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trix, which is based on an easily computed, unbiased estimator. It is not difficult
to construct 0,1-matrices for which the variance of this estimator is very large, so
that an exponential number of trials is necessary to obtain a reliable approxima-
tion that is within a constant factor of the correct value.

Nevertheless, the same authors conjectured that for a random 0,1-matrix
the variance of the estimator is typically small. The conjecture is shown to be
true; indeed, for almost every 0,1-matrix A, just O(nw(n)e~2) trials suffice to
obtain a reliable approximation to the permanent of A within a factor 1 + ¢ of
the correct value. Here w(n) is any function tending to infinity as n — oo. This
result extends to random 0,1-matrices with density at least n~'/2w(n).

It is also shown that polynomially many trials suffice to approximate the

permanent of any dense 0,1-matrix, i.e., one in which every row- and column-sum

is at least (% + a)n, for some constant a > 0. The degree of the polynomial

bounding the number of trials is a function of «, and increases as a — 0.
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1. Summary

The permanent of an n x n matrix A = (a;; : 0 < ¢,j5 < n—1) is defined by

n—1
per A = Z H @i (i) »
i=0

™

where the sum is over all permutations 7 of [n] = {0,...,n — 1}. In this paper, A will
usually be a 0,1-matrix, in which case the permanent of A has a simple combinatorial
interpretation: namely, per A is equal to the number of perfect matchings (1-factors)
in the bipartite graph G = (U,V,E), where U =V = [n], and (i,j) € E iff a;; =
1. The permanent function arises naturally in a number of fields, including algebra,
combinatorial enumeration, and the physical sciences, and has been an object of study
by mathematicians since first appearing in 1812 in the work of Cauchy and Binet. (See
Minc [16] for background material.) Despite considerable effort, and in contrast with the
syntactically very similar determinant, no efficient procedure for computing this function

is known.

Convincing evidence for the inherent intractability of the permanent was provided in
the late 1970s by Valiant [18], who demonstrated that it is complete for the class #P of
enumeration problems, and thus as hard as counting the number of satisfying assignments
to a CNF formula, or the number of accepting computations of a polynomial-time-bounded
nondeterministic Turing machine. Interest has therefore turned to finding computationally
feasible approximation algorithms for the permanent.

The notion of “computationally feasible approximation algorithm” can be formalised
as follows. Let f be a function from input strings to natural numbers. A randomised
approzimation scheme [13] for f is a probabilistic algorithm that takes as input a string z
and a real number 0 < £ < 1, and produces as output a number Y (a random variable)
such that (1 —¢)f(z) <Y < (1+¢)f(z) with high probability. For definiteness we take
the phrase “with high probability” to mean with probability at least %. The success
probability may be boosted to 1 — § for any desired 6 > 0 by running the algorithm
O(lgé~!) times and taking the median of the results [8, Lemma 6.1]. A randomised
approximation scheme is said to be fully polynomial if its execution time is bounded by a
polynomial in |z| and e~!. We shall contract the rather unwieldy phrase “fully-polynomial

randomised approximation scheme” to fpras.

The question of whether there exists an fpras for the permanent of a 0,1-matrix has
received much attention, but for the time being remains open. Given the apparent lack
of progress, it seems reasonable to weaken the requirements further, and ask whether
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there exists an fpras for per A that works for “almost all” inputs.* In order to make
this statement precise, it is convenient to switch to a graph-theoretic viewpoint. Our
new question, then, is whether there exist a randomised algorithm A and a family G of
bipartite graphs, satisfying the following two conditions:

(1) When restricted to inputs of the form (G,e) where G € G, the algorithm A consti-
tutes an fpras for the number of perfect matchings in G.

(2) Almost every (a.e.) bipartite graph is a member of G. That is, the fraction of 2n-
vertex bipartite graphs that are not members of G tends to zero as n tends to infinity.

The modified question was answered affirmatively by Jerrum and Sinclair [10], who
presented a randomised approximation scheme based on the simulation of an appropriately
defined Markov chain, an approach that had earlier been proposed by Broder [2, 15]. The
polynomial bounding the execution time of the algorithm of Jerrum and Sinclair was not
explicitly computed in [10], but its degree is not small. It is not yet clear whether this
approach could ever form the basis of a truly practical algorithm, despite the undoubted
scope that exists for optimising the algorithm and tightening its analysis. For this reason
alone, it is worth investigating alternative approaches.

