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Abstract

For each k > 2, let pr € (0,1) be the largest number such that there exist k-uniform

n

hypergraphs on n vertices with independent neighborhoods and (pj, + o(1))(}) edges as
n — oo. We prove that p, = 1 — 2logk/k + O(loglogk/k) as k — oo. This disproves a
conjecture of Fiiredi and the last two authors.

1 Introduction

The neighborhood N(S) of a (k—1)-set S in a k-uniform hypergraph (henceforth a k-graph) is
the set of vertices v such that S U {v} is an edge. For n > k > 2, let f(n, k) be the maximum
number of edges in a k-graph on n vertices such that all its neighborhoods are independent
sets (that is, span no edge). Mantel proved in 1907 that f(n,2) = [n?/4], and this was the
first result in extremal graph theory. Thus the problem of computing f(n,k) is a natural

generalization of Mantel’s result.

A k-graph is odd if it has a vertex partition X UY such that all edges have an odd number
of points less than k in Y. It is easy to see that all neighborhoods in an odd k-graph are
independent sets. Let b(n, k) be the maximum number of edges in an odd k-graph. Then the
previous observation implies that f(n,k) > b(n, k). It was conjectured in [8] that there exists

some function ng(k) such that n > ng(k) implies

f(n, k) = b(n, k). (1)

There was some evidence for this, as it reduces to Mantel’s theorem for & = 2, and it was
proved for k = 3 by Fiiredi, Pikhurko, and Simonovits [9, 10], thereby settling a conjecture of
Mubayi and Rédl [18]. Recently, (1) has also been proved for k = 4 [8]. As we will show here,
(1) is not that far from the truth for k£ = 5.
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Since exact results are rare in extremal hypergraph theory, one often studies asymptotics.
In this case, we can define p; = lim, .o f(n, k)/(}) which is easily shown to exist [12]. Now
conjecture (1) implies that pr = 1/2 for all even k and pr T 1/2 as k — oo for odd k. Thus
a weaker statement than (1) would be that py = limp_..0b(n,k)/(}), and an even weaker

statement is that pr, — 1/2 as k — oo.

In this paper we show that conjecture (1) is false for all £ > 7, and in fact that pp — 1.
This follows from an old construction of Kim and Roush [16] which gives lower bounds for the

Turéan problem for complete k-graphs. Thus the small cases shed little light on the behavior
of Pk-

We are able to obtain rather sharp estimates on the rate at which p; converges to 1:

Theorem 1. As k — 0o, we have

_ 2logk loglog k < 2log k

L= 25 4 (L o(1) 2 2= < <1 - loglog k

+(5+o(1)) 2225,

where log denotes the natural logarithm. Furthermore, for k > 7, we have py > 1/2, hence (1)
is false for k > T7.

This leaves open the cases kK = 5 and 6, where we believe that (1) still holds.

Conjecture 1. f(n,k) =b(n,k) for k € {5,6} and n sufficiently large.

We will present the lower bounds in Theorem 1 via constructions in the next section.
Sections 3 and 4 are devoted to the proof of the upper bound. In Section 5 we prove that
40/81 = 0.493... < p5 < 0.534. We close with some concluding remarks and related open

problems.

We associate a k-graph with its edge set. For a vertex subset S of size k — 1, let d(S) =
IN(S)|. Let (Z) ={X Cc V:|X| = k}. We denote [n] = {1,...,n}. Let Bin(k,p) denote
the binomial distribution with parameters k and p. In Sections 2—4, the asymptotic notation
(O(1), o(1), etc) will refer to the case when k is fixed and n — oo.

2 Construction

In this section we prove the lower bound in Theorem 1 by means of a construction due to
Kim and Roush. As we will mention in Section 6, this is not the only construction that can

be used for this result, but it appears to be the simplest one.

