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Abstract

For each k ≥ 2, let ρk ∈ (0, 1) be the largest number such that there exist k-uniform
hypergraphs on n vertices with independent neighborhoods and (ρk + o(1))

(
n
k

)
edges as

n → ∞. We prove that ρk = 1 − 2 log k/k + Θ(log log k/k) as k → ∞. This disproves a
conjecture of Füredi and the last two authors.

1 Introduction

The neighborhood N(S) of a (k−1)-set S in a k-uniform hypergraph (henceforth a k-graph) is
the set of vertices v such that S ∪ {v} is an edge. For n ≥ k ≥ 2, let f(n, k) be the maximum
number of edges in a k-graph on n vertices such that all its neighborhoods are independent
sets (that is, span no edge). Mantel proved in 1907 that f(n, 2) = bn2/4c, and this was the
first result in extremal graph theory. Thus the problem of computing f(n, k) is a natural
generalization of Mantel’s result.

A k-graph is odd if it has a vertex partition X ∪Y such that all edges have an odd number
of points less than k in Y . It is easy to see that all neighborhoods in an odd k-graph are
independent sets. Let b(n, k) be the maximum number of edges in an odd k-graph. Then the
previous observation implies that f(n, k) ≥ b(n, k). It was conjectured in [8] that there exists
some function n0(k) such that n > n0(k) implies

f(n, k) = b(n, k). (1)

There was some evidence for this, as it reduces to Mantel’s theorem for k = 2, and it was
proved for k = 3 by Füredi, Pikhurko, and Simonovits [9, 10], thereby settling a conjecture of
Mubayi and Rödl [18]. Recently, (1) has also been proved for k = 4 [8]. As we will show here,
(1) is not that far from the truth for k = 5.
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Since exact results are rare in extremal hypergraph theory, one often studies asymptotics.
In this case, we can define ρk = limn→∞ f(n, k)/

(
n
k

)
which is easily shown to exist [12]. Now

conjecture (1) implies that ρk = 1/2 for all even k and ρk ↑ 1/2 as k → ∞ for odd k. Thus
a weaker statement than (1) would be that ρk = limn→∞ b(n, k)/

(
n
k

)
, and an even weaker

statement is that ρk → 1/2 as k →∞.

In this paper we show that conjecture (1) is false for all k ≥ 7, and in fact that ρk → 1.
This follows from an old construction of Kim and Roush [16] which gives lower bounds for the
Turán problem for complete k-graphs. Thus the small cases shed little light on the behavior
of ρk.

We are able to obtain rather sharp estimates on the rate at which ρk converges to 1:

Theorem 1. As k →∞, we have

1− 2 log k
k

+ (1 + o(1))
log log k

k
≤ ρk ≤ 1− 2 log k

k
+ (5 + o(1))

log log k
k

,

where log denotes the natural logarithm. Furthermore, for k ≥ 7, we have ρk > 1/2, hence (1)
is false for k ≥ 7.

This leaves open the cases k = 5 and 6, where we believe that (1) still holds.

Conjecture 1. f(n, k) = b(n, k) for k ∈ {5, 6} and n sufficiently large.

We will present the lower bounds in Theorem 1 via constructions in the next section.
Sections 3 and 4 are devoted to the proof of the upper bound. In Section 5 we prove that
40/81 = 0.493... ≤ ρ5 < 0.534. We close with some concluding remarks and related open
problems.

We associate a k-graph with its edge set. For a vertex subset S of size k − 1, let d(S) =
|N(S)|. Let

(
V
k

)
= {X ⊂ V : |X| = k}. We denote [n] = {1, . . . , n}. Let Bin(k, p) denote

the binomial distribution with parameters k and p. In Sections 2–4, the asymptotic notation
(O(1), o(1), etc) will refer to the case when k is fixed and n→∞.

2 Construction

In this section we prove the lower bound in Theorem 1 by means of a construction due to
Kim and Roush. As we will mention in Section 6, this is not the only construction that can
be used for this result, but it appears to be the simplest one.

