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Abstract

Let graph G = (V, E) and integer b ≥ 1 be given. A set S ⊆ V is said to
be b-independent if u, v ∈ S implies dG(u, v) > b where dG(u, v) is the shortest
distance between u and v in G. The b-independence number αb(G) is the size of
the largest b-independent subset of G. When b = 1 this reduces to the standard
definition of independence number.

We study this parameter in relation to the random graph Gn,p, p = d/n. In
particular, when d is a large constant. We show that whp that if d ≥ dǫ,b,
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1 Introduction

Let graph G = (V,E) and integer b ≥ 1 be given. A set S ⊆ V is said to be b-independent
if u, v ∈ S implies dG(u, v) > b where dG(u, v) is the shortest distance between u and v

∗Research supported by NSF grant CCR-9818411

1



in G. The b-independence number αb(G) is the size of the largest b-independent subset
of G. When b = 1 this reduces to the standard definition of independence number.

We study this parameter in relation to the random graph Gn,p, p = d/n. In particular,
when d is a large constant. Now αb(G) = α(Gb) where Gb = (V,Eb) and u, v are
adjacent in Gb iff dG(u, v) ≤ b. If d, b are not too large then the average degree in Gb

n,p is
approximately db and so one might expect that Gb

n,d/n and Gn,db/n are similar. We show
in this paper that this is true for the b-independence number.

Theorem 1 Let b be a positive integer constant and let ǫ > 0 be given. Assume that d
is a constant, greater than some fixed dǫ,b. Then whp
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The case b = 1 was treated in Frieze [4] and so we will assume that b ≥ 2 from now
on. Nierhoff [8] considered this problem and its relation to the k-centre problem of
Operations Research. In particular, he proves the upper bound implied in the theorem
and is off by a factor of 2 in the lower bound for d = no(1). This is to be expected as
he proves his lower bound via the analysis of a greedy algorithm. Duckworth [2] proved
a high probability lower bound of .2048n for the 2-independence number of a random
cubic graph.

We will follow the method described in [4]. See also the discussion in Janson,  Luczak and
Ruciński [6] where the proof is somewhat simplified by the use of Talagrand’s inequality.

2 Proof of Theorem 1

We start with the following lemma, which will prove useful in bounding αb(Gn,p) from
both above and below.

Lemma 1 Let K,L ⊆ [n], |K| = |L| = k, |K ∩ L| = l be given. Then if

pd =
d(db − 1)

(d − 1)n

we have

(a)

(1 − pd)(
k
2) ≤ Pr(K is b-independent ) ≤ (1 − pd)(

k
2) exp {O(k3n2b−3p2b−1)}.

(b)

Pr(K,L are both b-independent ) ≤ (1 − pd)2(k
2)−(l

2) exp {O(k3n2b−3p2b−1)}.
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Proof (a) We can use Janson’s inequality [1]. To establish notation, let P1, P2, . . . ,
PN , N =

(

k
2

)
∑b

r=1(n−2)(n−3) · · · (n− r) enumerate the edge sets of paths of length at
most b in Kn which join vertices of K and whose internal vertices are not in K. Let Pi

be the event that the path corresponding to Pi exists in Gn,p for i = 1, 2, . . . , N . Then
K is b-independent if and only if none of the events Pi occur.

Let
∆ =

∑

i6=j: Pi∩Pj 6=∅

Pr(Pi ∩ Pj).

Then Janson’s inequality states that

N
∏

i=1

(1 − Pr(Pi)) ≤ Pr

(

N
⋂

i=1

P̄i

)

≤ e∆

N
∏

i=1

(1 − Pr(Pi)). (1)

Now

N
∏

i=1

(1 − Pr(Pi)) =

(

b
∏

i=1

(1 − pi)(n−2)···(n−i)

)(k
2)

=

(

1 −
b
∑

i=1

pini−1

)(k
2)

eO(1) (2)

=

(

1 −
d(db − 1)

(d − 1)n

)(k
2)

eO(1)

The eO(1) term in (2) is at least 1 and this gives the lower bound in (a). For the upper
bound we need to show that

∆ = O(k3n2b−3p2b−1) (3)

and apply the upper bound of (1). To obtain this we observe that

∆ ≤

b
∑

a1=2

(

k

2

)

na1−1pa1

b
∑

a2=a1

a1−1
∑

t=1

(

a1

t

)

kna2−t−1pa2−t. (4)

Explanation: Fix a path length a1 ≥ 2 and then the term
(

k
2

)

na1−1pa1 bounds the
weight of choices for Pi. Then choose another path length a2 ≥ a1 and let t be the size
of |Pi ∩ Pj|. For a given set of t edges in Pi, kna2−t−1pa2−t bounds the weight of the
paths Pj which share these edges with Pi.