Construction 1 (Kim and Roush [16]). Let Y; U...UY] be a partition of [n] into sets,
each of size [n/l] or [n/l]. Let the k-graph H consist of all k-sets that have at least one point



in each Y;. Partition H into H; U --- U H;, where

l
Hj—{SGH:ZZ’]SﬁYﬂEijdl}.
i=1
By the Pigeonhole Principle, we may assume that there is an a € [I] with |H,| < |H|/l. Now
let
F=H\ Ha.

Proposition 1. For any § > 0 there is a ko = ko(9) such that for all k > ko and all sufficiently
largen (i.e. n > ng(k,?d)), Construction 1 produces a k-graph F on n vertices with independent

neighborhoods such that

2logk log log k n
|F|>(1 2 +(1-9) ’ >(k>

Proof. To see that F has independent neighborhoods, consider a (k — 1)-set S. Then N(S)
cannot have a point in each Y; for then {2521 il(SU{v})nYi:ve N(S)} covers all con-
gruence classes modulo [. But then N(S) is an independent set, since every edge of F has a

point in each Y;.

Let k > ko(9) be fixed and n — oco. If [ is a fixed function of k then we have

e (1 - }) ((’D _l<n—£n/u)>
(Dm0
= (1}<Z1>(11/z>k+@ (;)) <Z>

Set I = [k/((2 — €)logk)], where ¢ = loglogk/logk. Then using (1 — 1/1)¥ < e*/! and

k¢ = log k, we obtain
(2—¢€)logk 1 1 n
> (12 2o~ - ,
|.7-"|_<1 ? l<:+@ - f

This gives the required bound. O

Proposition 2. For any k > 7, we have py, > 1/2.

Proof. Let us take | = 3 in Construction 1. The Inclusion-Exclusion Principle shows that
H|/(7) =1-3-(2/3)" +3-(1/3)% + o(1). The right-hand side assumes value 532 > 3 for
k = 7 and, as it is not hard to show, is an increasing function of k > 7. Since F contains at

least 2/3 edges of ‘H, the proposition follows. O



3 Lemmas

This section contains some auxiliary results needed in the proof of the upper bound of Theo-
rem 1. It may be possible to extract the following result from [20] (as pointed out to us by a

referee). In any case, we give an independent proof below.

Lemma 1. For every k > 100 there is an ng such that for all n, x, and y with x4+y =n > ng
and % <y <5, we have

max

o)

@Mm10§5<n>ﬂf

ky

Proof. Let ng = no(k) be sufficiently large. Let p = x/nand ¢ =y/n =1—p. For0 <1i < k—1,
let p; = (f) (k_zj_l) (kfl)fl and b; = (kl_.l)p"qkflfi. We begin by noting that the hyper-
geometric distribution (as given by p;) can be bounded by the binomial distribution (as given
by b;). Consider an experiment in which we choose k — 1 elements of [n] uniformly at random
with replacement. Let X C [n] with |X| = x, and let D be the event that the k¥ — 1 random
choices are distinct. Note that b; is the probability that exactly ¢ of our randomly chosen
element fall in X and p; is the probability that exactly i of our randomly chosen elements fall
in X when we condition on D. Therefore,
pi < b b

=Pe(D) S 1 ()1 )

Note that b; < bj+1 if and only if i + ¢ < (k — 1)p. Therefore, if we set ip = [(k — 1)p] and
i1 = ig+1 then max; b; = max{bs,, b;; }. Since k > 3andy < n/2wehavexr =n—y > § > =5
and hence (k —1)p = (k—1)£ > 1. Also, % < y implies that ig < k — 2. Consequently, 1 <

i9 < k—2 and we can apply a standard estimate for binomial coefficients (e.g., Inequality (1.5)

in [2]): | -
e (i) (52 ()

Now let us estimate each of these three terms.