Construction 1 (Kim and Roush [16]). Let Y1 ∪ . . . ∪ Yl be a partition of [n] into sets,
each of size bn/lc or dn/le. Let the k-graph H consist of all k-sets that have at least one point
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in each Yi. Partition H into H1 ∪ · · · ∪ Hl, where

Hj =

{
S ∈ H :

l∑
i=1

i|S ∩ Yi| ≡ j mod l

}
.

By the Pigeonhole Principle, we may assume that there is an a ∈ [l] with |Ha| ≤ |H|/l. Now
let

F = H \Ha.

Proposition 1. For any δ > 0 there is a k0 = k0(δ) such that for all k ≥ k0 and all sufficiently
large n (i.e. n > n0(k, δ)), Construction 1 produces a k-graph F on n vertices with independent
neighborhoods such that

|F| >
(

1− 2 log k
k

+ (1− δ) log log k
k

)(
n

k

)
.

Proof. To see that F has independent neighborhoods, consider a (k − 1)-set S. Then N(S)
cannot have a point in each Yi for then

{∑l
i=1 i|(S ∪ {v}) ∩ Yi| : v ∈ N(S)

}
covers all con-

gruence classes modulo l. But then N(S) is an independent set, since every edge of F has a
point in each Yi.

Let k > k0(δ) be fixed and n→∞. If l is a fixed function of k then we have

|F| ≥
(

1− 1
l

)((
n

k

)
− l
(
n− bn/lc

k

))
≥
[(

1− 1
l

)(
1− l(1− 1/l)k

)
+ Θ

(
1
n

)](
n

k

)
=
(

1− 1
l
− (l − 1)(1− 1/l)k + Θ

(
1
n

))(
n

k

)
..

Set l = dk/((2 − ε) log k)e, where ε = log log k/ log k. Then using (1 − 1/l)k < e−k/l and
kε = log k, we obtain

|F| ≥
(

1− (2− ε) log k
k

− 1
k

+ Θ
(

1
n

))(
n

k

)
.

This gives the required bound.

Proposition 2. For any k ≥ 7, we have ρk > 1/2.

Proof. Let us take l = 3 in Construction 1. The Inclusion-Exclusion Principle shows that
|H|/

(
n
k

)
= 1 − 3 · (2/3)k + 3 · (1/3)k + o(1). The right-hand side assumes value 602

729 >
3
4 for

k = 7 and, as it is not hard to show, is an increasing function of k ≥ 7. Since F contains at
least 2/3 edges of H, the proposition follows.
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3 Lemmas

This section contains some auxiliary results needed in the proof of the upper bound of Theo-
rem 1. It may be possible to extract the following result from [20] (as pointed out to us by a
referee). In any case, we give an independent proof below.

Lemma 1. For every k ≥ 100 there is an n0 such that for all n, x, and y with x+y = n ≥ n0

and 4n
k−1 ≤ y ≤

n
2 , we have

max
0≤i≤k−1

(
x
i

)(
y

k−i−1

)(
n
k−1

) ≤ 5
(
n

ky

)1/2

.

Proof. Let n0 = n0(k) be sufficiently large. Let p = x/n and q = y/n = 1−p. For 0 ≤ i ≤ k−1,
let pi =

(
x
i

)(
y

k−i−1

)(
n
k−1

)−1 and bi =
(
k−1
i

)
piqk−1−i. We begin by noting that the hyper-

geometric distribution (as given by pi) can be bounded by the binomial distribution (as given
by bi). Consider an experiment in which we choose k− 1 elements of [n] uniformly at random
with replacement. Let X ⊂ [n] with |X| = x, and let D be the event that the k − 1 random
choices are distinct. Note that bi is the probability that exactly i of our randomly chosen
element fall in X and pi is the probability that exactly i of our randomly chosen elements fall
in X when we condition on D. Therefore,

pi ≤
bi

Pr(D)
≤ bi

1−
(
k−1
2

)
1
n

. (2)

Note that bi < bi+1 if and only if i + q < (k − 1)p. Therefore, if we set i0 = b(k − 1)pc and
i1 = i0+1 then maxi bi = max{bi0 , bi1}. Since k ≥ 3 and y ≤ n/2 we have x = n−y ≥ n

2 ≥
n
k−1

and hence (k− 1)p = (k− 1)xn ≥ 1. Also, 4n
k−1 ≤ y implies that i0 < k− 2. Consequently, 1 ≤

i0 < k−2 and we can apply a standard estimate for binomial coefficients (e.g., Inequality (1.5)
in [2]):

bi0 ≤
(

(k − 1)
2πi0(k − 1− i0)

)1/2((k − 1)p
i0

)i0 ( (k − 1)q
k − 1− i0

)k−1−i0
.

