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Abstract

Let (= r(n)) — oo with 3 < r < n!~" for an arbitrarily small constant n > 0,
and let G, denote a graph chosen uniformly at random from the set of r-regular
graphs with vertex set {1,2,... ,n}. We prove that with probability tending to
1 as n — oo, G, has the following properties: the independence number of G, is

asymptotically @g—r and the chromatic number of G, is asymptotically 5.

1 Introduction

The properties of random r-regular graphs have received much attention. For a com-
prehensive discussion of this topic, see the recent survey by Wormald [15] or Chapter 9
of the book Random Graphs by Janson, Luczak and Rucinski [8].

A major obstacle in the development of the subject has been a lack of suitable tech-
niques for modelling simple random graphs over the entire range, 0 < r < n — 1, of
possible values of r. The classical method for generating uniformly distributed simple
r-regular graphs is by rejection sampling using the configuration model of Bollobas
[2]. The configuration model is a probabilistic interpretation of a counting formula
of Bender and Canfield [1]. The method is most easily applied when r is constant or
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grows slowly with n, the number of vertices, as n tends to infinity. The formative paper
[2] on this topic considered the case where » = O((logn)'/?). McKay [12] and McKay
and Wormald [13, 14] subsequently gave alternative approaches which are useful for
r = o(n'/?) or r = Q(n).

Let G, denote a graph chosen uniformly at random from the set G, of simple r-regular
graphs with vertex set V= {1,2,... ,n}. We consider the independence and chromatic
number of G, for the case where »r — oo as n — oo, but r < n!~7 for some 1 > 0.
These are also studied in a recent paper by Krivelevich, Sudakov, Vu and Wormald [9],
for the case where r(n) > y/nlogn. Our paper complements [9] both in both in the
range of r studied and in the techniques applied. Throughout the paper we say that a
sequence of events &, holds with high probability (whp) if Pr(&,) — 1 as n — 0.

Theorem 1 Let €, be positive constants, then for any n*/* < r < n'~" whp the
independence number a of G, satisfies

2
a(G,) — Tn(logfr —loglogr + 1 —log 2)‘ < % (1)

Our proof of Theorem 1 is easily adapted to prove:

Theorem 2 Ifn'/* < r < n'~" then whp the chromatic number x of G, satisfies

r loglogr
= 1 .
X(Gr) 2logr < +0 ( logr ))

Frieze and Luczak [6] showed that for any fixed €¢,7 > 0 there exists r. such that if
re <7 < n'/377 then whp (1) is true, and that if 7 < n!/3~" and r is sufficiently large
then whp

r 16rloglogr

X(G») Tonry: )

The paper [9] also gives asymptotically tight estimates for a(G,) and x(G,) when
nS/Tt1 < r < 0.9n, n > 0 constant. By proving the theorems above, we have closed
the gap in the middle range of r.

We will use edge switching: [12], [13, 14], [4], [10], [9] and [3]. We also make use of a
partitioning technique which allows us to build up simple r-regular graphs as the union
of smaller less dense graphs.

B 2logr| —

2 Generating graphs with a fixed degree sequence.

Let d = (dy,da, ... ,d,), and let |d| = (d; + da2 + - -+ + d,)/2. Let Gq be the set of
simple graphs G with vertex set V' = [n] and degree sequence d (and hence |d| edges).
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Let W be any totally ordered set of size 2|d| and Q = Q(W) be the set of all
(2|d|)!/(|d|'2'9)) partitions of W into |d| 2-element sets. An element of  is a configu-
ration. The constituent 2-element sets of a configuration F' are referred to as the edges
of F.

Let Wy, Wa, ..., W, be the natural ordered partition P4 of W into sets of size |W;| = d;,
where (max W;) < min W, for i < n.

Let 2 = Qq = Q(W) with the understanding that the underlying set W is partitioned
into Pg. The degree sequence of an element F' of Q4 is d. Define ¢ = ¢p, : W — [n]
by ¢(w) =i if w € W;. Let y(F') denote the configuration multigraph with vertex set

[n] and edge multiset Er = {{¢(z), d(y)}: {z,y} € F}.

Definition: Let 2} denote those configurations F' for which y(F') is simple
relative to Pjy.

Remark 1 Note that each member of Gg is the image under v of precisely [];_, d;!
members of 3. Thus sampling uniformly from ) is in some sense equivalent to
sampling uniformly from Gg4.

If d; =r, (1 <i < n)we will say the configuration F' is r-regular. The probability
|Q2*|/|€2| that the underlying r-regular multigraph y(F') of such a configuration F is
simple is exp(—©O(r?)). For r = o(n'/2) this follows from [13, 14] and for larger values
of r from Lemma 2 below. This result allows us to prove many results directly via
configurations and then condition the probability estimates for simple graphs.

The following two lemmas are proved in [3]:

Lemma 1 Let A = maxcy, d;.  Suppose that A < n/1000 and that d satisfies
minie, d; > A/4. Given a,b € [n], if G is sampled uniformly at random (u.a.r.)

from Ggq, then

Pr({a,b} € E(G)) < %.