e Since k£ > 100 and p > 1/2 we have % > % > ﬁ Therefore %7 > p — L > 48, Algo

xk—1—idg)>axk—1—(k—1)p)=z(k—1)(1—-p) = - > 5 Z 300

This gives

k—1 1/2 49 1/2 49n 1/2 n\ 2
. . < ‘ = - <al—
2mig(k — 1 — ip) ~ \967p (k — 1 —1ip) 96mx(k — 1 —ip) - yk

where
L (200x49 \'2
T \96 x99 x T :




o (k—1)p<ip+1,s0

_ io , io
((k: ' 1)p> < (z().—ﬁ—l) e
20 20

e Since ¢+p =1, we have (k—1)(¢+p) < kand so (k—1)g < k—(k—1)p < k—1ip. Therefore

(k= 1)q \ <1 (ki k—1—io .
k—1—1g —\k—-1-—1g '

n 1/2 )
bio <« (yl{) X e”.

Altogether we obtain

Now let us do the same for 7.

e We have 25 > p. Also

zk—1—i)>zx(k—1—(k—1p—-1)=z(k-1)(1-p) —x=

zy(k—1) o> 3xy(k —1) > 3y(k —1) > yyk
n 4dn 8 800

This gives

E—1 1/2 1 1/2 n 1/2 n\ /2
. . < . = . <68\
2rip(k — 1 —17) 2p (k— 1 —1iy) 2rx(k — 1 —17) yk
where /2
800
b= (5947r) '
e We have (k—1)g=k — (k—1)p— 1 < k — iy. Therefore

<k N 1)q k—1—11 _ k— il k—1—11 e
k—1—1q “\k—1-—11 '

n 1/2
bil < ﬁ (yk) X €.

Now the lemma follows from (2) since ae?, e < 5. O

o (k—1)p<iy

Altogether we obtain

Lemma 2. For every k > 100 there is an ng such that for all n > ng the following holds.
Suppose that we have two families F and G of k-subsets and (k—1)-subsets of [n], respectively,
such that |F| > (1 — f)(}) and |G| > g(,",). Let [n] = X UY with x = |X| and y = |Y|

n

satisfying 2% <y < 2. Suppose that reals 0 < f', ¢’ < 1 satisfy
-1 2

gf+fg>f+ 19 +5fn/ky. (3)



Then there is an v, 0 <1 < k — 1, with

A=l e s xnxi =iz a-1(7) (") (1)
and
Gil={LeG:|LNX|=i}>¢ v y (5)
1 ' =\ \k—i—1)
Proof. Suppose on the contrary that no such i exists. Consider
1_ / !/
=7 Tojg> -1+ s 0

(%) (")

Observe that we always have | ;| < (%) (,7,) and |G| < () (,_4_,). Since for each i, either F;
or G; is small (as defined by (4),(5)), we have s < Z?:o max(a;, b;), where

T\ ( Y x y
a; = (1 _ g')(l _ f/) (1) Sﬁbkfz) + f/ (z) (knfifl)
(%) (")
() () (D) Gt )
bi = (1—g)"Fn+ "7
(¢) (k21)
Since 60
T )1 00) RSN o (n—k+1)(k—z'))
“ohs (x) (L= g)f ( Ykt )
there is an ¢y such that a; > b; for 0 < ¢ < 7y and a; < b; for ig <4 < k. Hence,
10—1 k
s < Z a; + Z b;
ZZD i:lo

Let P = (Z)_1 220:61 (f) (kf’_’z) and P’ = (kﬁl)_l Z;:O:Bl (f) (k_%_l). Let us choose a random
(k — 1)-subset L of [n] and then let K be obtained from L by adding a random vertex = ¢ L.
Then K is also uniformly distributed. Note that P (resp. P’) is the probability that K (resp
L) has less than i vertices in X. Since L € K, P < P’. On the other hand P’ — P is
exactly the probability that z € X and |[L N X| = ip — 1. It follows from Lemma 1 that

Pr(|[LNX| =1ip—1) <5y/n/ky and so P’ — P < 5y/n/ky. Hence,
PA-g)1-f)+Pf+1-P)1-g)+0-P)fy
Pl—g)1—f)+Pf+1=P)A—g)+ 1 —=P)f'g +5fVn/ky
1—g' + g +5fV/n/ky.