Now let us estimate each of these three terms.

• Since k ≥ 100 and p ≥ 1/2 we have p
49 ≥

1
98 ≥

1
k−1 . Therefore i0

k−1 ≥ p−
1

k−1 ≥
48
49p. Also

x(k − 1− i0) ≥ x(k − 1− (k − 1)p) = x(k − 1)(1− p) =
xy(k − 1)

n
≥ y(k − 1)

2
≥ 99

200
yk.

This gives(
k − 1

2πi0(k − 1− i0)

)1/2

≤
(

49
96πp (k − 1− i0)

)1/2

=
(

49n
96πx(k − 1− i0)

)1/2

≤ α
(
n

yk

)1/2

where

α =
(

200× 49
96× 99× π

)1/2

.
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• (k − 1)p ≤ i0 + 1, so (
(k − 1)p

i0

)i0
≤
(
i0 + 1
i0

)i0
< e.

• Since q+p = 1, we have (k−1)(q+p) < k and so (k−1)q < k− (k−1)p ≤ k− i0. Therefore(
(k − 1)q
k − 1− i0

)k−1−i0
≤
(

k − i0
k − 1− i0

)k−1−i0
< e.

Altogether we obtain

bi0 ≤ α
(
n

yk

)1/2

× e2.

Now let us do the same for i1.

• We have i1
k−1 ≥ p. Also

x(k − 1− i1) ≥ x(k − 1− (k − 1)p− 1) = x(k − 1)(1− p)− x =

xy(k − 1)
n

− x ≥ 3xy(k − 1)
4n

≥ 3y(k − 1)
8

≥ 297
800

yk.

This gives(
k − 1

2πi1(k − 1− i1)

)1/2

≤
(

1
2πp (k − 1− i1)

)1/2

=
(

n

2πx(k − 1− i1)

)1/2

≤ β
(
n

yk

)1/2

where

β =
(

800
594π

)1/2

.

• (k − 1)p ≤ i1

• We have (k − 1)q = k − (k − 1)p− 1 ≤ k − i1. Therefore(
(k − 1)q
k − 1− i1

)k−1−i1
≤
(

k − i1
k − 1− i1

)k−1−i1
< e.

Altogether we obtain

bi1 ≤ β
(
n

yk

)1/2

× e.

Now the lemma follows from (2) since αe2, β e < 5.

Lemma 2. For every k ≥ 100 there is an n0 such that for all n ≥ n0 the following holds.
Suppose that we have two families F and G of k-subsets and (k−1)-subsets of [n], respectively,
such that |F| ≥ (1 − f)

(
n
k

)
and |G| ≥ g

(
n
k−1

)
. Let [n] = X ∪ Y with x = |X| and y = |Y |

satisfying 4n
k−1 ≤ y ≤

n
2 . Suppose that reals 0 < f ′, g′ < 1 satisfy

g′f + f ′g > f + f ′g′ + 5f ′
√
n/ky. (3)
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Then there is an i, 0 ≤ i ≤ k − 1, with

|Fi| = |{K ∈ F : |K ∩X| = i}| ≥ (1− f ′)
(
x

i

)(
y

k − i

)
(4)

and
|Gi| = |{L ∈ G : |L ∩X| = i}| ≥ g′

(
x

i

)(
y

k − i− 1

)
. (5)

Proof. Suppose on the contrary that no such i exists. Consider

s =
(1− g′)(

n
k

) |F|+ f ′(
n
k−1

) |G| ≥ (1− g′)(1− f) + f ′g. (6)

Observe that we always have |Fi| ≤
(
x
i

)(
y
k−i
)

and |Gi| ≤
(
x
i

)(
y

k−1−i
)
. Since for each i, either Fi

or Gi is small (as defined by (4),(5)), we have s ≤
∑k

i=0 max(ai, bi), where

ai = (1− g′)(1− f ′)
(
x
i

)(
y
k−i
)(

n
k

) + f ′
(
x
i

)(
y

k−i−1

)(
n
k−1

)
bi = (1− g′)

(
x
i

)(
y
k−i
)(

n
k

) + f ′g′
(
x
i

)(
y

k−i−1

)(
n
k−1

) .