A promising Monte Carlo algorithm for approximating the permanent of a 0,1-matrix
was proposed by Karmarkar, Karp, Lipton, Lovasz, and Luby [12]. Their algorithm is
based on an unbiased estimator for per A, which will be described in the next section.
The KKLLL estimator may be computed relatively efficiently, the most computationally
demanding step being the evaluation of a single n X n determinant. A randomised ap-
proximation scheme can be obtained from the KKLLL estimator as follows. Choose ¢
sufficiently large, and make a sequence of ¢ trials with the KKLLL estimator, letting the
results be Zg, Zy,...,Z;_1; then return (Zg + Z; + --+ + Z;_1)t~! as the estimate of
per A.

The efficiency of the above approximation scheme depends on the chosen value of ¢t and
hence on the variance of the KKLLL estimator. Reverting once more to the graph-theoretic
viewpoint, suppose that the KKLLL estimator is being used to provide an approximation
to the number of perfect matchings in a specified bipartite graph G. The number of
trials necessary to obtain a reliable and close approximation is greatly influenced by the
structure of G. To illustrate this point, consider first the graph G that is the disjoint
union of %n copies of K3 . In this case, exponentially many trials are necessary to obtain
an approximation that satisfies the conditions of a randomised approximation scheme. In
stark contrast, O(ne—2) trials are sufficient to accomplish the same task when G is the

* There is persuasive circumstantial evidence that no efficient algorithm exists that
computes the permanent ezactly on almost all inputs; see, e.g., Gemmell and Sudan [6].
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complete bipartite graph K,, [12]. Karmarkar et al. conjecture that it is the second of
these two examples that is the more characteristic of graphs in general, and that O(ne~?)
trials suffice for a.e. G. The first of our two main results shows that something very close
to the conjecture is true: namely that nw(n)e™2 trials suffice for a.e. G, where w(n) is
any function tending to infinity as n — oo.

We also consider the performance of the KKLLL estimator when applied to dense
0,1-matrices, i.e., those in which every row- and column-sum is at least (% + a)n (equiva-
lently, to bipartite graphs with minimum vertex degree at least (% + a)n). It was already
known [10] that the execution time of the Jerrum-Sinclair approximation scheme is uni-
formly bounded by a polynomial in n, over the whole range of a. However, for reasons
given earlier, it is still of interest to know how other, simpler, and perhaps more practical
approaches perform. Our second main result concerning the KKLLL estimator is that a
polynomial number of trials suffice to estimate the permanent of a dense matrix for any
fixed a > 0, though the degree of the polynomial in question increases as a — 0.

A more precise statement of the results will be possible after we have reviewed the
properties of the KKLLL estimator.

2. The KKLLL estimator

The estimator is defined to be the random variable Z that results from the simple exper-
iment described below.

(1) Form a matrix B = (b;;) from A as follows. Let {1,w,w?} be the cube roots of
unity. For each pair 7,7 in the range 0 < 7,7 < n—1:
(a) if a;; = 0 then set b;; equal to 0;
(b) if a;; = 1 then choose b;; independently and u.a.r. from the set {1,w,w?}.

(2) Set Z equal to |det B|?, where |z| denotes the modulus of complex number z.

The KKLLL estimator is a simple modification of an earlier estimator of Godsil and Gut-
man [7], which used square rather than cube roots of unity. At first sight, it may seem
surprising that the KKLLL estimator should be unbiased. Nevertheless, the following
theorem can be established with little difficulty [12].

Theorem 1. ExpZ = per A.

As we have noted, the efficiency of the KKLLL estimator will depend on its variance.
Karmarkar et al. derive a useful expression for the variance, which is best formulated in
graph-theoretic terms. Let G be a bipartite graph on vertex set U + V, where U = V =
[n], and let M and M’ be perfect matchings in G. Denote by c¢(M,M') the number
of connected components (cycles) in M & M’, the symmetric difference of M and M’.
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Define v(G) = Exp (2C(M’M')) to be the expected value of 2¢€4M") when M and M’ are
selected u.a.r. from the set of all perfect matchings in G. (If G has no perfect matchings
then define 7v(G) = 1.)