Lemma 2 Suppose 100 < r < n/1000. Letd; =, 1 < j < n. If F is chosen u.a.r.
from §2 then for n sufficiently large,

Pr(FeQ)>e .

Remark 2 We also need to consider random bipartite graphs with a given degree
sequence and a similar configuration model is available for this purpose. We just
consider a multigraph obtained from random pairings F' between two equal sized dis-
joint sets W, W equipped with partitions Wy, Wa, ... , W, and Wy, Ws, ... ,Ws. A pair
(z,y),x € Wi,y € W; giving rise to the edge (i, 7).

3



At this point we describe two algorithms for obtaining a u.a.r. configuration. We
describe bipartite versions since we covered the non-bipartite versions in [3]. In any
case the necessary changes for this case should be clear.

Algorithm CONSTRUCT
begin
Fy:=0; Ry:=W,Ry:=W
For i =1 to |d| do
begin
Choose u; € R; 1 arbitrarily
Choose v; uniformly at random from R;_;
Fii=FiiU{{w,vi}}; Ri:= Rioi \ {wi}, B == Ri—1 \ {vi}
end
Output F := Flg|.
end

Algorithm GENERATE

begin
FO = @
Let o1 = (1, %2,... , a1, %)q|) be an ordering of W

Let o2 = (y1,Y2,- -+ »Yja|-1,Yja)) be an ordering of W
For i =1 to |d| do
begin
Fi 1 U{{zi,vi}} (With probability 1) A
F; =
F, 1 U{(zi,m}, {1, v} — {&,m} (With probability %) B

Here {&;,m:1} is chosen u.a.r. from F; | (with & € W).
end
Output F := Fig,
end

Remark 3 Neither of the algorithms generating Fjq, use any information about the
partition P4 associated with the configuration. After iteration i of GENERATE, F; is a
u.a.r. element of ;, the set of configurations on {z1,... ,z;}, {y1,...,v:}. We can, if
we wish, construct an F; € (27 in some other way and and then switch to GENERATE,
starting from step I + 1. Instead of initialising the orderings o1, o3 used in algorithm
GENERATE with W, W we initialize o1, o2 with R;, R;, the remaining unmatched
points. If F} is distributed as a u.a.r. element of {2; then the F' obtained in this way
will be uniformly chosen from (2.



3 The independence number

3.1 The lower bound

To prove the lower bound in Theorem 1 we will follow the basic strategy of [6]. We start
with the following result of Frieze [5]. Let ccn < m < n?/log’n and let d = 2m/n,
then

2
a(Gnm) — g(log d —loglogd+ 1 — log 2)‘ < % (3)
with probability
en
1-— - ——— . 4
= (saean) ©
We will choose m ~ rn /2 and define a random multi-graph as follows: let (vy,va, ... , Vo)

be chosen u.a.r. from [n]*™ and let H,, have vertex set [n] and edge set {{ve;_1, v} :
i=1,2,...,m}

While [5] proves the independence number result (3) for the standard model G, .., we
can deduce essentially the same result for H,, by removing loops and repeated edges
to obtain G, with m' ~ m. The paper [6] starts with H,, and then transforms it
into FF € Q, (r = (r,7,...,r)) and then into G, without changing the independence
number by much. This needed r < n'/3" so that the transition from F € €, to G,
could be done easily.

In this paper, because the degree, r, is larger, we introduce a decomposition technique
(Section 3.1.1) which enables us to apply the results and techniques of [5, 6] to larger
values of r.

3.1.1 A decomposition of G,
Let s = r17"/10 where 7 is as in Theorem 1 and is sufficiently small. Let v = n/s and
let V1,Va,...,V, be a random partition of [n] into sets of size v. (We assert that we
can afford to ignore the niceties of rounding. In reality s = [r'~7/1°| and |V;| = |v] or

[v1)-

Let I';; = G,[Vi] be the subgraph of G, induced by V; and for ¢ # j let I';; be the
bipartite subgraph of G, with vertex partition V;, V; and all G,-edges joining V; to V;.
Let d;; denote the degree sequence of I'; ;. We observe that if 4,7 and d;; are given
then I'; ; is a random graph or bipartite graph with this degree sequence and that,
furthermore, the I'; ; are conditionally independent once the V; and d; ; are given. This



is because any two graphs on V;, V; with degree sequence d;; have precisely the same
set of extensions to an r-regular graph on V.

The degree d; j(v) of v € V; in I'; ; is sharply concentrated around its mean. Indeed
the randomness of the partition and Theorem 2 of Hoeffding [7] (sampling without
replacement) gives

Pr(|d;;(v) — p| > kp) < 2e7"/4)
where p = /s and we have replaced the usual 3 by 4 to account for some rounding,.