(3) follows from (4) when d is sufficiently large. This completes the proof of the upper
bound in (a). The upper bound in (b) is proved in the same manner. 2

We prove a high probability upper bound on αb(Gn,p) by the first moment method.
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Lemma 2 Let ǫ > 0 be a constant and

k1 =
2bn

db

(

log d −
log log d

b
−

log 2b

b
+

1

b
+

ǫ

b

)

.

Then whp
αb(Gn,p) ≤ k1.

Proof Let Xk denote the number of b-independent sets of size k found in Gn,p.
Then, using the upper bound in Lemma 1(a) and putting k = k1, we obtain

E(Xk) ≤

(

n

k

)

(1 − pd)(
k
2) exp

{

O
(

k3n2b−3p2b−1
)}

≤ exp

{

k

[

log
ne

k
−

k

2
pd + O

(

(log d)2

d

)]}

. (5)

Now

log
ne

k
= 1 − log 2b + b log d − log log d + O

(

log log d

log d

)

and
k

2
pd = 1 − log 2b + b log d − log log d + ǫ + O

(

log d

d

)

and so
E(Xk) ≤ e−ǫk/2 (6)

for d sufficiently large. 2

To prove a lower bound on α(Gb
n,p), we partition the vertex set [n] into sets of size

m =
⌈

db

b2(log d)2

⌉

or m − 1. There will be n′ = ⌊nb2(log d)2

db ⌋ sets P1 . . . Pn′ in the partition.

A set I ⊂ [n] is said to be P -independent if

(i) I is b-independent.

(ii) |I ∩ Pi| ≤ 1 for 1 ≤ i ≤ n′.

Let βb denote the size of the largest P -independent set. Now let Xk denote the number
of P-independent sets of size k found in Gn,p. It is clear that βb ≤ αb and also Xk >
0 implies βb ≥ k.

Following the method of [4], one can put a lower bound on αb(Gn,p) by proving two
inequalities: Let β̄b = E(βb(Gn,p)).

Pr
(

|βb − β̄b| ≥
ǫn

db

)

≤ 2 exp
{

Ω
(

−
ǫ2n

db(log d)2

)}

. (7)

Pr(Xk2 > 0) ≥ exp
{

O
(

−
n(log d)3

db+1

)}

. (8)
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where k2 = 2bn
db (log d − log log d

b
− log 2b

b
+ 1

b
− ǫ

b
).

Then when d is sufficiently large, (7) and (8) imply |β̄b − k2| ≤
ǫn
db and then Theorem 1

follows from (7). 2

2.1 Proof of (7)

When b = 1 ([4]), one can use Azuma’s inequality to prove (7). For b ≥ 2 we find that
the random variable βb does not have a small worst-case Lipschitz constant. This rules
out the use of Talagrand’s inequality [9] too. Furthermore, the new inequalities of Kim
and Van Vu [7], [10] will not do the job either. The modifications due to Godbole and
Hitczenko [5] also fail to help. Instead, we follow the proof idea of the Azuma inequality
and patch it up where necessary. Simply put, we estimate the moment generating
function without giving too much away and then apply the Markov inequality.

As usual we use the inequalities

Pr(βb − β̄b ≥ t) ≤ e−λtE(eλ(βb−β̄b)) (9)

Pr(βb − β̄b ≤ −t) ≤ e−λtE(eλ(β̄b−βb)) (10)

(11)

valid for all λ > 0.

We will divide the proof into three cases. The general line of attack is the same in all
cases, but for the larger values of b we need to solve a couple of extra technical problems.

2.1.1 The Case b = 2

We begin with the simplest case, b = 2. We will leave b in formulae so that they can be
used later for b ≥ 3.

Now let Yi, i = 1, 2, . . . , n′, denote the set of edges of Gn,p which connect a vertex in Pi

to a vertex in
⋃

j≤i Pj. Define Zi = Zi(Y1, Y2, . . . , Yn′) by

Zi = E(βb | Y1, Y2, . . . , Yi) − E(βb | Y1, Y2, . . . , Yi−1), i = 1, 2, . . . , n′

so that
βb − β̄b = Z1 + · · · + Zn′. (12)

Let Yℓ = (Y1, Y2, . . . , Yℓ) for ℓ = 0, 1, . . . , n′ and let

A = 20b3b−2 + 1.