Theorem 2. (Karmarkar, Karp, Lipton, Lovdsz, and Luby.)

Exp(Z?)

Epzp 9

Proof. The theorem is essentially a restatement of Theorem 4 of [12]. However, it may
be helpful to point out the precise correspondence between the two versions of the theorem.

The set D that appears in the original version of the theorem can be interpreted as the
set of all subgraphs of G that can be expressed as a union of two perfect matchings in G.
Note that any subgraph in D is a disjoint union of single edges and cycles; further note
that the number of ways of expressing the subgraph as a union of two perfect matchings is
2¢, where c is the number of cycles in the subgraph. With this correspondence in mind,
it can be seen that the denominator appearing on the right hand side of the identity in
the original statement of the theorem is simply the square of the number of matchings
in G. (Note that the G appearing in the original theorem is not the same as the one
used here.) Using the same correspondence, the numerator can be seen to be equal to
DM 2¢(M,M") ' \where the summation is over all pairs (M, M’) of matchings in G. Thus

the quotient is the expected value of 2¢(M:M') when M and M’ are perfect matchings
selected u.a.r. from G. By definition, this expectation is v(G).

Corollary 3. A sequence of O(e~2y(G)) trials with the KKLLL estimator suffices to
obtain an approximation to the number of perfect matchings in G that satisfies the con-
ditions of a randomised approximation scheme.

Proof. Perform t = [4e72v(@G)] trials with the KKLLL estimator, letting the results
be Zy, Z1,...,Z;_1. Using Theorem 2,

( ZZ> VarZ _ (G)(Exp2)’

t

Hence, by Chebychev’s inequality,

rlklw

t—1
1
Pr <(1—€)EXpZ< ZZ < ( 1+5)Epo>



The important point about Corollary 3 is that it reduces the analysis of the KKLLL
approximation scheme on random inputs, or some restricted class of inputs, to the analysis
of 7(@) for randomly chosen G, or for a graph G selected from the given class. A detailed
analysis of 7(G) for random and dense graphs G forms the content of Sections 4 and 5.

3. The permanent of a random matrix

For reasons that will be explained later, we choose to work with the random graph model
B(n,m); thus our sample space is the set of all m-edge bipartite graphs on vertex set
U+ V, where U = V = [n], and the probability distribution is uniform. The formula
“select G € B(n,m)” is thus a shorthand for “select u.a.r. an m-edge bipartite graph on
vertex set U + V.” We have noted that the performance of the KKLLL approximation
scheme on input G depends crucially on the quantity v(G) = Exp (2¢(M:M ')), where M
and M’ are matchings in G selected u.a.r., and ¢(M, M’) denotes the number of cycles in
M @& M'. An analysis of the behaviour of the approximation scheme on a random input
will therefore rest on an estimation of y(G) when G is selected according to the random
graph model B(n,m). The natural route is via an experiment (A) of the form:

(A1) select G € B(n,m);
(A2) select M, M’ u.a.r. from the set of all matchings in G.

Unfortunately, it seems impossible to argue about the behaviour of ¢(M,M’) when M
and M' are generated in this way. Instead we consider a related experiment (B) of the

form:

(B1) select k in the range 0 < k < n from an “appropriate” distribution;

(B2) select M, M’ u.a.r. from the set of pairs of matchings on vertex set U + V' that satisfy
IMNM'| = k;

(B3) select G u.a.r. from the set of all m-edge bipartite graphs on vertex set U + V that
contain M and M’.

Intuitively (and in fact) these two experiments are not too dissimilar provided the number
of perfect matchings in a random G € B(n,m) is fairly tightly clustered. Theorem 4
assures us that this is indeed the case.

2 3

Theorem 4. Suppose the function m = m(n) satisfies m°n=° — oo as n — oco. For
G € B(n,m), denote by X(G) the number of perfect matchings in G. Then

% - 1+o<%>.
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The key decision here is to work with B(n,m) rather than the more usual random
graph model B(n,p), in which potential edges are selected independently and with prob-
ability p. Theorem 4 fails badly in the latter model; indeed, for p = n~¢, the ratio
Exp(X?)/(Exp X)? grows faster than any polynomial in n. Informally, one could say
that the permanent of a random 0,1-matrix (determined by a sequence of n? Bernoulli
trials) depends strongly on the number of 1s in the matrix, but only rather weakly on their
disposition. Note that more precise information about the distribution of X has recently
been obtained by Janson [9].