Putting x = (s/r)"/2logn we see that whp

|di j(v) — p| < p"*logn  for all i,5,v € V. (5)

To generate G, given degree sequences satisfying (5), it is enough to independently
generate I'; ;, where the I'; ; are random graphs on V; U V; with degree sequence d; ;.

We can therefore analyse G, by focusing on a typical set of degree sequences {d; ;, i,j =
1,...,s} and then independently generating the I'; ;. One can thus analyse G, as the
union of an independently chosen collection of random graphs. Each TI'; ; will have v
or 2v vertices and maximum degree ~ p = r"/10 < y1/10 when 7 is small. This is small
enough that simple switching analysis will be practical. We expect this model to be
useful for proving many properties of G,.

For the rest of this section we fix degree sequences d; ; satisfying (5).

3.1.2 From H,, to F,;

The transition from H,, to G, will be in two stages. The first stage is to obtain
independent u.a.r. configurations with degree sequences d; ;.

We define m by

m= % (1- 3p 21og n). (6)
We fix V4, Va, ..., V, and a set of degree sequences d; ; satisfying (5). We then generate
H,, by choosing a sequence T = (v1, 2, .. , V2 ) U.a.r. from [n]*™. For each 1 < i <

j < s we let X7, denote the set of pairs {{z2—1,22t} 1 T2 1 € Vi, 29y € Vj or vice-
versa}. The multigraph on V;UV; defined by these pairs is denoted by H?;. The degree
df;(v) of v € V; in H}; is distributed as a binomial B(m, 2(sn) '), i # j or as the sum
of m independent copies of a certain {0, 1,2}-valued random variable if i = j. Given
its degree sequence d;;, H;; will be distributed as a u.a.r. configuration multigraph
with this degree sequence. Also, given the d;;, the H}; are independent. Formally, if

i =7, let WO = U, W) where [W{™| = d;;(v). We associate each X;; with
[Loev, [WS)|1 distinct pairings of W), A similar argument holds for ¢ # j and sets
W v eV, and W v € V;.




By standard calculations we see that whp

p—4p'Plogn < df;(v) < p—2p"logn  Vi,jv €V (7)

At this point we remind the reader that from (3) and the fact (6) that m is sufficiently
close to rn/2, with probability given in (4) the simple graph underlying H,, has an
independent set I where

2en

2
|I|—Tn(logr—loglogr+1—log2) < (8)

r

We now wish to transform each H;; into a random configuration multigraph with
degree sequence d; ; in place of d; ;. For ¢ # j we imagine that H;; has been obtained
through a random pairing Fl*J of W% C W6d) with W (3%) C W3, We now
apply algorithm GENERATE initialized with F}'; and with o1, 0y as random orderings
o g(d) of W) \ Wi and W) \ WGE#*), The configuration so constructed
is denoted by Fj;, and is a u.a.r. configuration from {24, ;. A similar construction is
applied when ¢ = j. The union of the multigraphs (F; ;) is an r-regular multigraph
and in the next section we bound the effect of GENERATE on the independent set 1.

3.1.3 Edges created inside I

In going from the F;;’s to the F;;’s algorithm GENERATE will probably add some
edges with both endpoints in I. Fix some ¢ # j, and a configuration F}; whose
degree sequence satisfies (7). Let o\ o7 = (z1,2s,... ,m1), (Y1, Y2, - .. ,u;) be de-

fined as above by randomly ordering the remaining configuration points. Note that
1 = O(vp'/?logn).

Fix u € V; and v € V;. What is the probability that the edge uv is added when we run
GENERATE? For steps of type A we have a bound

1 _ pY%logn p'?logn) logn
O(lxy—px ] . i =0 V2 )

Explanation: The first term is the number of steps, the second term is the probability
that we execute step A as opposed to step B. From the degree bounds (5) and (7),
there are O(p'/2logn) x’s with ¢(z) = u. Using only this and the randomness of the
ordering we obtain the third term as a bound on the probability that ¢(zx) = v and
&(yx) = v for a given k.

For steps of type B the corresponding bound is

1/2 1/2
O<2><l><7p lognxﬁ) :O<7p logn).
l pv v
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Explanation: The second term is the number of steps. The third term bounds the
probability that ¢(xx) = u and the last term the probability that the edge (£1,71) has
¢(m) = v. The factor 2 allows for ¢(yx) = v, ¢(&1) = w.

A similar argument holds when i = j (even if u = v), so (assuming (7)) the probability
that for fixed u,v € V the edge uv is added when we run GENERATE on the relevant
Fy;is O(v™'p'?logn). The expected number of edges added to I is thus

so whp the r-regular multigraph M, = U” v(F;,;) contains an independent set I where

A 2
‘|I|—7n(logr—loglog'r+1—log2)‘ S&Tn. (9)

3.1.4 Bad loops and multiple edges

Returning for the moment to H,, and the associated F};, for each i,j let G;; be the
simple graph obtained by merging multiple edges and deleting loops of 'y(Fl*j) and let
r, = Ul ; G; ;. The choice of I can be assumed to depend only on I',. Suppose that
for each 4, j there are a;; loops and b; ; parallel (non-loop) edges in y(F};).