We will prove by (backwards) induction on ℓ that for ℓ = n′, n′ − 1, . . . , 0,

t = ǫn/db, λ = ǫ/(10A2b2(log d)2) and Θℓ = exp{−λt + (n′ − ℓ)(3A2λ2 + O(λ3))}, (13)
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d sufficiently large,

Pr(βb − β̄b ≥ t) ≤ Θℓ

∑

Yℓ

Pr(Yℓ)
ℓ
∏

i=1

eλZi + (n′ − ℓ)e−n/db

. (14)

Using (12) we see that when ℓ = n′, this is simply (9). So assume that (14) is true for
some ℓ ≤ n′. Let Gℓ denote the subgraph of Gn,p induced by [n] \ Pℓ. Define the event:

Êℓ =

{

βb(Gℓ) ≤ I0 =
4bn log d

db

}

.

Going back to (5) with ǫ = b log d + log log d + log 2b − 1 and k = I0 we see that

Pr(βb(Gℓ) > I0) ≤ exp

{

k

[

log
ne

k
−

k

2
pd + O

(

p2b−1n2b−3k2
)

]}

≤ exp{k[log log d − 2b log d]}

≤ exp

{

−
5b2n(log d)2

db

}

(15)

for d sufficiently large.

Define Ŷℓ, . . . , Ŷn′ to be independent copies of Yℓ, . . . , Yn′ . For i > ℓ let Y ′
i be the subset

of edges from Yi which join Pi and Pℓ and let Y ′′
i = Yi − Y ′

i . In the following, let

Y ′ = Ŷ ′ =
⋃n′

i=ℓ+1 Ŷ ′
i and let Y ∗

ℓ = Yℓ ∪ Y ′, Ŷ ∗
ℓ = Ŷℓ ∪ Y ′. Then

Zℓ =
∑

Ŷℓ,...,Ŷn′

[βb(Y1, . . . , Yℓ, Ŷℓ+1, . . . , Ŷn′) − βb(Y1, . . . , Yℓ−1, Ŷℓ, . . . , Ŷn′)]Pr(Ŷℓ, . . . , Ŷn′)

=
∑

Ŷ ∗
ℓ ,Y ∗

ℓ ,Ŷ′′
ℓ

[βb(Yℓ−1, Y
∗
ℓ , Ŷ′′

ℓ ) − βb(Yℓ−1, Ŷ
∗
ℓ , Ŷ′′

ℓ )]Pr(Ŷ ∗
ℓ , Y ∗

ℓ , Ŷ′′
ℓ )

where Ŷ′′
ℓ = (Ŷ ′′

ℓ+1, . . . , Ŷ
′′
n′).

We see that Gℓ is defined by Yℓ−1, Ŷ
′′
ℓ . So let

E ′′(Yℓ−1) = {Ŷ′′
ℓ : Gℓ ∈ Êℓ}

and

Eℓ =

{

Yℓ−1 : Pr(Gℓ ∈ Êℓ | Yℓ−1) ≥ 1 − exp

{

−
2b2n(log d)2

db

}}

.

It follows from (15) that

Pr(Yℓ−1 /∈ Eℓ) ≤ exp

{

−
2b2n(log d)2

db

}

. (16)

6



Using (14) and the independence of Yℓ−1, Yℓ write

Pr(βb − β̄b ≥ t) ≤ Θℓ

∑

Yℓ−1

ℓ−1
∏

i=1

eλZiPr(Yℓ−1)
∑

Yℓ

eλZℓPr(Yℓ) + (n′ − ℓ)e−n/db

≤ Θℓ

∑

Yℓ−1∈Eℓ

ℓ−1
∏

i=1

eλZiPr(Yℓ−1)
∑

Yℓ

eλZℓPr(Yℓ)

+eλn′

Pr(Yℓ−1 /∈ Eℓ) + (n′ − ℓ)e−n/db

. (17)

Now Yℓ−1 ∈ Eℓ implies

Pr(Ŷ′′
ℓ /∈ E ′′(Yℓ−1)) ≤ exp

{

−
b2n(log d)2

db

}

. (18)

So if we fix Yℓ−1 ∈ Eℓ.

Zℓ =
∑

Y ∗
ℓ

,Ŷ ∗
ℓ

Ŷ′′
ℓ
∈E′′

ℓ
(Yℓ−1)

[βb(Yℓ−1, Y
∗
ℓ , Ŷ′′

ℓ ) − βb(Yℓ−1, Ŷ
∗
ℓ , Ŷ′′

ℓ )]Pr(Ŷ′′
ℓ , Ŷ

∗
ℓ )

+ O

(

n exp

{

−
2b2n(log d)2

db

})

. (19)

We now estimate in (17), the term
∑

Yℓ

eλZℓPr(Yℓ) = EYℓ
(eλZℓ)

and use (19) to restrict our attention to the case Ŷ′′
ℓ ∈ E ′′(Yℓ−1).