S

INIA

From (6), we obtain that
1-gNA—-F+fg<s<l—g+ fg+5fn/ky,

and this contradicts (3). O



4 The Upper Bound on p;

Before embarking on the formal proof, let us briefly describe the main idea. Suppose that
F is an n vertex k-graph with p(Z) edges and independent neighborhoods. We may assume
that k is large but fixed and n — oo. By simple averaging, there is a (k — 1)-set S with
d(S) =|N(S)| > p(n — k 4+ 1). No k-set within N(S) can be in F, since F has independent

neighborhoods. Consequently, we obtain

a-a(3) = (1) -z (),

1—p > (1—o(1)p"

and solving for p gives the bound p < 1 — (1 + o(l))l(’]%k. This is where the main term %

This yields

comes from.

Now suppose we could find not just one neighborhood of size (1 — o(1))pn but we could in
fact find &'=°() such neighborhoods. No k-set in any of these neighborhoods lies in F so we
would (roughly) obtain

(1—p) (Z) = <Z> —|F] > Ko (P(” ke 1)>.

2log k
% -

This yields

and solving for p now yields p < 1 — (1 + o(1)) However, the above calculation is
not precise since we have over counted some k-sets, namely those that lie in two distinct
neighborhoods. Thus the main technical details of the proof are concerned with controlling
the total amount of over counting in this inclusion/exclusion calculation. We now begin the

formal proof.

Take small § > 0. Let k& > ko(d) > 100 be sufficiently large. Choose large ng = ng(k,9).
With foresight, we define

co=4+9 cp=5+26 co =5+ 30 c3 =5+ 6.

For brevity of notation, let ¢ = loglog k/log k. We will show that for all k& > ko we have

(2—(5+T76)e)logk 1 2logk

loglog k
p ——

k

pr<1-— + (5 +76)

Suppose that this is false for some k& > kg. Then for infinitely many n, in particular for

some n > no(k,d), we can find a k-graph F with vertex set [n] and independent neighborhoods

such that 2 Vlog k
— c3€) log n
l-— .



Define
- k
| (logk)eo |

Our goal is to find sets Aj,..., A, By,..., B; C [n] such that the following conditions hold.

Condition 1: For every i € [I], the set A; is independent (with respect to F), is disjoint from

()

B;, and has size

Condition 2: The sets By, ..., B; are pairwise disjoint, each of size
2 — log k
- P 20108 n-‘ . (8)

Indeed, if we have such sets then, for any 1 <i < j <[, the set A; N A; has at most n —2b
elements because its complement contains B; U B; as a subset. Since every k-set in U§:1 (/l‘c‘)

is missing from F, we have by a simple version of the Inclusion-Exclusion Principle that

() - G)(7) = () =0

Dividing by (}) and using k > ko(6) and n > ng(k, ), we get

l 12 2log k
(]' - 5) <k2616 - 2k42626> S k ’

which is a contradiction (for § < 1 and k > ko(6)).

Before proceeding with an argument that gives the sets A1,..., A;, By, ..., B;, we need two
observations regarding (k — 1)-sets of large degree. First, observe that for every (k — 1)-set S,

we have

log k — 2loglog k
og og log )m (9)

d(s) < (1 - ’

for otherwise (}) — |F| > (d(,f )) > %log,: k (%) which is a contradiction.

We will obtain the sets A; as neighborhoods of (k—1)-sets. Our strategy is to use the global
lower bound on the number of edges to show that there are many (k — 1)-sets S with large
neighborhoods d(.5). We would therefore like to restrict our attention to those (k—1)-sets with
large neighborhoods. Let G be the collection of (k —1)-sets S € (k[ﬁ]l) such that d(S) > n —b.

Claim 1. |G| > 26¢(,",).