Proof of Theorem 4. Let M be a perfect matching on U + V, i.e., a set of n inde-
pendent edges spanning U and V. For G € B(n,m), define the random variable X/(G)
to be 1 if M is contained in G, and 0 otherwise. Note that by linearity of expectation

ExpX = ZEprM, (1)
M
and
Exp(X?) = Z Exp(XmXm), (2)
M, M’

where M and M’ range over all n! matchings on U + V.

To estimate the above sums, we need to compute the probability that a particular
graph appears as a subgraph of a randomly selected G € B(n,m). Let H be any t-edge
bipartite graph on vertex set U + V, where ¢ < 2n. The probability ¢ = ¢(t) that H is
a subgraph of G € B(n,m) is given by

1= G ) () = gy

Taking logarithms, and expanding In(1 — z) as —z + O(z2), we have:

ing = 3~ [inm — )~ n(r* ~ 0]
=tln (—2) + 2 [ln <1— %) —In (1_ %)]
n(Z)- L[ oS



Thus, noting that tm~! < 2nm~! = O(n®m=2),

- () o (- 5 ) o) »

Specialising to the case ¢ = n, we obtain

m\" n? 1 n3
Bxp X = (5) ew { -5 +5+0(5a)
and hence, from equation (1),
2n 2 3
(Exp X)? = (m)?(%) exp{ - % r14 o(%)} (4)

In order to deal with sum (2), we need to estimate the number of pairs of matchings
M,M' as a function of the overlap kK = |[M N M’|. This is essentially the probléme
des rencontres, which asks for the number of permutations of [n] that leave precisely
k elements fixed. Let D(n) denote the solution to the probléme des rencontres in the
special case k = 0; thus D(n) is the number of “derangements” of n elements. An
elementary application of the principle of inclusion-exclusion establishes that D(n) is equal
to e 1n!, rounded to the nearest integer [8, p. 9]. The number of pairs of matchings M, M’
with |[M N M'| = k has a simple expression in terms of D(-), namely

n!(Z)D(n— k). (5)

(To make sense of this formula, we should take D(0) = 1.)

We are now ready to tackle sum (2). Letting a = 2n(m~! — n~2), and using estimates
(3) and (5) we have:

Exp(X?) =) Exp(X X )
k=0 M,M’:
|MNM'|=k

IA
S
/N
E
N——
N
S
(]
/N
> 3
N——"
3
S
|
=
/N
33
N—"
e
@
»
el
—
|
R
S
_+_
R
=
_+_
o
/N
3|3
N——"
N~

() e e s ()3 (o0 BT @



Noting that D(n — k) < e"!(n — k)! + 1 and e* = 1+ O(nm™1), we obtain the following
bound on the sum appearing in (6):

n a2 00 a2 n a2
> (re-sl5] s TRalm T - X (ST
:n!exp{e:f—l}—l—[l—kej:z]n

< n!exp{nﬁ2 — 1+O(:z_32)} +[1+0(v/n)]"

2 3

:n!exp{%—l—i—O(%)}. (7)

(The second term in the penultimate line is much smaller than the first, and can be
absorbed within the O(-) of the first term.) Substituting (7) for the sum in (6) we obtain

Exp(X?) = (n!)2<%)2n exp{ - %2 +1+ O(:%—?;)}

The theorem follows from this estimate combined with the earlier one (4).

It is perhaps worth remarking that there is a rudimentary approximation algorithm
for the permanent implicit in Theorem 4. Suppose A is a 0,1-matrix chosen uniformly at
random. Let m be the number of ones appearing in A, and compute the expectation of
per A conditional on A having precisely m ones. Theorem 4 assures us that the probability
that this expectation differs from per A by more than say 1% tends to zero as n tends to
infinity.

4. The performance of the KKLLL estimator: random matrices

We are now ready to tackle the first main result, to the effect that y(G) is small for almost
every bipartite graph G.