Remark 4 From the definition of H,,, given G;; and a;;, the a;; loops in y(F};) =
H,,[V;] are independently chosen uniformly from the |V;| = v possibilities, with re-
placement. Similarly, if we fix the multiplicities of the parallel edges in 'y(F;*J) then
the edges with multiplicity greater than one are chosen uniformly at random from the
(4) possibilities (without replacement).

Call a loop or parallel edge a bad edge if it contains a member of I. Now whp for each
i,j we have a;; + b;; = O(p*logv) (using (7) and Lemma 5 from the Appendix) and
so using Remark 4 the expected number of bad edges in (F};) meeting I in V;, say, is

NI
(0] (p2logu X m)
v

Using the calculation of the previous section, the expected number of bad loops added
going from Fy; to F;; is O(v='p"logn|V;NI|). Also, as F}; has at most p|V;NI| edges
with one end in V; N I, the expected number of edges added parallel to such edges is

3/21
o (P70 1)
v



Using an argument similar to that in the previous section one can also bound the
probability that a certain edge is added twice. Putting these bounds together we see
that:

the expected number of bad edges in y(F; ;) meeting V; NI is

NI .
0 <p2 logv x @) Vi, j. (10)

From the next section we can forget H,, and the F;;. We have now shown that if we
take fixed d; ; satisfying (5) and construct independent u.a.r. configurations F;; € Qg ;
then whp (9) holds, and (10) holds. There is one more fact we shall need about I:
the partition of the vertex set can be taken to be independent of the choice of I. Thus
given i and |I| the expectation of (") is

()= <y

2 n n

soastI, whp

> (151 = outess) 1)

3.1.5 Simplification: from F;; to I';;

The multigraphs v(F; ;) have the right degree sequences d;;, but we now need to
transform them into random simple graphs with these degree sequences.

We focus on graphs, the construction for bipartite graphs is similar. We show how to
simplify a random configuration F' from (23 where

d = (d,ds. ... ,d,) and p/2 < mind; < maxd; < 2p.

Recalling that n'/4 < r < n'™", let

P

‘=15 < n 10,
An edge {wq,wy} € F is a loop if ¢p(w;) = ¢(ws). An edge {w1, w2} € F, wy < ws is
redundant if F' contains an edge {w}, wsy}, wy < wh with ¢(w}) = ¢(w;),i = 1,2 such
that w| < wy, recalling that ¢ is increasing. It is convenient to ignore multiple loops at
the same vertex when computing the number of redundant edges. Let €2,; be the set
of configurations in {24 which have a loops and b redundant edges. As an intermediate
stage we will generate configurations in a set ng’é’d C o, defined in the Appendix.
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Since whether a configuration F is good (in Qg:’é’d) depends not just on the graph y(F'),
we must consider the set

good — {G e gd .
{F € 5" 7(F) =G} > (1 —a){F € Qoo : 7(F) = G}}, (12)

noting that the latter count depends only on d.
Algorithm SIMPLIFY

1. Start with a u.a.r. configuration F* € (4.
2. Suppose F™ has a loops and b redundant edges.
3. If a > plogv or b > p?logv, output G¥ = L. — construed as failure.

4. Suppose the redundant edges of F* are e;,7 = 1,2,... ,b and the loops of F™* are
e, i=b+1,b+2,... ,a+b. Here e; = {z;,y;}, zi < y; fori =1,2,... ;a+band
i <xiypfori=1,2... , b—landi=b+1,0+2,... ,a+b—1.

5. Let X denote the set of sequences (a1, 01, ... , Qarb, Bars) such that

fi:{aiaﬂi}EF*\{el)"' )ea+b}ai:1a2a"'a+ba

dist(e;, f;) > 2 and dist(f;, f;) > 1, for 1 <i# j <a+b, (13)
and if
F**:F*_el_fl_"'_ea+b_fa+b+
+{z1, 0} + {y1, 1} + - - + {Tats, Yarv} + {Yats, Bayr) (14)
then

F*™ € Q.
Here dist denotes minimum distance in y(F™*) between vertices of the given edges.

Choose a random member of ¥ and carry out the corresponding switching
o : F* — F** defined by (14).

6. For F' € Qg define mp,p by letting TSO"O"’ be the probability that F** = F' at this
point, conditional on a, b.
As shown in the Appendix, for F' € ng’gd we have Tp.p € [1 —€1,1 + €]. If

F** ¢ Q3% then Output G5 = L.
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7. Let G* = y(F*). If G* ¢ G%°°* then Output G5 = 1. Let ﬁfgg"b be the
probability that we reach this point with G** = G, given a,b. As shown in the
Appendix, Tgs qp € [1 — 2€1,1 + €1].

G® = G** Probability = }*A

b

GS =1  Probability ”667“1

TG** ,a,b

Output {

The exchange of edges in Step 5 is called a switching (or set of switchings).