Fix Ŷ′′
ℓ ∈ E ′′

ℓ (Yℓ−1). Let S be a maximum size subset of [n] \Pℓ which is P -independent
in Gℓ and let I = |S|. Let S be sub-divided into S1 = S ∩∪ℓ−1

i=1Pi and S2 = S ∩∪n′

i=ℓ+1Pi,
with I1 and I2 denoting |S1| and |S2| respectively. For v ∈ Pℓ let δ1(v, S) be the number
of edges from Yℓ joining v to S1, and let δ2(v, S) be the number of edges from Y ′ joining
v to S2. Let δ(v, S) be the total, δ1(v, S) + δ2(v, S). Let δ̂(v, S), δ̂1(v, S), and δ̂2(v, S)
be defined similarly, using the edges of Ŷℓ and Ŷ ′.

Define Wv = δ(v, S)1δ(v,S)≥2. If we define W =
∑

v∈Pℓ
Wv, we can produce a P -

independent set, S∗, in G by removing no more than W vertices from S. If, for every
v ∈ Pℓ, we remove Wv neighbors of v from S, then every v ∈ Pℓ has either one or zero
neighbors in S∗. Thus, no path of length 2 exists between any pair of vertices in S∗

because there are no paths through Pℓ and S was 2-independent in Gℓ. Define Ŵ in an
analogous way using the edge-set Ŷℓ in place of Yℓ. Now observe that

I − W ≤ βb(Yℓ−1, Y
∗
ℓ , Ŷ′′

ℓ ) ≤ I + 1

I − Ŵ ≤ βb(Yℓ−1, Ŷ
∗
ℓ , Ŷ′′

ℓ ) ≤ I + 1

7



and so
Zℓ ≤ EŶ ∗

ℓ
(Ŵ ) + EY ′(W ) + 1 (20)

In computing EY ∗
ℓ

(W ) and EŶ ∗
ℓ

(Ŵ ), it is important to note that Ip = O(d1−b log d) → 0

as d grows. Therefore, we disregard terms where Ip is raised to a sufficiently high power
since those terms will be dominated by Ip and I2p2.

EŶ ∗
ℓ

(Ŵv) = Ip(1 − (1 − p)I−1)

= I2p2 − O(I3p3)

≤ I2p2 (21)

So,
EŶ ∗

ℓ
(Ŵ ) ≤ mI2p2 ≤ A. (22)

Let W̄v = EY ′(Wv|Yℓ), and let W̄ = EY ′(W |Yℓ). Note that

EYℓ
(W̄ ) = EY ∗

ℓ
(W ) = EŶ ∗

ℓ
(Ŵ ).

W̄v = δ1(v, S) + I2p − (1 − p)I21δ1(v,S)=1 − I2p(1 − p)I2−11δ1(v,S)=0 (23)

For d sufficiently large and λ ≤ 1/ log d,

EYℓ
(eλW̄v) = EYℓ

(

exp
{

λ
(

δ1(v, S) + I2p − (1 − p)I21δ1(v,S)=1

− I2p(1 − p)I2−11δ1(v,S)=0

)}

)

= eλI2p

[

I1
∑

t=2

(

I1

t

)

eλtpt(1 − p)I1−t + exp
{

λ − λ(1 − p)I2
}

(1 − p)I1−1I1p

+ exp
{

−λI2p(1 − p)I2−1
}

(1 − p)I1

]

= 1 + (I2
1 + I2

2 + 2I1I2)p
2λ + (I2

1 + I2
2 )p2λ2 + O(I2p2λ3)

≤ 1 + I2p2λ + I2p2λ2 + O(I2p2λ3) (24)

The W̄v are independent of one another, so

EYℓ
(eλW̄ ) = EYℓ

(eλW̄v)m

≤
(

1 + λI2p2 + λ2I2p2 + O(λ3I2p2)
)m

= 1 + λmI2p2 + λ2mI2p2 + λ2m2

2
I4p4 + O(λ3) (25)
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We now turn to EYℓ

(

eλZℓ
)

.

EYℓ
(eλZℓ) =

∞
∑

k=0

λk

k!
EYℓ

(

Zk
ℓ

)

= 1 +
∞
∑

k=2

λk

k!
EYℓ

(Zk
ℓ ) since EYℓ

(Zℓ) = 0

≤ 1 +
∞
∑

k=2

λk

k!

k
∑

l=0

(

k

l

)

(A + 1)k−lEYℓ
(W̄ l)

from (20), (22),

= 1 +
∞
∑

l=0

λl

l!
EYℓ

(W̄ l)
∞
∑

k=l,k≥2

(λ(A + 1))k−l

(k − l)!