Theorem 5. Let m = m(n) and § = 6(n) be functions satisfying 0 < § < 1, and
m2én=3 — oo as n — oo. Assume n is sufficiently large, and select G € B(n,m). Then
Pr(v(G) <né') >1-34.

Proof. We begin with some preliminary computations concerned with the number of
cycles in a random derangement. Denote by S,, the set of all permutations on [n], and by
D,, C §,, the set of all derangements, i.e., permutations with no fixed points. For 7 € §,,,
let ¢(7) be the number of cycles in 7, including those of length one. Consider the sums
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s(n) = X es., 2¢(™) and d(n) = Y reD, 2¢(7) + the latter may be expressed in terms of

the former by applying the principle of inclusion-exclusion:

d(n) = s(n) — (T)2ls(n 1)+ ("2”)223(71 —2)— et (=1)" (Z)Z"S(O)
- Z ()2 sn—k) (8)

(The first term corresponds to unrestricted permutations; the second to permutations that
fix specified single elements; the third to permutations that fix specified pairs of elements;
and so on.) Now it is known (see [11, Ex. 3.12]) that s(n) = (n + 1)! Substituting for
s(n) in equation (8) and simplifying, we obtain

) = w3~ CD kD)

= k!

n

by

=e?(n+1)+ 0(2")+2e—2n'+0()

= e *(n+3)n! +0(2").

Since the total number of derangements of n elements is e"1n! + O(1), the expectation of

2¢(™) over all derangements  is
2n
“(n+3) + o(ﬁ) = e~ In+0(1). 9)

Let Q denote the set of triples (G, M, M'), where G is an m-edge bipartite graph
on vertex set U + V, and M, M’ are matchings in G. Recall experiment (B) from the
previous section. Observe that the number of ways of extending M, M’ to a graph G
in step (B3) is a function only of the overlap kK = |M N M’|. Thus it is clear that the
probability distribution on & in step (B1) can be chosen so that the result of the experiment
is a triple (G, M, M') chosen u.a.r. from . Also observe that, for given k, the expected
value of 2¢(M:M") after step (B2) is the same as the expected value of 2°(") | where 7 is
selected u.a.r. from the set of all derangements on n — k elements. Thus the expected
value of 2¢(M:M') for o triple (G,M,M') selected u.a.r. from € is bounded above by
e 1n + O(1), that is:

ﬁ Yo 26 MM < emln 4 O(1). (10)
(G,M,M")eQ
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Choose G € B(n,m), and recall that X (G) denotes the number of perfect matchings
in G. Theorem 4 and Chebychev’s inequality together imply Pr(X < 3 Exp(X)) =
O(n®*m~2), which is clearly equivalent to Pr(X? < % Exp(X)?) = O(n®*m~2). A second
application of Theorem 4 then yields

Pr(X? < 1 Exp(X?)) = o(;—z). (11)

Let N be the number of m-edge bipartite graphs on vertex set U + V. To complete

the proof of the theorem, we shall assume that there are more than §N graphs G with

7(G) > né~!, and obtain a contradiction. Note that the assumption, taken together

with (11), would imply that at least [§ — O(n3m™2)]N graphs simultaneously satisfy the

conditions y(G) > né~! and X(G)? > Exp(X?). Now observe that inequality (10)
may be recast in the form

] Y X(G)*¥(G) < e 'n+0(1).
G

According to our calculations, the left hand side of this inequality is bounded below by
1[1 n® 1 n®

—|= —0(—= ) |[nNExp(X?) = |= — (—) .

Q] [2 O<m2(5>]n *p(X7) {2 O m26 }n

But since n®m 26! — 0 as n — oo, this provides a contradiction when n is sufficiently
large.

It should be clear that the event v(G) < né~! appearing in the statement of Theo-
rem 5 may be replaced by v(G) < and~!, where a is any constant exceeding e”!. The
result easily translates to the random graph model B(n,p).

Corollary 6. Let p = p(n) and § = d(n) be functions satisfying 0 < p,6 < 1, and
p?dn — oo as n — oco. Assume n is sufficiently large, and select G € B(n,p). Then
Pr(v(G) <né™') >1-34.

Proof. The result follows from Theorem 5, using standard techniques for translating
between the two random graph models. See Theorem 2 on page 34 of [1].