The properties of SIMPLIFY we need are given in the following Theorem. Here P refers
to the probability space used to make the decisions in SIMPLIFY (i.e., to choose F*, to
choose o, and then to make the choice in step 7).

Theorem 3

(a) ( ) < 461
(b) 19 > (1— v )|y
(C) (G** c ggood) > 1—p 3ploglogu.

(d) If G € G5 then
P(G® =G |G # 1) =165

O

The proof of this theorem is much as in previous papers [12, 13, 14, 4] but we give it
in an appendix for completeness.

Let us apply this theorem to finish the proof of the lower bound in Theorem 1. We
observe first that when a u.a.r. r-regular graph G, is partitioned, the parts I'; ; satisfy

Pr(3i,j: Tij ¢ G5°%) < o(1) + 22 log — (1),

where the first o(1) is the probability that (5) does not hold, and the second term is from
Theorem 3(b). Thus if we first generate degree sequences d; ; satisfying (5) according
to an appropriate distribution, and then generate independent u.a.r. elements I'; ; of
ggi the graph G, = U .T'; ; is an almost uniform r-regular graph. ‘Almost’ means
that the same events hold with probability 1 — o(1) in either model.

So, starting with the F; ;’s we use SIMPLIFY to generate random members I'; ; of gg""d
One problem with SIMPLIFY is that we cannot guarantee that whp there is no 1, j for
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which the algorithm returns L. For those 4,7 which do return | we generate I'; ; by
direct sampling, i.e., we choose it at random from gg""d.

We next estimate the expected number of edges that SIMPLIFY introduces into I. We
create an edge contained in I only when we delete a bad edge e, and {ay, 8} N1 # 0.
Let f3;; denote the expected number of bad edges in v(F; ;) meeting V; N I. Since in
step 5 of simplify only a small proportion of the possible sequences (au, ... , Bq1s) are
excluded, for each bad e = {zx, yx} With zx € V; NI, conditional on everythmg relevant
the probability that ay, € V; N T is at most (1+0(1))|V; N1|/v. Also, as ¢(cu) = ¢(xx)
is ruled out, the probability that oy, € V;N 1 is at most (1+0(1))(|V;NI|—1)/v. Hence
the expected number of edges created in I is bounded by

|V; mI|+|VnI|—1
0225
Vini| Vini|+vinl| -1
ZZplogyx ” X ”

e
ol bg,,w)

= O((logn)?

= 0

Here we used (10) for the expected number of bad edges, and then (11).
The term O((logn)?) is o(n/r) as required.

Finally, we consider the edges introduced into I in the cases where SIMPLIFY produces
L. It follows from Theorem 3(c) that with probability at least 1—o(n"2), for every i, j,
the execution of SIMPLIFY produces G** € G%°**. Then conditional on this occurrence,
the iterations that output | are determined by the random choices in Step 7, which
are independent of I. Thus the number of edges introduced into I by failing iterations
has expectation bounded by

O(II* x e x 20p/v) = O |IA|M = o(n/r) (15)
V/n/r

where we have used (9) and the final factor 22 is from Lemma 1.

Thus the total number of edges introduced into I by our process has expectation o(n/r)
and this becomes a high probability bound using the Markov inequality. This completes
our discussion of the lower bound in Theorem 1.
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3.2 Upper bound

We now consider the upper bound of Theorem 1. This is usually a straightforward
application of the first moment method. Here the model makes it more difficult. The
proof we give is identical to the first part of the proof of Theorem 2.2 of [9] except that
we give enough details to show that the conclusion (1) holds.

Lemma 3 Fiz ACV,|A| =a > 2. Let Cy C G, be the graphs for which A contains k

edges. Then
|Ck| 1/a\r 1 1 k k a r
= (") (1 St 2200, 16
ICk—1] k\2/n +0 a+r+ar+a2+n+n (16)

Proof Fix an r-regular graph G and suppose A contains k edges. For v € A, let
d, denote the number of neighbours of v in A. Let ¢ be given by

b= (r—d)(r—dy) = ((r—da) + -+ (r —do))* = Y (r — d)2.

i#jEA icA

The function Y (r — d;)? is minimized, subject to >.d; = 2k, at d; = 2k/a. The
maximum is at d; = r, ¢ = 1,...,2k/r, d; = 0, i = 2k/r + 1,...,a (with suitable
interpolation). Thus

(ar — 2k)? —r%(a — 2k/7) < ¢ < (ar — 2k)? — a(r — 2k/a)?

and so after some simplification (note that k£ < ar/2) we see that

o) (o (i 2)

Denote by p the number of (unordered) pairs of edges uz,vy of G, between A and
V'\ A which satisfy the properties

PO: u,v € A and z,y &€ A.
P1: u # v and the edge uv ¢ A,
P2: z #y.

Thus p is given by

p=30—0—n,

where 1) is the sum of (r — d,)(r — d,) over the k edges uv of A, so v < kr?, and 7 is
the overcounting due to coinciding pairs uz, vz, so n < a’r.
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Hence,

1 1 k k
p= (2 (1+0(=+-+=+ 2
2 a r ar a?