Since

ai − bi =

(
x
i

)(
y
k−i
)(

n
k

) × (1− g′)f ′ ×
(
−1 +

(n− k + 1)(k − i)
k(y − k + i+ 1)

)
,

there is an i0 such that ai ≥ bi for 0 ≤ i < i0 and ai ≤ bi for i0 ≤ i ≤ k. Hence,

s ≤
i0−1∑
i=0

ai +
k∑

i=i0

bi.

Let P =
(
n
k

)−1∑i0−1
i=0

(
x
i

)(
y
k−i
)

and P ′ =
(
n
k−1

)−1∑i0−1
i=0

(
x
i

)(
y

k−i−1

)
. Let us choose a random

(k − 1)-subset L of [n] and then let K be obtained from L by adding a random vertex x /∈ L.
Then K is also uniformly distributed. Note that P (resp. P ′) is the probability that K (resp
L) has less than i0 vertices in X. Since L ⊂ K, P ≤ P ′. On the other hand P ′ − P is
exactly the probability that x ∈ X and |L ∩ X| = i0 − 1. It follows from Lemma 1 that
Pr(|L ∩X| = i0 − 1) ≤ 5

√
n/ky and so P ′ − P ≤ 5

√
n/ky. Hence,

s ≤ P (1− g′)(1− f ′) + P ′f ′ + (1− P )(1− g′) + (1− P ′)f ′g′

≤ P (1− g′)(1− f ′) + Pf ′ + (1− P )(1− g′) + (1− P )f ′g′ + 5f ′
√
n/ky

= 1− g′ + f ′g′ + 5f ′
√
n/ky.

From (6), we obtain that

(1− g′)(1− f) + f ′g ≤ s ≤ 1− g′ + f ′g′ + 5f ′
√
n/ky,

and this contradicts (3).
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4 The Upper Bound on ρk

Before embarking on the formal proof, let us briefly describe the main idea. Suppose that
F is an n vertex k-graph with ρ

(
n
k

)
edges and independent neighborhoods. We may assume

that k is large but fixed and n → ∞. By simple averaging, there is a (k − 1)-set S with
d(S) = |N(S)| ≥ ρ(n − k + 1). No k-set within N(S) can be in F , since F has independent
neighborhoods. Consequently, we obtain

(1− ρ)
(
n

k

)
=
(
n

k

)
− |F| ≥

(
ρ(n− k + 1)

k

)
.

This yields
1− ρ ≥ (1− o(1))ρk

and solving for ρ gives the bound ρ ≤ 1 − (1 + o(1)) log k
k . This is where the main term log k

k

comes from.

Now suppose we could find not just one neighborhood of size (1− o(1))ρn but we could in
fact find k1−o(1) such neighborhoods. No k-set in any of these neighborhoods lies in F so we
would (roughly) obtain

(1− ρ)
(
n

k

)
=
(
n

k

)
− |F| ≥ k1−o(1)

(
ρ(n− k + 1)

k

)
.

This yields
1− ρ ≥ k1−o(1)ρk

and solving for ρ now yields ρ ≤ 1 − (1 + o(1))2 log k
k . However, the above calculation is

not precise since we have over counted some k-sets, namely those that lie in two distinct
neighborhoods. Thus the main technical details of the proof are concerned with controlling
the total amount of over counting in this inclusion/exclusion calculation. We now begin the
formal proof.

Take small δ > 0. Let k ≥ k0(δ) ≥ 100 be sufficiently large. Choose large n0 = n0(k, δ).
With foresight, we define

c0 = 4 + δ c1 = 5 + 2δ c2 = 5 + 3δ c3 = 5 + 6δ.