Specialising to the case p = %, we obtain:

Corollary 7. Let w(n) be any function tending to infinity as n — oo. Then a.e.
G € B(n,p=3) satisfies 7(G) < nw(n).
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Thus, as claimed at the outset, O(nw(n)e~2) trials using the KKLLL estimator suffice
to obtain a reliable estimate — to within a factor 1 + € of the correct value — of the

permanent of a.e. 0,1-matrix.

5. The performance of the KKLLL estimator: dense matrices

We now analyse the variance of the KKLLL estimator when applied to inputs satisfying a

simple deterministic criterion.

Theorem 8. Suppose a > 0 is a constant, and let G be an (n + n)-vertex bipartite
graph of minimum vertex degree §(G) > (1 + a)n; then v(G) < O(n'+(n2)/a),

Assume G is as in the statement of the theorem. Let U,V be the vertex bipartition
of G, and M Dbe the set of perfect matchings of G. Fix a perfect matching My, € M,

and for M € M let
(M) = |M N M|, and

(
¢(M) = number of cycles in M & M.

Let My = {M € M : (M) = k,c(M) = £}, and Ngy = |Mpye|. We show that
perfect matchings of G are concentrated in sets My , with k£ and ¢ small.

Lemma 9. Let Ny, be as defined above. Then
(a) kaNge < Nk—2441 + 2Nk_1,4, and
(b) (20&£ —-1- kﬁ/n) Nk,g S 2(11’17’7,)Nk,g_1 .
Proof. We use a quantitative version of Dirac’s [3] argument for demonstrating the
existence of a Hamilton cycle in a dense graph; the same basic technique was used by
Dyer, Frieze, and Jerrum [4] to verify an fpras for counting Hamilton cycles in a dense
graph.

We first show part (a) of the lemma. Fix k,¢ and consider pairs (M, M’) with
M € My and M' € Mj_3 411U My_1, such that for some a1,a; € U and by,b2 € V,

M\MI = {(al’bl)a(a2’b2)}a
MI\M = {(a1,b2), (az,b1)},

and
(al,bl) € M N M.

There are two types of pair satisfying these conditions:

(i) If (a2,b2) € My, then M’ € My_3¢4+1; moreover, M’ N My is obtained from M N
My by deleting the two edges (a1,b1) and (az2,bs), and M’ @& My is obtained from
M b MO by addlng the 4-CyC1€ (al, bl, as, b2, al) .

12



(ii) If (az2,b2) & My, then M' € Mj_1 4; moreover, M’ N My is obtained from M N M
by deleting the single edge (ai,b1), and M’ & My is obtained from M @& M, by
replacing the edge (az2,b2) of some cycle by the path (as,b1,a1,bs) of length three.

Let Ej, denote the set of all such pairs (M,M’). For M € My, let {(M) denote the
number of perfect matchings M’ € Mj_2 441 U Mg_1, such that (M, M') € Ej 4. For
M' € Mg_3041 UMpg_1,,let n(M') denote the number of perfect matchings M € My,
such that (M,M') € Ey,.

Fix M € My, and (a,b) € M N My. There are s > 2an — 1 edges (a’,b’) of M,
other than (a,b) itself, such that both (a,b’) and (a’,b) are edges of G. Suppose s; are
such that (a',b') € M N My, and let s2 = s — s1. Then (a,b) contributes to s; type (i)
pairs and sy type (ii) pairs involving M. Hence,

(M) > ) (5851 +52) (12)

(a,b)

1
2 Ekan,

provided n > a~!. The % in inequality (12) comes from the fact that two edges of

M N My contribute to the same type (i) pair.

On the other hand, if M’ € Mj_s 441 then n(M’') is at most the number of 4-cycles
in M' ® Mo, and so n(M) < in.If M' € My_1, then n(M’) is at most the number of
paths of length three in M’ @ My with middle edge in My, and so n(M’') < n. Hence,

%k:anNk,g S |Ek’g|

1
< 5Np—2.641 + nNp_1,

and (a) follows.