Let B be a bipartite graph with bipartition (Cy_1,Cx) and an edge from G € Cy ;1 to
G’ € Cy, if a switching can be made, as described below. Thus |Cx_1|dr, = |Ck|dR, where
dy, (resp. dg) is the average degree of the left (resp. right) bipartition.

What constraints must we place on the choice of edges to use in switching? We assume
below that u,v € A, z,y ¢ A and u,v,w,x,y, z are distinct.

Switch up (G — G'): uz,vy,wz — wv,wz, yz.

We require wz ¢ A, excluding a total of £ — 1 edges. To ensure simplicity of G,
we require wz,yz ¢ G. On choosing wz the vertices w, z must not be adjacent to
z,y € N(u,v), excluding a total of at most 2r* edges. Thus

dy, = 2p(nr/2 — k — O(r?)) = pnr (1 +0 <% + %)) .

Switch down (G’ — G): wv,wz,yz — uz, vy, W2.

To avoid the possibility that wz € A, we avoid edges from A to V' \ A in our choices
of zw,yz, a total of ar — k edges. To ensure G is simple, when choosing zw,yz we
require that w and z are not adjacent in G’ and z,y ¢ N(u,v), ruling out a total of
O(r?) choices for each edge. Thus

dp = 4k(nr/2 — (ar — k) = O(r®) = kn?r? (1+ 0 (% + 2)) .

1 1 1 k k
Gl =1Cc ()= (1+0(=+-+=+S+2+1)).
k\2/)n a r ar a> n n

Now let a = Z’T—"(log r —loglogr+1—log2+¢). Applying the above lemma we see that
if k= [(3) =] then

k
ol o (™(Y ") (120 .\
Ick] T\ r\2 r n '

Hence

O
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So the probability that GG, contains an independent set of size a is at most

()% < () (i) (ro ()
(el o ()

This completes the proof of Theorem 1. O

4 The chromatic number

The lower bound on the chromatic number in Theorem 2 follows from the upper bound
on the independence number in Theorem 1. We use the same strategy of transforming
H,, to G, as in the previous section. It follows from Luczak [11] that whp

r loglogr
H,)= 1 .
X(Hm) 2logr ( +O( log r ))

We start with a minimum proper colouring of H,,,. Applying the analysis of the previous
section to each individual colour class we see that whp, in going from H,, to G, the
number of edges which are improperly coloured is

1/2 2 2
0 <p logn|I| o T ) _0 (n(logn) )

v logr 71/20

(The main term is the number of edges added during GENERATE, see the analysis of
Section 3.1.3. The terms from SIMPLIFY and from the case where SIMPLIFY fails are
smaller.)

Lemma 4 Fiz C; > 0 constant. Then whp every A C V,a = |A| < a9 = %"2’%")2,
contains at most La G,-edges, where £ = r1=1/40,
Proof It follows from Lemma 3 that
Pr(A contains > fa edges) < |Co| ™ Z 1Cea| < 2|Cm| < L (a)" (£>ea cie
= =T =) T () \2) \n/ 7
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for some constant Cy > 0. (Here we use k < min {ar, (%)} in the error term of (16).)

Hence
© rn\ [ Che (a) r\*
e < 3 () (% ()0)
a={

0 -1 °
<E(O7(F)) o=

a={ n

ap 2\ ¢-1 a
<> ((—Cli,‘i%o”)) <03r"/4°>f>

a={

= o(1).
g

It follows from this lemma that whp the vertices incident with the improperly coloured
edges induce a subgraph H of G, such that every subgraph of H has a vertex of degree
at most 2r' /%0, Consequently, H can be re-coloured using at most 2r' "% + 1 new
colours, which is negligible and completes the proof of Theorem 2. O
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APPENDIX:
Proof of Theorem 3

We will give the proof for graphs, the proof for bipartite graphs is similar and slightly
simpler in that we do not have to worry about loops or triangles.

Recall that F' (called F* in SIMPLIFY) is chosen randomly from Q4 where

d = (di,ds.... ,d,) and p/2 < mind; < maxd; < 2p < v
and D = |d| = 1 Y, d.

Lemma 5 1
P(F has > plogv loops ) < vy~ zrlogloer,

P(F has > p*logv redundant edges ) < v~ 2" 10818

Proof Let k; = plogv. Then

A 1 .
P(F has > k; loops) < Z H <2> <ﬂ)
— 2k

T1++z,=k1 i=1

N k1 k1 2\ k1 k1
< (vt ki —1\ (2p 1 < v 2p < 18 ‘
- k1 2 2D — 2k, —\k pv/3 ~ \logv

Let ky = p?logv. Then

P(F has > ks redundant edges)

s HEO @ (o))