= 1 + (eλ(A+1) − 1 − λ(A + 1)) + λEYℓ
(W̄ )(eλ(A+1) − 1)

+ eλ(A+1)

∞
∑

l=2

λl

l!
EYℓ

(W̄ l)

= 1 + (eλ(A+1) − 1 − λ(A + 1)) + λEY ∗
ℓ

(W )(eλ(A+1) − 1)

+ eλ(A+1)EYℓ
(eλW̄ − λW̄ − 1)

= eλ(A+1)EYℓ
(eλW̄ ) − λEY ∗

ℓ
(W ) − λ(A + 1) (26)

= eλ(A+1)

(

1 + λmI2p2 + λ2mI2p2 + λ2 m2I4p4

2
+ O(λ3)

)

− λ(mI2p2 + O(I3p3)) − λ(A + 1)

= 1 + λ2

(

mI2p2 +
m2I4p4

2
+ (A + 1)mI2p2 +

(A + 1)2

2

)

+ O(λ3)

≤ 1 + 3A2λ2 + O(λ3) (27)

Going back to (17) and using (15) we see that

Pr(βb − β̄b ≥ t) ≤ Θℓ−1

∑

Yℓ−1

ℓ−1
∏

i=1

eλZiPr(Yℓ−1) + (n′ − ℓ + 1)e−n/db

= Θℓ−1

∑

Yℓ−1

ℓ−1
∏

i=1

eλZiPr(Yℓ−1) + (n′ − ℓ + 1)e−n/db

,

completing the induction.

For ℓ = 0 we read (17) as

Pr(βb − β̄b ≥ t) ≤ Θ0 + n′e−n/db

≤ exp

{

−Ω
( ǫ2n

db(log d)2

)

}

9



if we make the substitutions of (13) for t, λ, Θ0.

A similar argument handles Pr(βb − β̄b ≤ −t) and (7) follows.

2.1.2 The Case 3 ≤ b ≤ 5

We proceed with the case 3 ≤ b ≤ 5, letting Yi, Zi, t, λ, A and Θℓ be defined as above.
We will use a similar strategy of inducting on ℓ to prove,

Pr(βb − β̄b ≥ t) ≤ Θℓ

∑

Y

ℓ
∏

i=1

eλZiPr(Y) + (n′ − ℓ)e−n/db

. (28)

To deal with the larger value of b, we need to expand the definition of Êℓ to include
several properties of Gℓ, each of which occurs with high probability. Let Êℓ be the event
that all of the following occur:

Ê1 = {βb(Gℓ) ≤
4bn log d

db }.

Ê2 = { In Gℓ, any set of size k > n
db has no more than 3dk neighbors }.

Ê3 = { Gℓ contains no more than nd edges }.

Ê1 is equivalent to the event Êℓ in the b = 2 case. The other two events can be analyzed
by comparing Gℓ to Gn,p. Since Gℓ is derived from Gn,p by removing edges and vertices,

if the latter satisfies the criteria for Ê2 and Ê3 then the former must also satisfy those
same criteria.

Lemma 3
(a)

Pr(Gℓ /∈ Ê2) ≤ exp
{

−
n

13db−1

}

.

(b)
Pr(Gℓ /∈ Ê3) ≤ e−nd/6.

Proof (a) Given a fixed set K, each vertex is independently a neighbor of K with
probability q = 1 − (1 − p)k < kp. Applying the Chernoff bound,

Pr(B(n, q) ≥ αnq) ≤
( e

α

)αnq

,

with α = 3dk
nq

≥ 3,

Pr(|N(K)| > 3dk) ≤ Pr(B(n, q) ≥ αnq) ≤ (e/α)αnq ≤ (e/3)3dk ≤ e−dk/11.

10



Therefore, the probability of finding any set of size k > n
db with more than 3dk neighbors

is:

≤
n
∑

k=n/db

(

n

k

)

e−dk/11 ≤
n
∑

k=n/db

(ne

k
· e−d/11

)k

≤
n
∑

k=n/db

e−dk/12 ≤ exp
{

−
n

13db−1

}

.

(b) Pr(Ê3) can also be bounded using the Chernoff bound. 2

So, from (15) and Lemma 3,

Pr(Gℓ /∈ Êℓ) ≤ exp

{

−
4b2n(log d)2

db

}

(29)

As in the b = 2 case, let
E ′′(Yℓ−1) = {Ŷ′′

ℓ : Gℓ ∈ Êℓ}

and

Eℓ =

{

Yℓ−1 : Pr(Gℓ ∈ Êℓ | Yℓ−1) ≥ 1 − exp

{

−
2b2n(log d)2

db

}}

.

Equations (16) and (18) still hold.

As in the b = 2 case, we will condition on whether or not Yℓ−1 ∈ Eℓ and we see that
(17) continues to hold.