We now turn to part (b) of the lemma. Let Ej , denote the set of pairs (M, M’) €
M o X My 41 such that, for some ai,a2 € U and b,b2 € V,

M\MI = {(a1,b1), (az,b2)},
M’ \ M = {(al’b2)a (a2’ bl)}a

and
(a1,b1), (a2, b2), (a2,b1), (a1,b2) & M.

Here M' N My = M N My and M' & M, is obtained from M & M, as follows: take
two disjoint cycles, C; containing (a;,b;) and Cy containing (a2,b2). Replace the
edges (a1,b1), (az,b2) by (a1,bs), (az,b1) creating one large cycle out of the vertices of
C; and Cy. If C; has 2m,; vertices, for i = 1,2, we define w(M, M') = m7"' +my".
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For M € Mk,g, let

p(M) = Z w(MaMI)’
M':(M,M")€E, ,

and for M' € My 41, let

v(M') = > w(M,M').

M:(M,M')EE], ,

Fix M € My, and (a,b) € M \ My, and suppose the cycles of M @ M, have size 2m;,
for 1 <4 < {. If (a,b) is in a cycle of size 2m then there are s > 2an — m — k edges
(a',b") of M\ My such that (a,b’) and (a’,b) are edges of G, and (a’,b’') and (a,b) are in
different cycles. Putting (a1,b1) = (a,b) and (a2,b2) = (a',b') yields a member of Ej ,.
Apportioning weight m~! to (a,b):

£
w(M) > Zmi(2an —m; — k)m; !
i=1

> (2a€ — 1)n — k¢.

Now fix M’ € My 1 and suppose the cycles of M’ @ My have size 2m;, for 1 < ¢ <
£ —1. Fix a cycle C of size 2m in M’ & My. At worst, each pair of edges of C \ My
could contribute a pair (M, M') to Ej ,. This observation gives

v(M) <> m; Lyt

A

INg
N
B
5
B

IA
DO
S
=
3

Finally,

(20 —1)n — EL)Ny 4 < Z w(M, M'")
(M,M")€E, ,

< 2n(Inn)Ng ¢—1,
and (b) follows.
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Proof of Theorem 8. Let N = |M]|, and
A=3Y N2t
k=0 £=0

Our aim is to find a uniform bound on A/N, which will also be a bound on (G). Let
sk = Ny 2% Tt follows from Lemma 9(a) that

kaske < 3Sk—2,041 + 28k—1,0- (13)

Let S; = ZZ:O Sk¢. Then inequality (13) implies kaS; < %Sk_z + 2Sk_1. It follows by
an easy induction on k that for £k > kg = [4/a],

k—ko
1++v3
Sk < < ) (Sko +Sko—1)a

4

and hence

D" Sk = O(Sk, + Sko—1)- (14)

Now assume k < ko. From Lemma 9(b),

ng 2lnn 1
) < _,
Nk,g_l - (2(1 — k/n)ﬂ— 1 = 2
provided
4Inn+1
L> 4y =
0 ’7204 — k:g/n-‘
Thus, for k& < ky,
£o
Sk < kg + > ske < (n+£o)2°N. (15)
£=0

Hence, from (14) and (15), A/N = Y p_, Sk/N = O(n!+t(ZIn2)/a)

6. Trustworthy approximation

We have seen that the KKLLL estimator provides an fpras for the permanent of a.e.
0,1-matrix, which is more efficient than the one proposed by Jerrum and Sinclair [10].
However, there is an important sense in which the results obtained by the latter approach
are more “trustworthy” than those of the former. The aim of this section is to assign a

precise meaning to this informal claim.
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As usual, let G be a bipartite graph on vertex set U + V', and let X (G) be the number

of perfect matchings in G. Denote by X (G) the number of “near-perfect matchings” in G,
i.e., matchings that have precisely n — 1 edges. Define

provided X(G) > 0, and adopt the convention that p(G) = oo when X(G) = 0. The
approximation scheme of Jerrum and Sinclair is known (Corollary 5.3 of [10]) to provide a
reliable approximation to the number of perfect matchings in G in time polynomial in n,
p(G@), and e~1. (Here, € is the parameter controlling the accuracy of the approximation,
and p(G) is assumed to be known in advance.) Although it is possible to construct
graphs G for which p(G) is very large, it can be shown, using tools from Section 3, that
such graphs are exceptional.