&2+283++kobpy+1=k2 1=2

72€p2 &2 k2+1 g 12p (iil)fi
< ©(%) e (Y

=3

i—1)¢;
72ep?\ 2 22 (124/6p3/2 -y
> () (22

i=3
k2—¢
< ok 72ep?\ ® [ 12/6p3/2 2 ok 72ep?\ 2 144e \ *
max = = .
- & & v1/2 ko log v

For the first inequality above, let the ks redundant edges arise from &; edges of mul-

tiplicity ¢, ¢4 = 2,... ,k2 + 1. Now choose the corresponding end vertices in at most

[ z1(3) % ways and the configuration points in at most 1124 (2p)%*% ways. Finally

IN

IA

2
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3]
multiply by Hfi;rl <ﬁ) to estimate the probability of this occurrence. For the

subsequent inequalities note that ). (¢ — 1)§; = k2, and that in the sums displayed
above there are at most 22 terms. O

This verifies that the chance of failure in Step 3 is less than e;.

Fix a,b for the remainder of the Appendix and let E be the set {(F*,o, F**) : F* €
Qap, F** € Qo and o : F* — F** is a switching allowed by SIMPLIFY}. For F} € Q,5,
let dL(Fl) = |{(F, o, F’) eFk: F= F1}| and for F, € Q0,0, let dR(FQ) = |{(F, o, F’) €
E: F' = F»}|. We note that where 7gqy is as defined in Algorithm SIMPLIFY,

TFab _ |Qa,b|7l Z dL(F*)—l. (17)
|€20,0] v,
(F*,0,F)CE

Lemma 6 (i)
(2D — 32(a + b)p?)*™ < di(F) < (2D)*"®,

(i)
(Dy — 3C5 — 128(a + b)p%)® x (T'; — 3C3 — 2C; — 128(a + b)p%)®
< albldr(F") < DsT®

where C; is the number of i-cycles in F',

v

Dy=)_ <2) and Ty =T1(F') = ) (dg(e) — k(@) (dy(y) — 1),

=1 {z,y}eF'
z<y

and rk(z) is the rank of x in the set Wy(y).

Proof (i) The upper bound is obvious. For the lower bound, we observe that the
conditions (13) together with dist(e;, f;) > 2 guarantee that F** € Qgo. 16(a + b)p® is
a crude upper bound on the number of edges excluded by these conditions.

(ii) We start with the upper bound. Consider a simple F’ and the possibilities for
o, F such that (F,0,F') € E. In going from F to F' we simultaneously perform
a loop-deleting switchings and b redundant-edge-deleting switchings. Although their
vertex sets may overlap, the individual switchings do not interact in the sense that no
element of W is involved in more than one. Given F”, the triple (F, o, F") is determined
by specifying a switching 7 consisting of a loop-creating switchings and b redundant-
edge-creating switchings. (There are other conditions on 7 relevant only for the lower
bound.) When we delete a loop we create a path of length 2 through the corresponding
vertex. So to create a loop e = {a1, as} we need a path of length 2 in y(F”). So we take
2 pairs {a;,b;}, 7 = 1,2 where ¢(a1) = ¢(a2) and replace them by {ai, a2}, {b1,b2}.
There are at most D5 choices here for each loop and so at most (I; 2) choices for a loops.
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For redundant edges note that the conditions on ¢ ensure that going from F' to F’ the
edge e} with respect to which e; (i < b) is redundant is also an edge of F'. So in the
reverse direction we must choose switchings creating edges redundant with respect to
edges of F'. To create a redundant edge {a1, a2} we must take 2 pairs {a;,b;}, j = 1,2
and replace them by {aj,as},{b1,b2}. Here F’ must have another pair {z,y}, z < y
such that ¢(a1) = ¢(z), #(az) = ¢(y) and a; > z. The summand in the definition of T’y
bounds the number of choices for {a;,b;}, i = 1,2 for a given {z,y} € F’, so for each
switching there are at most I'; choices, and for b switchings at most (Fbl). This proves
the upper bound.

For the lower bound we choose the individual switchings 7; making up 7 so that the
loops to be added and the redundant edges to be created are all at distance at least
4 from each other in (F'). Making the choices in some order this excludes (crudely)
at most 128(a + b)p® possibilities at each stage. This ensures that the vertex sets
V; of the individual switchings are disjoint, and also that for ¢ # j the configura-
tion F', and hence F, contains no V; — V; edge. Letting o be the inverse of 7 the
conditions (13) are thus met. It only remains to ensure that the individual switch-
ings 7; create no extra loops or redundant edges. (The condition that F** be sim-
ple in step 5 of SIMPLIFY is automatically met as we start from a simple F'.) First
consider the loops. When we insert loop {ai,as} we need to avoid the case where
the edge {b1, b2} is parallel to some edge {z,y} € F'. Here F' contains a triangle
({z,y}, {a1,b1},{b2,a2}). There are 3C; paths of length 2 in triangles. In the case of
redundant edges when inserting the redundant edge {a, a2} we must make sure the
other edge {b1, b2} added is not parallel to some {u,v} € F'. In this case F’ contains a
4-cycle ({u, v}, {b1,a1},{z,y},{az,b2}). There is also the case where {b1,b,} is a loop.
Here F' contains a 3-cycle ({z,y}, {a1,b1}, {b2, az}). O

Now let Pr, Pry denote the uniform measure on 4, £y respectively. Let E denote
expectation with respect to Pr.