We now fix Yℓ ∈ Eℓ and Ŷ′′
ℓ ∈ E ′′

ℓ (Yℓ). Let S be a largest subset of [n] \ Pℓ which is
P -independent in Gℓ and let I = |S|. Let Sj = {v : dist(v, S) = j in Gℓ}, for j ≥ 0.
Also, let S≤j = ∪j′≤jSj′ . Then

I ≤
4bn log d

db

|Sj | ≤
4bn log d

db
(3d)j =

4(3)jbn log d

db−j

|S≤j| = I +

j
∑

k=1

|Sj | ≤
5(3)jbn log d

db−j

Let δi(v, Sj) and δi(v, S≤j) be defined similarly to δi(v, S) for i = 1, 2. Also, let δ(v, Sj),
δ(v, S≤j) be defined similarly to δ(v, S). Let Wv = δ(v, S≤⌊b/2−1⌋)θv where θv = 0 if v
has a single neighbor in Sj, for some j ≤ ⌊b/2 − 1⌋, and no other neighbors in S≤b−2−j.
Otherwise θv = 1.

The construction of the P -independent set, S∗, is not quite as simple as in the b = 2
case. If, for every v ∈ Pℓ, we remove Wv vertices from S which are distance ⌊b/2⌋ or
less from v then we have eliminated all b length connections which pass through a single
vertex in Pℓ. However, there may still be a b length path linking two vertices in S∗ if that
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path passes through v1, v2 ∈ Pℓ such that Wv1 = Wv2 = 0. If such a path exists, it must
contain a sub-path linking v1 and v2 which lies entirely outside of S≤⌊b/2−1⌋. For every
such sub-path linking vertices of Pℓ, there can be at most one ≤ b length path connecting
vertices of S which is not eliminated by the removal of the Wv elements of S distance
⌊b/2⌋ or less from v. Let T be the number of vertex pairs in Pℓ connected by a path of
length b−2 or less, lying entirely outside of S≤⌊b/2−1⌋. If we let W =

∑

v∈Pℓ
Wv +T then

we can create a b-independent set, S∗, in G with no fewer than I − W vertices. Define
Ŵ =

∑

v∈Pℓ
Ŵv + T̂ in an analogous way using the edge-set Ŷℓ in place of Yℓ.

Inequality (20) still holds true for Zℓ.

EŶ ∗
ℓ

(Ŵv) = |S≤⌊b/2−1⌋|p −

⌊b/2−1⌋
∑

j=0

|Sj |p (1 − p)|S≤b−2−j |−1

= p2

⌊b/2−1⌋
∑

j=0

|Sj||S≤b−2−j| + o(1)

≤
20b33b−2 (log d)2

db

T can be over-estimated by the total number paths of length b−2 or less, which connect
a pair of vertices in Pℓ.

EŶ ∗
ℓ

(Ŵ ) = mEŶ ∗
ℓ

(Ŵv) + EŶ ∗
ℓ

(T )

mEŶ ∗
ℓ

(Ŵv) ≤
db

b2(log d)2

3b−220b3 (log d)2

db

≤ 20b3b−2

= A − 1

EŶ ∗
ℓ

(T ) ≤

(

m

2

)

p +

(

m

2

)

np2 +

(

m

2

)

2n2p3 = O(n−1)

So,
EŶ ∗

ℓ
(Ŵ ) ≤ A. (30)

As in the b = 2 case, let W̄v = EY ′(Wv|Yℓ) and W̄ = EY ′(W |Yℓ).

W̄v = δ1(v, S≤⌊b/2−1⌋) + p|S≤⌊b/2−1⌋|2

−

⌊b/2−1⌋
∑

j=0

1δ1(v,Sj)=1,δ1(v,S≤b−j−2\Sj)=0(1 − p)|S≤b−j−2|2

−

⌊b/2−1⌋
∑

j=0

1δ1(v,S≤b−j−2)=0|Sj |2p(1 − p)|S≤b−j−2|2 .

12



For d sufficiently large and λ ≤ 1/ log d,

EYℓ
(eλW̄v) = eλ|S≤⌊b/2−1⌋|2p





|S≤⌊b/2−1⌋|1
∑

t=0

(

|S≤⌊b/2−1⌋|1
t

)

eλtpt(1 − p)|S≤⌊b/2−1⌋|1−t

−

⌊b/2−1⌋
∑

j=0

(

eλ − exp
{

λ − λ(1 − p)|S≤b−j−2|2
})

p|Sj|1(1 − p)|S≤b−2−j |1−1

−

⌊b/2−1⌋
∑

j=0

(

1 − exp
{

−λ|Sj|2p(1 − p)|S≤b−2−j |2
})

(1 − p)|S≤b−2−j |1





= 1 + λEYℓ
(W̄v) +

λ2

2
p2|S≤⌊b/2−1⌋|

2
1 −

λ2

2
p2|S≤⌊b/2−1⌋|

2
2

+
λ2

2
p2

⌊b/2−1⌋
∑

j=0

(|Sj |1|S≤b−2−j|1 + |Sj|
2
2) + O(λ3p2|S≤⌊b/2−1⌋|

2).