For brevity of notation, let ε = log log k/ log k. We will show that for all k > k0 we have

ρk < 1− (2− (5 + 7δ)ε) log k
k

= 1− 2 log k
k

+ (5 + 7δ)
log log k

k
.

Suppose that this is false for some k > k0. Then for infinitely many n, in particular for
some n > n0(k, δ), we can find a k-graph F with vertex set [n] and independent neighborhoods
such that

|F| >
(

1− (2− c3ε) log k
k

)(
n

k

)
.
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Define
l =

⌈
k

(log k)c0

⌉
.

Our goal is to find sets A1, . . . , Al, B1, . . . , Bl ⊂ [n] such that the following conditions hold.

Condition 1: For every i ∈ [l], the set Ai is independent (with respect to F), is disjoint from
Bi, and has size

a =
⌈(

1− (2− c1ε) log k
k

)
n

⌉
(7)

Condition 2: The sets B1, . . . , Bl are pairwise disjoint, each of size

b =
⌈

(2− c2ε) log k
k

n

⌉
. (8)

Indeed, if we have such sets then, for any 1 ≤ i < j ≤ l, the set Ai ∩Aj has at most n− 2b
elements because its complement contains Bi ∪ Bj as a subset. Since every k-set in ∪li=1

(
Ai
k

)
is missing from F , we have by a simple version of the Inclusion-Exclusion Principle that

l

(
a

k

)
−
(
l

2

)(
n− 2b
k

)
≤
(
n

k

)
− |F| < 2 log k

k

(
n

k

)
.

Dividing by
(
n
k

)
and using k > k0(δ) and n > n0(k, δ), we get

(1− δ)
(

l

k2−c1ε −
l2

2k4−2c2ε

)
≤ 2 log k

k
,

which is a contradiction (for δ < 1 and k ≥ k0(δ)).

Before proceeding with an argument that gives the sets A1, . . . , Al, B1, . . . , Bl, we need two
observations regarding (k− 1)-sets of large degree. First, observe that for every (k− 1)-set S,
we have

d(S) <
(

1− log k − 2 log log k
k

)
n, (9)

for otherwise
(
n
k

)
− |F| ≥

(d(S)
k

)
> 1

2
log2 k
k

(
n
k

)
which is a contradiction.

We will obtain the sets Ai as neighborhoods of (k−1)-sets. Our strategy is to use the global
lower bound on the number of edges to show that there are many (k − 1)-sets S with large
neighborhoods d(S). We would therefore like to restrict our attention to those (k−1)-sets with
large neighborhoods. Let G be the collection of (k− 1)-sets S ∈

( [n]
k−1

)
such that d(S) ≥ n− b.

Claim 1. |G| ≥ 2δε
(
n
k−1

)
.

Proof of Claim. Let |G| = g
(
n
k−1

)
. We have

k

(
1− (2− c3ε) log k

k

)(
n

k

)
≤ k|F| =

∑
S∈( [n]

k−1)

d(S) ≤

(
n

k − 1

)
(1− g)

(
1− (2− c2ε) log k

k

)
n+ g

(
n

k − 1

)(
1− log k − 2 log log k

k

)
n,
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where the last expression comes from (9). Solving for g yields

g ≥ (c3 − c2)ε− 2k2/n

1− c2ε+ 2 log log k/ log k
> 2δε.

(We used the facts that c3 − c2 = 3δ and c2 > 2 in the last inequality.) This completes the
proof of Claim 1.

Now we describe how to inductively construct the sets Ai and Bi. Suppose that we have
constructed A1, . . . , Ap, B1, . . . , Bp with 0 ≤ p < l satisfying Conditions 1 and 2. Let

y =
⌊

2n
(log k)c0−1

⌋
. (10)

and x = n− y. Take an arbitrary partition [n] = X ∪ Y with Y ⊃ ∪pj=1([n] \Aj) and |Y | = y,
which is possible since each set [n] \ Ai has n− a ≤ 2n log k/k elements and p < l. Our task
now is to construct Ap+1 and Bp+1.