Proof of Claim. Let |G| = g(,",). We have

k(l—W) (Z)gkyﬂ: 3 d(s) <

Se(y™h)

n (2 — co€) log k n log k — 2loglog k
<k—1>(1 g)<1 — n+g ko1 1 ’ n,




where the last expression comes from (9). Solving for g yields

9> (c3 — co)e — 2k /n

20¢€.
~ 1 —coe+2loglogk/logk = =o€

(We used the facts that cg — ca = 36 and ¢ > 2 in the last inequality.) This completes the
proof of Claim 1. O

Now we describe how to inductively construct the sets A; and B;. Suppose that we have
constructed Ay,...,Ap, Bi,..., By with 0 < p <[ satisfying Conditions 1 and 2. Let

v= | o) (10)

and 2 = n —y. Take an arbitrary partition [n] = X UY with Y D U_,([n] \ 4;) and |Y] =y,
which is possible since each set [n] \ A; has n — a < 2nlogk/k elements and p < [. Our task

now is to construct A,y; and Bpy;.
For an integer i, define
Fi={SeF:|SnX|=i} and G ={Se€gG:|SNX|=i}.
Also, let
f=2logk/k, g=2, f =log*k/k, ¢ =?de.
A short calculation shows by (10) that (3) holds:

Selog?to k log k
Plo—g)+ s~ f—sp k) > BTkl

for some absolute constant C. So Lemma 2 implies that there is an ¢ such that |F;| >
(1= () (2) and 1Gi] = 9¢(7) (o )-
Let A = f’/(d¢). Let us show that there is a (k — 1)-set Ty € G; such that

>0,

YANT) <My —k+i+1) (11)

Suppose on the contrary that no such Tj exists. Let us count the number 7 of pairs (K, z)
with K € F; and z € K NY in two different ways. On the one hand, we can first choose K
and then z. This gives

w-na-n(7)(,",) < -z =

On the other hand, we can first choose K — {z} and then z. The set K — {z} is either in G;

or not. Taking both cases into account yields
. X Yy .
Y<I|Gl(1=Ny—k+i+1)+ <<i><k—1—i> — ]Q,,) (y—k+i+1).

It follows that

NGilly—k+i+1) < f’(?") (ky .)(k—z').

7

9



Since |G;| > de(%)(,_%_,), this contradicts the choice of A.

Choose an arbitrary set B+ C X that contains all of X \ N(7p) and such that |B,;1| = b.
(This is possible because | X| > n—Ib > band Ty € G, so | X\N(Tp)| < n—d(Tp) < b.) For every
J € [p], the set B; C Y is disjoint from Bpy1 C X, so Condition 2 holds. Let Z =Y \ N(Tp)
and A" = [n]\ (Bp+1UZ). Note that A, as a subset of N(Tp), is an independent set. Moreover,
by the definition of Ty (i.e. by (11)), we have

(2 — co¢) log kn—‘ B log?*? k 2n

">n—b—Ay>n-— >
Al >n—-b—Ay>n [ . Sk X(logk)co—l_a

Let us take for A,y an arbitrary a-subset of A’. Condition 1 clearly holds, finishing the
proof. O

As we have mentioned in Conjecture 1, the cases k = 5,6 remain interesting open questions.

By suitably modifying the proof that py = 1/2 from [8], we can obtain fairly good bounds for
P5-
Theorem 2. 0.493 < p5 < 0.534.

Proof. (Sketch) Suppose that G is a 5-graph with independent neighborhoods and w(g) edges

which is maximum possible with this restriction. Let I be the 5-graph
{12345,12346, 12347, 12348, 12349, 56789 }.

Then a 5-graph with independent neighborhoods is precisely one with no copy of I. Conse-
quently, G contains no copy of I. Since I has the property that every two of its vertices lie
in an edge, we conclude that if we duplicate any vertex of G then the resulting 5-graph also
contains no copy of I. Now if there are vertices u,v € G and any small positive ¢ > 0 such
that d(u) > d(v) + en?, then we could delete v and duplicate u to obtain another 5-graph
G’ with n vertices, independent neighborhoods, and more edges than G (such a process is
sometimes called Zykov symmetrization). This contradiction shows that we may assume all
vertex degrees of G are (m + o(1)) (7).

