | v(to)) = O(n™%).

So from time ty to 7' we have vy (t) — v1(tg) = O(n'/®(logn)®) with probability at least
1—0O(n™*). Since vy (t) returns to 0 at most n times in [Tz, 73], the probability that vy (t) —
v1(to) > n'/3(logn)® for some time in [73, 73] is at most O(n=2). O

The proof of (112) has now been completed for this case. To finish the proof of the upper
bound in Theorem 3 we must verify (113) as well. But we see that whp on exit from W3
we have vz < n'/5(logn)'? and v; < 2n'/5(logn)?. The number of isolated vertices that are
created from now on is bounded as in Case 1, completing the proof of the upper bound.
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6.1 Lower Bound

We fix a time ¢y € [T/, 72] such that

n~%(logn)®, (172)
m(to) ~ Cn®/®(logn)*°.

SRS
~—~
S~ o
(=] o
— —
R

The existence of t, follows from the fact that in [T}, 73] z drops from ~ n—1/1% to
~n~'/5(logn)? in steps bounded by O(v—"logn).

Next let Ty = n3/5/(logn)?® = o(logn/z(tg)®). We show that the expected number of isolated
vertices created between to and t; = tg + Ty is Q(n'/?/(logn)™/?).

Let X; = v1(t 4+ 1) —v1(t). When v (t) > 0 we decompose X; as
Xt = (Styvt + EI‘I‘t
where
5240 probability (vy/m)? — Lz2logn
=1 1 probability 1 — ((va/m)? — Lz*logn) °

0 ;=0 or probability 2Lz%logn when & = 1
Y; = ¢ +1 probability 1/2 — Lz%logn when &; = 1
—1 probability 1/2 — Lz%logn when §; = 1;

here L is some large positive constant, large enough that — see (170) —
Lz*logn > 1= (po + p1 + p-1)-
Note that if (172) holds then whp 22 3> v~!,v; /m, z/v'/2. Note further that qs (see (7))

:L—% 1— 1+ o(1))2(t), (173)

. =
and that (161) implies whp
z(t) = z(to) for t € [to,t1]-

Err; is simply X; — 6;Y;.
In the case of vy (t) = 0 a simple calculation shows that

Pr(vi(t+1) = 0] vi(t) = 0) = 0(2?) = o(1).
In this case we take Err; = 0 and put Pr(d; = 0) = Pr(v1(t +1) = 0.
Now Pr(A(G(t)) > 30) = O(n~%) — see (168) — and we deduce that

t1
E (Z Errt> = O(Ty2(to)? logn).

t=to

Now,

=
—
M=
=
=
~
V

(84

t=to t'=tg
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(55 ) on (5 5 )

t=to t'=to t=to t'=to

JjEJ

E (Z Yy (t — Tj)) + O(T?2(ty)? logn)

where J = {1 € [to,t1]: =1} ={n <m<---},

Ty2(t0)/3
> E Ve, (t1 — 75) | + O(n*/5(logn)~2°) (174)
7=0

We see from (173) that E(|J|) ~ T1z(to) and we can show as we did with b in (160) that gs
|J| > T12(to)/2. Similarly, E(r; — 75—1) = 1/2(tp) and again it is not hard to show that gs
t—1—71; > T /4 for all j <Tiz(tg)/3. We deduce then from (174) that

t1 T1z(to)/3
E (Z Ul(t)> >E ( > YTJ.> Ti/5 + O(n*/®(logn)~%). (175)
t=to 7=0

Now Z;:o Y;; dominates the distance from the origin of a simple random walk of length
B(r,1—3Lz(t9)*logn) and so

T1z(to)/3
E( > YT,-) = Q((T1z(t))"?)
=0
= Q(n*/5(logn)~%/?).

Substituting this in (175) yields

t1
E (Z V1 (t)) = Q(n*/>(logn)~%/?).

t=to

It follows from Lemma 6 and (172) that where Z; = vo(t + 1) — vo(t) — 2,
t1 t1
U1 (t) -1
(t:to t=to m(t)

= 0@/ (logn) ),
and this completes the proof of Theorem 3. m|
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A Proof of (5) and (6)

To find a sharp estimate for the probabilities in (5) and (6), we have to refine a bit the proof
of the local limit theorem, since in our case the variance of Z is not bounded away from zero.
However it is enough to consider the case where vo? tends to infinity. As usual, we start with
the inversion formula

Pr (Z Zy = 7') = % i e ! (e” 2 Z‘) dz
P -7

1 " —iTT iT v
= 5] . [E(e®”?)]" dx, (176)

where 7 = s — k. Consider first |z| > (vz)~®/2. Using an inequality (see Pittel [19])
£ )] < e f(|n)),

we estimate

i e it (f(e Z)) dr < i evz(coszfl)/3dx
27 Jio|>(vz)-5/12 f(2) 27 Jya|> (vz)=5012
< evelleos((va)~/1%)—1)/3]
< e @09 (177)

For |z| < (vz)~5/12, putting n = ze** and using vzf'(2)/f(2) = s, d/dz = ind/dn we expand
as a Taylor series around z = 0 to obtain

(1) < w LR
nf ’(n))
(m)

f
=4 D3 (77 (n )
(n)
here 7j = ze®, with & being between 0 and z, and D = n(d/dn). Now, the coefficients of
vz?/2, vz® /3! and va? are Var(Z), O(Var(Z)), O(Var(Z)) respectively, and Var(Z) is of

order z. (Use (39) and consider the effect of D on a power of z.) So the second and the third
terms in (178) are o(1) uniformly for |z| < (vz)~3/!2. Therefore

Jef+f -
|z|<(vz)—5/12 1 2 3

] - (79)

where
/ — i eikm—vVar(Z)m2/2 dr
1 27 Jjo|< (o) =302
1 K +1 )
= ——— 40— ), 180
2rvVar(Z) ((ZU)3/2 (180)

/ = 0 EDz (zf’(z)) / m3evaar(Z)zc2/2 dr
2 3 £(2) ) Jiai<wa)-or2
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19) vz/ |1_|36—vVar(Z)z2/2 de
|z|>(vz)—5/12

= O(e "), (181)

(a > 0 is an absolute constant), and

/ = 0 UZ/ x4e—vVar(Z)w2/2 dr
3 |z|<(vz)=5/12

1
Using (176)-(182), we arrive at

Pr<;Ze=T> :mx [1+0<k2;1)].
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