Lemma 7

(1) For k = 3,4,

tZ
Pro(Cr > (2p)" +1t) < exp {_W + 0(,02)} :

(ii)
1

E(T;) > Ep:”y.

(iii) 2

1280

Pro(ITs — E(TY)| > ¢) < 2exp{— ; o<p2>}.
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Proof (i) We use a martingale argument on configurations F' in 3. We imagine
that we produce F' using CONSTRUCT. At stage ¢t we choose u; as the minimum
of R;_;. Consider fixing the first ¢ pairs and denote them by Y;7,Ys,...,Y; and let
w, be the minimum of R;. We compare E(Z | Y1,Ys,...,Y;, {w,, wp}) and E(Z |
Y1,Ys, ..., Y, {w,, w,}) for arbitrary wy, w,. We use the following mapping between
the conditional spaces: if w, is paired with wy in the first then in the second we pair
wp and wy. Thus if 6 bounds the change in Z when pairs {a, 8}, {7,d} are replaced
by {a,v},{B,d} we get, after applying Azuma-Hoeffding,

Pr(1Z —E(Z)| 2 t) < 2exp{ 55 }-

We inflate the RHS by %) in order to replace Pr by Prg, using a near-regular version
of Lemma 2.

For Z = C}, we have E(Z) < (2p)* and 07 < 2(2p)*L.
(ii) A random member {z,y}, z < y of a random F' € Qg is a random unordered pair

of elements of W. Thus E(dy) — rk(z)) > s E(dg@) — 1) > 5(30 — 1). Hence

E(T1) 2 (30— DE( Y (dge) —1k(2))) 2 (30— 1) - jov - 50— 1).

{z,y}eF
z<y

For (iii) we simply observe that fr, < 2(2p)?. O
Now let
Qg‘fg ={F € Qqy: (a) Cs+Cy> p°v*?logr or (b) Ty — E(I'1)| > p*v/?logv}

and
good __ bad
Q%" = Qo0 \ Qoo

It follows from Lemma 7 that

< yrlogr, (18)

We are now ready to analyse the behaviour of SIMPLIFY.
Lemma 8 For alla < plogv, b < p?logv,

. ood 1 2 logv

(i) P(F~ € Q557 | a,b) =1 —O(v 2”7 *#7)

(ii) for all F € ng’é’d we have Tpqp € [1 —€1,1+ €].
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Proof

It follows from (17) and Lemmas 6, 7 that if F' € Q7 “ and (a,b) € [plogv] x [p?log V]
then

TFa — —a— a
|5§0 0’] = (14 0#)[Qp|7"(2D)"* " D3E(T'1)*/(alb!) (19)
where |0r| < €/3 and so

| good

]P(F** c ngod | ,b) _ (1 +0!) |Q

(2D)"**D3E(T'1)"/(alb))

where |0'| < €;/3 too.

Furthermore, since I'y < 4p%v,

P(F*™ € Q%4 | a,b) < 2221 (2D)*"*Dg(4p°v)"/(alb)).

|Qa bl
Therefore, since E(T'y) > 0%,
P(F* € Qb | a,b
( d| ) <5160 SO0 — O(160%y #le) = O (v 3" oev),
P(F™ € Q5" | a,b) | goo

This verifies (i). To obtain (ii) we choose F' € ng’o"d and write

ood
1,2 Trap . 1 —€1/31%%
1—=0 2P logv — »a, > -
(” )= 2 [Qool = T+e/3 Qo] T2

Feqdoy?
using (19). Thus
1+ 61/3 12000y
Thap S 7 3t O ) <1t
A lower bound follows in the same way. O
We now turn to G§°°?. Let G&%¢ = G4 \ G%°**. From the definition (12) of G*** we see
that
|gbad
€ :
|90,0| =G4l
Thus from (18),
bad
|g | lflyfp logv < Vf%pzlogu' (20)
Gal ~
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Lemma 9 For alla < plogv, b < p?logv,
(i) P(G™ € G5 | a,b) = 1— O(v=2+"1o%%)
(ii) for all G € G&°" we have 7igqp € [1 — 2€1,1 + ).

Proof (i) From Lemma 8(i), given a,b the probability of not reaching step 7 of
SIMPLIFY is small enough. From Lemma 8(ii) P(G** € G5%) < (1 + €1)|G%?|/|Gal-

(ii) is immediate from Lemma 8(ii) and (12). O

Theorem 3 follows by combining the results from above:

(a) From Lemma 5, and Lemma 9(i) and (ii).
(b) From (20).

(c) From Lemma 5 and Lemma 9(i).

d) Each G € G% has the same probability =24 of being output.
d

|g‘gioad|
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