For an integer i, define

Fi = {S ∈ F : |S ∩X| = i} and Gi = {S ∈ G : |S ∩X| = i}.

Also, let
f = 2 log k/k, g = 2δε, f ′ = log2+δ k/k, g′ = δε.

A short calculation shows by (10) that (3) holds:

f ′(g − g′) + (g′f − f − 5f ′
√
n/ky) >

δε log2+δ k

k
− C log k

k
> 0,

for some absolute constant C. So Lemma 2 implies that there is an i such that |Fi| ≥
(1− f ′)

(
x
i

)(
y
k−i
)

and |Gi| ≥ δε
(
x
i

)(
y

k−i−1

)
.

Let λ = f ′/(δε). Let us show that there is a (k − 1)-set T0 ∈ Gi such that

|Y \N(T0)| ≤ λ(y − k + i+ 1) (11)

Suppose on the contrary that no such T0 exists. Let us count the number γ of pairs (K, z)
with K ∈ Fi and z ∈ K ∩ Y in two different ways. On the one hand, we can first choose K
and then z. This gives

(k − i)(1− f ′)
(
x

i

)(
y

k − i

)
≤ (k − i)|Fi| = γ.

On the other hand, we can first choose K − {z} and then z. The set K − {z} is either in Gi
or not. Taking both cases into account yields

γ < |Gi|(1− λ)(y − k + i+ 1) +
((

x

i

)(
y

k − 1− i

)
− |Gi|

)
(y − k + i+ 1).

It follows that
λ|Gi|(y − k + i+ 1) < f ′

(
x

i

)(
y

k − i

)
(k − i).

9



Since |Gi| ≥ δε
(
x
i

)(
y

k−i−1

)
, this contradicts the choice of λ.

Choose an arbitrary set Bp+1 ⊂ X that contains all of X \N(T0) and such that |Bp+1| = b.
(This is possible because |X| ≥ n−lb ≥ b and T0 ∈ G, so |X\N(T0)| ≤ n−d(T0) ≤ b.) For every
j ∈ [p], the set Bj ⊂ Y is disjoint from Bp+1 ⊂ X, so Condition 2 holds. Let Z = Y \N(T0)
and A′ = [n]\(Bp+1∪Z). Note that A′, as a subset of N(T0), is an independent set. Moreover,
by the definition of T0 (i.e. by (11)), we have

|A′| ≥ n− b− λy ≥ n−
⌈

(2− c2ε) log k
k

n

⌉
− log2+δ k

δεk
× 2n

(log k)c0−1
≥ a.

Let us take for Ap+1 an arbitrary a-subset of A′. Condition 1 clearly holds, finishing the
proof.

5 k = 5

As we have mentioned in Conjecture 1, the cases k = 5, 6 remain interesting open questions.
By suitably modifying the proof that ρ4 = 1/2 from [8], we can obtain fairly good bounds for
ρ5.

Theorem 2. 0.493 ≤ ρ5 ≤ 0.534.

Proof. (Sketch) Suppose that G is a 5-graph with independent neighborhoods and π
(
n
5

)
edges

which is maximum possible with this restriction. Let I be the 5-graph

{12345, 12346, 12347, 12348, 12349, 56789}.

Then a 5-graph with independent neighborhoods is precisely one with no copy of I. Conse-
quently, G contains no copy of I. Since I has the property that every two of its vertices lie
in an edge, we conclude that if we duplicate any vertex of G then the resulting 5-graph also
contains no copy of I. Now if there are vertices u, v ∈ G and any small positive ε > 0 such
that d(u) > d(v) + εn4, then we could delete v and duplicate u to obtain another 5-graph
G′ with n vertices, independent neighborhoods, and more edges than G (such a process is
sometimes called Zykov symmetrization). This contradiction shows that we may assume all
vertex degrees of G are (π + o(1))

(
n
4

)
.