T also depends on edges from both Yℓ and Y ′, and we need to calculate T̄ (Yℓ) =
EY ′(T |Yℓ) and EYℓ

(eλT̄ ). Let T1 be the number of vertex pairs in Pℓ connected by a
path of length b − 2 containing at least one edge from Yℓ, and let T2 be the number of
vertex pairs from Pℓ connected by a path of length b − 2 containing at least one edge
from Y ′. Some vertex pairs may be counted in both T1 and T2, but clearly T ≤ T1 + T2

and since T is small relative to
∑

v Wv it is sufficient to approximate T by T1 + T2.

T̄ ≤ T1 + EY ′(T2)

EYℓ
(eλT ) ≤ EYℓ

(eλT1)eλEY ′ (T2)

= eλEY ′ (T2)

m2/2
∑

t=0

eλtPr(T1 = t)

≤ eλEY ′ (T2)

(

1 + exp

{

λm2

2

}

Pr(T1 ≥ 1)

)

≤ eλEY ′ (T2)

(

1 + exp

{

λm2

2

}

E(T1)

)

= 1 + O(n−1). (31)
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Since T and the Wv’s are independent of one another, we can write:

EYℓ
(eλW̄ ) = EYℓ

(eλW̄v)mEYℓ
(eλT̄ )

= 1 + λEYℓ
(W̄ ) +

1

2
λ2EYℓ

(W̄ )2

+m
λ2

2
p2



|S≤⌊b/2−1⌋|
2
1 − |S≤⌊b/2−1⌋|

2
2 +

⌊b/2−1⌋
∑

j=0

|Sj|1|S≤b−2−j|1





+m2λ2p4





⌊b/2−1⌋
∑

j=0

|Sj ||S≤b/2−1|





2

+ O(λ3)

As in the b = 2 case, we can derive, in a similar manner to (26),

E
(

eλZℓ
)

≤ eλ(A+1)EYℓ
(eλW̄ ) − λEY ∗

ℓ
(W ) − λ(A + 1)

= 1 +
1

2
λ2(A + 1)2 +

1

2
λ2EYℓ

(W̄ )2 + mλ2(A + 1)

b/2−1
∑

j=0

(

p2|Sj ||S≤b/2−1|
)

+m
λ2

2
p2



|S≤⌊b/2−1⌋|
2
1 − |S≤⌊b/2−1⌋|

2
2 +

⌊b/2−1⌋
∑

j=0

|Sj|1|S≤b−2−l|1





+m2λ2p4





⌊b/2−1⌋
∑

j=0

|Sj ||S≤b/2−1|





2

+ O(λ3)

≤ 1 + 3A2λ2

for d sufficiently large.

Going back to (17) and using (29) we see that

Pr(βb − β̄b ≥ t) ≤ Θℓ+1

∑

Y

ℓ−1
∏

i=1

eλZiPr(Y) + (n′ − ℓ + 1)e−n/db

,

completing the induction.

As in the b = 2 case, letting ℓ = 0, and substituting in t, λ, and Θ0 yields equation (7).

2.1.3 The Case b > 5

In the case b > 5, we will condition on the event that, in G, ∆ ≤ log n, which we will
denote E0. The probability that G has any vertices of degree greater than log n is o(n−2).
Since Pr(E0) → 1 as n → ∞, proving both (7) and (8) conditioned on E0 is sufficient
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to prove Theorem 1. The proof follows the same course as the 3 ≤ b ≤ 5 case, but the
following changes need to be made in order to convert the appropriate probabilities into
conditional probabilities.

Inequality (28) becomes:

Pr(βb − β̄b ≥ t|E0) ≤ Θℓ

∑

Y∈E0

ℓ
∏

i=1

eλZiPr(Y|E0) + (n′ − ℓ)e−n/db

. (32)

Conditioning on E0 will change the probability of Yℓ /∈ E1 and Yℓ /∈ E2. However, we can

over-estimate the new probabilities, using Pr(Yℓ /∈ E1|E0) ≤ Pr(Yℓ /∈E1)

Pr(Yℓ∈E0)
, and likewise for

E2. This only introduces a constant factor, and the probabilities remain exponentially
small.

E3 is no longer necessary and can be replaced by the claim that G contains no more than
n(log n)a paths of length a. Given that we are conditioning on E0, this will always be
true.

