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Let a(Gn,p) denote the independence number of the random graph G, ,. Let d =np. We
show that if € >0 is fixed then with probability going to 1 as n—

®(G, ) — —Zdﬁ (logd —loglogd —log2+1) s%n

provided d, <d = o(n), where d. is some fixed constant.

This note is concerned with the independence number of random graphs. As
usual G, , denotes a random graph with vertex set V,={1,2, ..., n} in which
each possible edge is independently included with probability p =p(n). The
independence number (G, ,) is the size of the largest set of vertices not
containing any edge. This has been studied by, inter alia, Matula [5], Grimmett
and McDiarmid [4] and Bollobas and Erdés [3]. The aim of this paper is to prove
the following

Theorem. Let d=np and €>0 be fixed. Suppose d.<d=o(n) for some
sufficiently large fixed constant d.. Then

2
(G, ) — 7” (logd —loglogd —log2+1)| < %l
with probability going to 1 as n— .

(All logarithms are natural). The case p constant is well understood and the
content of the theorem is already known for d >n3 (see Bollobas [1, 2]). The
upper bound of the theorem is already known and straightforward to prove (see [1]
Lemma X1.21). The lower bound is close to what one might expect and our aim
is to prove it and demonstrate what may turn out to be a useful approach for
other problems.
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Let m=[(ngd—W], n'=|n/m| and P={G(-Um+1,...,im}, i=

1,2,...,n' be a partition of V,,,... Let a set XcV,,, be P-independent if it is
independent and satisfies | X NP|<1fori=1,2,...,n’". Let B(G,,)<«(G,,)
denote the size of the largest P-independent subset of G, . (It was Luczak who
suggested S in place of &. This leads to a strengthening of our original result).

Let X, denote the (random) number of P-independent sets of size / in G, . The
theorem follows from the following

Lemma. (a) Let B = E(B(G,,)). Then

Pr(|B(G,,) - Bl=1)<2 exp{ - z(Totg‘fW} fort>0.

(b) Let k=(2n/d)(logd —loglogd —log2 + 1 — (&/3)). Then

200(log d)}
Pr(X, >0)= exp{ - % n}.
Indeed, putting ¢ equal to ¢, = €n/6d in (a) and comparing with (b) we see that
B =k —t,. We then apply (a) again with ¢ =¢, to obtain the lower bound of the
theorem. (In the following, inequalities need only hold for sufficiently large d and
sufficiently small values of p).

Proof of the lemma. (a) Using a martingale inequality of Azuma (see Stout [7]),
Shamir and Spencer [6] have shown that

Pr(|Z — E(Z)|=t)<2e™"?" fort>0
for any random variable Z defined on G, , satisfying
1Z(G)—-Z(G")|=1

whenever G' can be obtained from G by changing the edges incident with a single
vertex. This is clearly true of the random variable a(G, ,).
The same proof yields

Pr(|Z — E(Z)| =) <2e """
for any random variable Z defined on G,,, which satisfies
12(G) - 2(G)| =<1

whenever G can be obtained from G by changing some of the edges incident with
the vertices in a single P,. This is clearly true of B(G,,) and (a) follows. (See
Bollobds [2] for a superlative use of a martingale inequality in the solution of the
chromatic number problem for dense random graphs. Also Shamir and Spencer
[6] prove a sharp concentration result for the chromatic number of sparse random
graphs by using an ““(a) type” inequality plus a “(b) type” inequality with an
unknown k.)
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(b) We use the inequality
Pr(X, >0)= E(X,)*/E(X3).

Now '
Ex) = () Jmt-p)®
and K I\ /n' —1 o
Ex)<Ex) Y ()} 2, )mia-po-o.
=0
Thus
()G2)
2 k
E(Xk)ZSZ ,l k-1
E(Xk) =0 (’;{ )m’(l _p)(é)
k
< exp{2(log d)*} 12‘6 7
where

()G2)
1/\k—1 x {@}
(n') ; Pl2a ]
o)
Observe that (A/l) is maximised at / = A/e and so
(A/l)l < eA/e

u <<E._£_.ex {E})I
"\ n'm p2n

<<’_‘.61°gd.ex {E})'
S\7 "4 P12a))

Casel. 0<I<k/2.

u=

and

ld
Here exp{z—n} <Vd and so, by (4)
_ (bklogd

”’\( d )I

EETI

2
$exp{£(;g;—)—n}.
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Case 2. k/2<ls7n(logd —loglogd —3).
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By (4),

M

12 log d { })’

(12 logd
1.

u

n

]
e’log d)

N

(6)
2n
Case 3. 7(]0gd—10g10gd—3)<l<k.

Now
w _m(+1)(n' =) {_(21+1)d}
we =07 P
__kn e%(loga)’
T(k-1? &

Hence

1 kne®(log d)*\*~*
“’\((k—z)v)z( & ) e

(knes(log d)“)" -
k=122 ) "

Now observe that (4/%)' is at most exp{2A432/e} and so

kned(log d)*\?
w=enfo( 20D,

- ™

Now

2n
- (e (e (4) o -2
=k P 2n'  \n' Pl 20
=((1 - 6(d))e®)* where lim 6(d) =0
d—x
=1 for d sufficiently large. ®)

Part (b) follows from (2) and (5)-(8). O

Before the introduction of Azuma’s inequality into the study of random graphs
we would have to try something else if the variance “blew up”. The proof of our
theorem shows that in spite of this something can sometimes be gained.
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