Now let A be a neighborhood of maximum size, say |A| = αn, and B = [n] \ A. Let hi be
the number of edges of G with exactly i points in B; note that h0 = 0 by our hypothesis. Let
σi be the sum, over all 4-sets S with i points in B and 4 − i points in A, of d(S). Then one
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obtains (
αn

3

)
(1− α)n× αn ≥ σ1 = 4h1 + 2h2 (12)(

αn

2

)(
(1− α)n

2

)
× αn ≥ σ2 = 3h2 + 3h3 (13)

αn

(
(1− α)n

3

)
× αn ≥ σ3 = 2h3 + 4h4. (14)

On the other hand, using the fact that all degrees are almost equal we get

(1− α)n× (π + o(1))
(
n

4

)
=
∑
x∈B

d(x) = h1 + 2h2 + 3h3 + 4h4 + 5h5. (15)

Now consider 3/4× (12) + 1/6× (13) + 1/4× (14) + (15), observe that
∑5

i=1 hi = |G|, and
divide by n5. This gives that, as n→∞,

π ≤ α

5α− 1
(
15(1− α)α3 + 5(1− α)2α2 + 5(1− α)3α

)
+ o(1).

Maximizing this function over all α ∈ (0.5, 1) yields π < 0.534 and hence ρ5 < 0.534.

For the lower bound, observe that b(n, 5) = (40
81 + o(1))

(
n
5

)
(take |Y | = (1

3 + o(1))n). This
shows that ρ5 ≥ 40

81 > 0.493.

6 Concluding Remarks and Open Problems

• Our results are similar in flavor to the following problem about the Turán numbers of
complete hypergraphs. Let tk denote the maximum proportion of edges in a k-graph on n

vertices, as n → ∞, that contains no copy of the complete k-graph on k + 1 vertices. Thus
t2 = 1/2 by Mantel’s theorem. The most famous conjecture in this area, due to Turán [24],
is that t3 = 5/9, which is achieved by (among others) the 3-graph with vertex partition
Y1, Y2, Y3 into almost equal parts and all edges with two points in Yi and one point in Yi+1

(indices modulo 3) or one point in each Yi. Perhaps just as interesting is to determine the
growth rate of tk as k → ∞. Frankl and Rödl [7] proved that 1 − tk = O(log k/k) via a
construction that has similarities to Construction 1 in this paper. On the other hand, the
known upper bound is tk = 1− Ω(1/k), where the best results are due to Chung and Lu [3].
It would be very interesting to obtain sharper estimates for tk. Perhaps the methods of this
paper can be used to show that 1 − tk = ω(1/k), an open question for whose solution de
Caen [4, Page 190] offered 500 Canadian dollars.

• For 2 ≤ m ≤ k let the book Bk,m be the k-graph with the following m + 1 edges: [k −
1] ∪ {k + i− 1} for i ∈ [m], and {k, k + 1, . . . , 2k − 1}. The problem of computing the Turán
function ex(n,Bk,m) has been actively studied [1, 5, 6, 8, 9, 10, 14, 18, 21, 23]. Clearly, the

11



property not containing Bk,k as a subgraph is equivalent to having empty neighborhoods, so
f(n, k) = ex(n,Bk,k). Our results can be modified to show, for example, that for any function
m = m(k) < c1 log k, where c1 is a constant, we have

π(Bk,k−m) = 1−Θ
(

log k
k

)
(16)

as k → ∞, where π(F ) = limn→∞ ex(n, F )/
(
n
k

)
denotes the Turán density of a k-graph F .

Indeed, the upper bound on π(Bk,k−m) follows from Theorem 1 and the trivial observation
that ex(n,Bk,k) ≥ ex(n,Bk,k−m). The lower bound (16) can be obtained by taking the k-graph
F of Construction 1 with l = k/c2 log k where c2 � max(c1, 1) and removing those edges of
F that intersect some part Yi in at most m vertices. As n→∞, the proportion of edges that
we delete is approximately at most

l × Pr( Bin(k, 1/l) < m ) ≤ l e−c2 log k/4 <
1
k2
.

(We apply the Chernoff bound here, see e.g. [11, Corollary 2.3].) Therefore, the size of the
family F is at least (1− 1/l)(1− 1/k2)

(
n
k

)
, and (16) follows.

On the other hand, it is easy to show that π(Bk,m) = o(1) if m = o(k). Determining the
behavior of π(Bk,m) for the intermediate values of m is an interesting open problem.