Corollary 10. Almost every G € B(n,p=1) satisfies p(G) < 4n.

2 3

Proof. Assume the function m = m(n) satisfies m*n=° — oo as n — oo, and select

G € B(n,m). The estimate
E 5(\'2 3
Exp(X%) _ +0(%)
m

(Exp X)?

is akin to that provided by Theorem 4 and can be proved by a similar argument. By
applying Chebychev’s inequality to X and X in turn, we obtain

Pr(X < £ExpX) — 0, asn — oo, (16)

and
Pr ()/(: > %Exp)?) — 0, asn — oo. (17)

The expectation of X , obtained by computations similar to those appearing in the proof
of Theorem 4, is
~ n—1 2 3
Exp X = (n—l—l)!(ﬂz) exp{—n—+1+0<n—2>};
n m m

comparing this formula with the existing one for Exp X, we see that

mExp)/f

m — ]., as n — 0o0. (].8)
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Combining (16), (17), and (18), we obtain

3
Pr (p(G) < —) — 1, asn — oo.
4m,

(The constant % here has no significance beyond its lying strictly between (%)2 and 2.)
The corollary is obtained by translating this result to the B(n, p:%) model using standard

techniques.

A result related to Corollary 10 (but formally incomparable with it) may be found in [10].

So far we have seen nothing that distinguishes the two approaches in a qualitative
sense. The efficiencies of the two approximation schemes depend on parameters, v and p,
which are large in the worst case, but small on average. However, the crucial point is that
the condition “p(G) is small” can be verified by a randomised polynomial-time algorithm
with small error probability, whereas no such verification procedure is known for the con-
dition “(G) is small.” (See the discussion following Theorem 5.3 of [10] for a precise
precise statement of this claim.)

Following a suggestion of Joel Spencer, we may formalise the consequences of this
apparent distinction. Let f be a function from input strings to natural numbers, and let
A Dbe a probabilistic algorithm that takes an input string = together with a real number
0 < € < 1, and returns a result Y (a random variable) that is either an approximation
to f(z) or a special “undefined symbol” 1. For each n, the input strings of length n
are assumed to be drawn from some specified probability distribution. A strong notion of
what it means for A to work for almost every input is encapsulated in the following two
conditions:

(1) Pr(Y =1 or 1—¢e)f(z) <Y < (1+¢)f(w)) > 3/4, for every z;
(2) Pr(Y # 1) - 1, asn — oo, for randomly selected x with |z| = n.

The idea here is to separate the twin concerns of reliability and range of applicability,
and give the former a higher status. Thus condition (1) demands that the response must
be correct with high probability for arbitrary inputs, while condition (2) merely asks that
an informative response should be provided with high probability for random inputs. As
before, we may call such an algorithm fully polynomial if it runs in time polynomial in n

and 1.

The above definition crystalises an apparent distinction between the two known ap-
proximation schemes for the number of perfect matchings in a random graph. The approach
via Markov chain simulation does lead to an approximation scheme that satisfies condi-
tions (1) and (2) above, where z is interpreted as the encoding of a bipartite graph, f(z)
as the number of perfect matchings in z, and the probability distribution on inputs z is

17



given by the random graph model B(n,p=1). (Full details may be found in the discussion
following Theorem 5.3 of [10].) However, it is not known whether the same end could be
achieved using the KKLLL estimator. The question is of some interest, since the latter
approach is more likely to lead to a practical algorithm. The barrier appears to be the
difficulty of obtaining estimates for the crucial parameter v(G).

7. Related results

Theorem 4 asserts that the permanent of a random 0,1-matrix is surprisingly tightly con-
centrated, provided we condition on the total number of 1s in the matrix. This result
suggests that the task of estimating the permanent of a random matrix is not really as
difficult as it seems at first sight. This feeling is reinforced by work of Rasmussen [17]
in which it is shown that a particularly simple Monte Carlo estimator for the permanent
performs well, at least for matrices with constant density.

Other enumeration problems on random inputs may also be less daunting than we
might have supposed. Frieze and Suen [5] have presented a Monte Carlo algorithm for
estimating the number of Hamiltonian cycles in a digraph. Using methods similar in spirit
to those described here, they show that the algorithm efficiently produces reliable estimates
when the input graph is selected randomly.
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