Now let A be a neighborhood of maximum size, say |A| = an, and B = [n] \ A. Let h; be
the number of edges of G with exactly ¢ points in B; note that hyg = 0 by our hypothesis. Let
o; be the sum, over all 4-sets S with ¢ points in B and 4 — i points in A, of d(S). Then one

10



obtains

(o;n) (1—anxan > o = 4hy +2hs (12)
1—

(O;”> <( 20‘)”> xan > oy = 3ho+3hs (13)
1—

an<( 3a)n> xan > o3 = 2hsg+ 4ha. (14)

On the other hand, using the fact that all degrees are almost equal we get

(1 —a)n x (m+o(1)) <Z> = Z d(x) = h1 + 2hg + 3hs + 4hy + 5hs. (15)
reB

Now consider 3/4 x (12) +1/6 x (13) + 1/4 x (14) + (15), observe that 3°°_, h; = |G|, and

divide by n®. This gives that, as n — oo,

o
T <
~ bha—1

(15(1 — @)a® + 5(1 — a)?a® + 5(1 — a)?a) + o(1).

Maximizing this function over all « € (0.5, 1) yields 7 < 0.534 and hence p5 < 0.534.

For the lower bound, observe that b(n,5) = (32 + o(1))(%) (take |Y| = (3 4+ o(1))n). This
shows that p5 > 29 > 0.493.

6 Concluding Remarks and Open Problems

e Our results are similar in flavor to the following problem about the Turan numbers of
complete hypergraphs. Let t; denote the maximum proportion of edges in a k-graph on n
vertices, as n — 00, that contains no copy of the complete k-graph on k 4 1 vertices. Thus
to = 1/2 by Mantel’s theorem. The most famous conjecture in this area, due to Turdn [24],
is that t3 = 5/9, which is achieved by (among others) the 3-graph with vertex partition
Y1, Y2, Ys into almost equal parts and all edges with two points in Y; and one point in Yj;
(indices modulo 3) or one point in each Y;. Perhaps just as interesting is to determine the
growth rate of ¢, as k — oco. Frankl and R&dl [7] proved that 1 — t;, = O(logk/k) via a
construction that has similarities to Construction 1 in this paper. On the other hand, the
known upper bound is ¢t = 1 — Q(1/k), where the best results are due to Chung and Lu [3].
It would be very interesting to obtain sharper estimates for t;. Perhaps the methods of this
paper can be used to show that 1 — ¢, = w(1/k), an open question for whose solution de
Caen [4, Page 190] offered 500 Canadian dollars.

e For 2 < m < k let the book By, be the k-graph with the following m + 1 edges: [k —
1JU{k+i—1}forie [m], and {k,k+1,...,2k — 1}. The problem of computing the Turdn
function ex(n, By, ) has been actively studied [1, 5, 6, 8, 9, 10, 14, 18, 21, 23]. Clearly, the

11



property not containing By j as a subgraph is equivalent to having empty neighborhoods, so
f(n,k) = ex(n, By ). Our results can be modified to show, for example, that for any function

m = m(k) < c¢1logk, where ¢; is a constant, we have

7 (Bijpom) =1—© <1°§k> (16)
as k — oo, where 7(F) = lim,_. ex(n, F)/(}) denotes the Turdn density of a k-graph F.
Indeed, the upper bound on 7 (B k) follows from Theorem 1 and the trivial observation
that ex(n, By ) > ex(n, B g—m). The lower bound (16) can be obtained by taking the k-graph
F of Construction 1 with [ = k/cylogk where ¢y > max(ci, 1) and removing those edges of
F that intersect some part Y; in at most m vertices. As n — oo, the proportion of edges that

we delete is approximately at most

1

I x Pr(Bin(k,1/1) < m) < le-c2logk/4 < =

(We apply the Chernoff bound here, see e.g. [11, Corollary 2.3].) Therefore, the size of the
family F is at least (1 —1/1)(1 —1/k?)(}), and (16) follows.