• A related problem which has been studied a fair amount recently (see, e.g., [13, 15, 17, 22])
is the maximum possible minimum degree (of (k − 1)-sets) that a k-graph can have without
containing some fixed configuration. Let g(n, k) denote the maximum minimum degree of a
k-graph on n vertices with independent neighborhoods. Then it was shown in [19] that the
limit γk = limn→∞ g(n, k)/n exists. It is trivial to see that γk ≤ 1/2 for all k, and odd k-graphs
show that if k is even, we have equality. It would be interesting to determine the behavior of
γk for k odd. As with tk, the small cases seem difficult. For k = 3, the construction for t3
above minus the edges with one point in each Yi shows that γ3 ≥ 1/3. In fact, we make the
following conjecture.

Conjecture 2. For every ε > 0, there exists n0 such that if n > n0 and G is an n-vertex
3-graph with every pair lying in at least (1/3 + ε)n edges, then G contains a neighborhood that
is not an independent set. In particular, γ3 = 1/3.

• Construction 1 has the following generalization. We begin with some definitions that es-
tablish the general setting. Let a, l ≥ 2 be fixed parameters. Consider the digraph D with
vertex set Zla and an arc from x = (x1, . . . , xl) to y = (y1, . . . , yl) if and only if there exists a
coordinate k such that

yi =

xi if i 6= k

xi − 1 if i = k
.

12



Note that the out-degree of each vertex is l. We say that a subset X of Zla is a perfect cover of
D if the out-neighborhoods of the elements of X form a partition of Zla. In other words, the
set X is a perfect cover if for every y ∈ Zla there exists a unique x ∈ X such that the arc (x, y)
(i.e. the arc directed from x to y) is in D. Note that a perfect cover contains al/l vertices.

Suppose X is a perfect cover of D. Let n be large and fix a partition Y1, . . . , Yl of [n].
For each k-set S let yS ∈ Zla be the vector yS = (y1, . . . , yl) where yi ≡ |S ∩ Yi| mod a for
i = 1, . . . , l. Now we are ready to define our family with independent neighborhoods. Let F
be the collection of k-sets S such that S ∩ Yi 6= ∅ for i = 1, . . . , l and yS 6∈ X. We claim that
the collection F has independent neighborhoods. To see this, consider a (k − 1)-set T . Since
X is a perfect cover, there exists x ∈ X such that (x, yT ) is an arc in D. It follows that there
exists an index k such that T ∪ {z} 6∈ F for all z ∈ Yk. In other words, the neighborhood of
T (in the hypergraph F) does not intersect Yk. Since every edge in F intersects Yk, it follows
that F has independent neighborhoods.

In order to ensure a lower bound on the cardinality of the collection F , we consider situations
where there is a partition of Zla into perfect covers X1, . . . , Xl. Each Xi corresponds to a
collection Fi. Furthermore, each set S that intersects Y1, . . . , Yl is excluded from exactly one
of the collections Fi. Therefore, there is an index i such that |Fi| is at least (1 − 1/l) times
the number of k-sets S that intersect Y1, . . . , Yl.

Note that Construction 1 is given by this general setting by taking a = l and letting

Xj =

{
x ∈ Zll :

l∑
i=1

ixi = j

}
.

For a second example, set a = 2 and suppose l = 2b for some integer b ≥ 2. Fix a Hamming
code H ⊆ {0, 1}l−1; that is, fix a set of strings H ⊆ {0, 1}l−1 with the property that every
string in {0, 1}l−1 is either in H or adjacent (in the (l− 1)-cube) to exactly one element of H.
Note that

X = {(x1, . . . , xl) ∈ Zl2 : (x1, . . . , xl−1) ∈ H}

is a perfect cover of Zl2. Furthermore the collection X,X+e1, X+e2, . . . , X+el−1 is a partition
of Zl2 into perfect covers. Thus, the Hamming code gives another construction that achieves
the bound given by Construction 1.
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[6] P. Frankl and Z. Füredi. Extremal problems whose solutions are the blowups of the small
Witt-designs. J. Combin. Th. A, 52 (1989) 129–147.
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