Inequality (17) becomes:

Pr(βb − β̄b ≥ t|E0) ≤ Θℓ

∑

Yℓ

ℓ−1
∏

i=1

eλZiPr(Yℓ|E0)
∑

Yℓs.t.(Yℓ,Yℓ)∈E0

eλZℓPr(Yℓ|E0)

+ (n′ − ℓ)e−n/db

≤ Θℓ

∑

Yℓ∈Eℓ

ℓ−1
∏

i=1

eλZiPr(Yℓ|E0)
∑

Yℓ

eλZℓPr(Yℓ)

+ eλn′

Pr(Yℓ /∈ Eℓ|E0) + (n′ − ℓ)e−n/db

. (33)

We can overestimate Pr(Yℓ|E0) with Pr(Yℓ)

Pr(E0)
, and substituting this approximation into

(32) yields:

Pr(βb − β̄b ≥ t|E0) ≤
Θℓ

Pr(E0)ℓ−1

∑

Yℓ∈Eℓ

ℓ−1
∏

i=1

eλZiPr(Yℓ)
∑

Yℓ

eλZℓPr(Yℓ)

+eλn′

Pr(Yℓ /∈ Eℓ|E0) + (n′ − ℓ)e−n/db

.

The factor of 1

Pr(E0)ℓ−1
, can be not greater than 1

Pr(E0)n′ , which is no more than a

constant. A constant factor will not alter the order of magnitude of Pr(βb − β̄b ≥ t)
which we are trying to bound in equation (7).
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The only remaining change which must be made for the b > 5 case is that we now need
to account for paths of length greater than 3 when evaluating T in equation (30).

EYℓ
(T̄ ) = EŶ ∗

ℓ
(T ) ≤

(

m

2

)

p +

(

m

2

)

np2 +
b−4
∑

a=1

(

m

2

)

2n(log n)ap2 = O

(

(log n)b

n

)

.

So, following the argument for (31) we obtain

EYℓ
(eλT̄ ) = 1 + O

(

(log n)b

n

)

.

2.2 Proof of (8)

We divide the proof of (8) into two cases, rather than three. There is no difference
between the b = 2 and b = 3, 4, 5 cases, but we need to introduce the conditional
probabilities in the b > 5 case so that (7) and (8) can be properly combined to prove a
lower bound on βb.

2.2.1 The Case b ≤ 5

One can prove the inequality (8) using the lower bound:

Pr(Xk > 0) ≥
E(Xk)2

E(X2
k)

Applying Lemma 1 we obtain

E(Xk) ≥

(

n′

k

)

mk (1 − pd)(
k
2)

E(X2
k) ≤

(

n′

k

) k
∑

l=0

(

k

l

)(

n′ − k

k − l

)

mk−l(1 − pd)(2(k
2)−(l

2)) exp {O(k3n2b−3p2b−1)}

E(X2
k)

E(Xk)2
≤

k
∑

l=0

(

k
l

)(

n′−l
k−l

)

(

n′

k

)

ml (1 − pd)(
l
2)

exp

{

O

(

(log d)3n

db+1

)}

(34)

Once we have an inequality of this form, we can appeal to [4], which contains the same
calculation for the b = 1 case. In the b = 1 case, with n′

1,m1 to distinguish them from
n′,m we have
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E(X2
k)

E(Xk)2
≤

k
∑

l=0

(

k
l

)(

n′
1−l

k−l

)

(

n′
1

k

)

ml
1(1 − p)(

l
2)

≤ exp

{

O

(

(log d)5/2n

d3/2

)}

.

To apply this result to the b > 1 case, we perform a change of variable.

pnew = pd

dnew = npnew = db(1 + O(d−1)

Putting these values into (34), we get:

E(X2)

E(X)2
≤

k
∑

l=0

[
(

k
l

)(

n′−l
k−l

)

(

n′

k

)

ml(1 − pnew)(
l
2)

]

exp

{

O

(

(log d)3n

db+1

)}

≤ exp

{

O

(

(log dnew)5/2n

d
3/2
new

)}

exp

{

O

(

(log d)3n

db+1

)}

= exp

{

O

(

b5/2(log d)5/2n

d3b/2

)}

exp

{

O

(

(log d)3n

db+1

)}

Pr(Xk > 0) ≥ exp

{

−O

(

(log d)3n

db+1

)}

2.2.2 The Case b > 5

We can introduce the conditional probabilities into the proof of inequality (8) with
relative ease. We aim to put a lower bound on Pr(Xk > 0|E0), but we can appeal to
the FKG inequality [3] to relate this quantity to Pr(Xk > 0), which we have already
bounded in the b ≤ 5 case. Since both the events, Xk > 0 and E0, are monotone
decreasing, increasing in probability with the removal of edges, the FKG inequality
shows that:

Pr(Xk > 0|E0) ≥ Pr(Xk > 0) ≥
E(Xk)2

E(X2
k)

Therefore, our previous calculations are sufficient to prove (8) for the b > 5 case as well.
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