On the other hand, it is easy to show that 7(By,,) = o(1) if m = o(k). Determining the

behavior of 7(By,,) for the intermediate values of m is an interesting open problem.

e A related problem which has been studied a fair amount recently (see, e.g., [13, 15, 17, 22])
is the maximum possible minimum degree (of (k — 1)-sets) that a k-graph can have without
containing some fixed configuration. Let g(n, k) denote the maximum minimum degree of a
k-graph on n vertices with independent neighborhoods. Then it was shown in [19] that the
limit v = lim, 0 g(n, k) /n exists. It is trivial to see that v, < 1/2 for all k, and odd k-graphs
show that if k is even, we have equality. It would be interesting to determine the behavior of
¢ for k odd. As with t, the small cases seem difficult. For k = 3, the construction for t3
above minus the edges with one point in each Y; shows that 3 > 1/3. In fact, we make the

following conjecture.

Conjecture 2. For every ¢ > 0, there exists ng such that if n > ng and G is an n-vertex
3-graph with every pair lying in at least (1/3 + €)n edges, then G contains a neighborhood that

is not an independent set. In particular, v3 = 1/3.

e Construction 1 has the following generalization. We begin with some definitions that es-
tablish the general setting. Let a,l > 2 be fixed parameters. Consider the digraph D with
vertex set ZL and an arc from x = (21,...,2;) to y = (y1,...,y) if and only if there exists a
coordinate k such that

x; ifi£k

Yi = .

12



Note that the out-degree of each vertex is [. We say that a subset X of Z! is a perfect cover of
D if the out-neighborhoods of the elements of X form a partition of Zfl. In other words, the
set X is a perfect cover if for every y € Z. there exists a unique x € X such that the arc (z,y)

(i.e. the arc directed from z to y) is in D. Note that a perfect cover contains a'/l vertices.

Suppose X is a perfect cover of D. Let n be large and fix a partition Yi,...,Y; of [n].
For each k-set S let ys € ZL be the vector ys = (y1,...,y) where y; = |SNY;| mod a for
i=1,...,1. Now we are ready to define our family with independent neighborhoods. Let F
be the collection of k-sets S such that SNY; # () for i =1,...,] and ys € X. We claim that
the collection F has independent neighborhoods. To see this, consider a (k — 1)-set T'. Since
X is a perfect cover, there exists © € X such that (x,yr) is an arc in D. It follows that there
exists an index k such that TU {z} € F for all z € Y}. In other words, the neighborhood of
T (in the hypergraph F) does not intersect Y. Since every edge in F intersects Yy, it follows
that F has independent neighborhoods.

In order to ensure a lower bound on the cardinality of the collection F, we consider situations
where there is a partition of Zfl into perfect covers Xi,...,X;. Each X; corresponds to a
collection F;. Furthermore, each set S that intersects Y7, ...,Y] is excluded from exactly one
of the collections F;. Therefore, there is an index ¢ such that |F;| is at least (1 — 1/1) times
the number of k-sets S that intersect Yi,...,Y].

Note that Construction 1 is given by this general setting by taking a = [ and letting
l
i=1

For a second example, set a = 2 and suppose [ = 2° for some integer b > 2. Fix a Hamming
code H C {0,1}'~1; that is, fix a set of strings H C {0,1}'~! with the property that every
string in {0, 1}~! is either in H or adjacent (in the (I — 1)-cube) to exactly one element of H.
Note that

X ={(z1,...,01) €Z,: (x1,...,2_1) € H}

is a perfect cover of ZZQ. Furthermore the collection X, X +e1, X +e2,..., X +¢;_1 is a partition
of le into perfect covers. Thus, the Hamming code gives another construction that achieves

the bound given by Construction 1.
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