Coloring Bipartite Hypergraphs

Hui Chen Alan Frieze
Carnegie Mellon University,
Pittsburgh PA 15213, USA

June 20, 2000

Abstract

It is NP-Hard to find a proper 2-coloring of a given 2-colorable (bi-
partite) hypergraph H. We consider algorithms that will color such a
hypergraph using few colors in polynomial time. The results of the paper
can be summarized as follows: Let n denote the number of vertices of H
and m the number of edges. (i) For bipartite hypergraphs of dimension
k there is a polynomial time algorithm which produces a proper coloring
using min{O(n'~'/¥), O((m/n)ﬁ)} colors. (ii) For 3-uniform bipartite
hypergraphs, the bound is reduced to O(n?/?). (iii) For a class of dense
3-uniform bipartite hypergraphs, we have a randomized algorithm which
can color optimally. (iv) For a model of random bipartite hypergraphs
with edge probability p > dn™2, d > 0 a sufficiently large constant, we
can almost surely find a proper 2-coloring.

1 Introduction

A hypergraph H = (V, E) has vertex set V, |V| = n, edge set E, |E| = m and
each edge e € F is simply a subset of V. Its dimension dim(H) is the size of
the largest edge in E. A set S C V is said to be independent if it contains no
edge of H. A proper k-coloring of the vertex set V is a partition of V into k
independent sets. A hypergraph bipartite if it admits a proper 2-coloring.

Lovész [9] showed that it is in general NP-Hard to determine whether or not
a hypergraph H is bipartite. (There are important special cases where such
a coloring can be found, see for example Beck [4], Alon and Spencer [3] or
McDiarmid [10]). In such circumstances it is of some interest to see if one can
find a proper coloring of a hypergraph H which is known to be bipartite, but
for which no proper 2-coloring is given. This problem is very similar in flavour
to that of finding a good coloring of a given 3-colorable graph. In this paper



we modify recent ideas for tackling this latter problem and apply them in the
context of bipartite hypergraphs. The results of this paper can be summarised
as follows:

e We first consider an algorithm based on ideas of Wigderson [12] and show
how to color a bipartite hypergraph of dimension k with min{O(n*~/¥), O((m/n) = )}
colors.

o We then modify the techniques of Karger, Motwani and Sudan [7] to derive
a smaller O(n?/)! upperbound on the number of colors needed to color a
3-uniform bipartite hypergraph in polynomial time.

e We next consider dense hypergraphs and show, using similar ideas to
those of Edwards [5], that dense 3-uniform bipartite hypergraphs can be
2-colored in polynomial time.

e We then consider the case where H is chosen randomly from some natural
distribution. We use a spectral method introduced by Alon and Kahale

[2] to show that whp? we can 2-color a random bipartite hypergraph with

edge density p > dn 2.

2 Approximate Coloring for General Bipartite
Hypergraphs
In this section we consider an algorithm for coloring bipartite hypergraphs which

is a development of Wigderson’s graph coloring algorithm. We assume that the
edges of H are pairwise incomparable, if e D €’ then delete edge e.

For U Cc V,1let NU) = {x € V : {z} UU € E}. Note that N(U) # 0
implies that U is independent. Let Eyy = {U U {z} : 2z € N(U)} and H+U =
(V,(E\ Ey)J{U}). We begin with the following simple lemma.

Lemma 1 Suppose U CV, H is bipartite and N(U) contains an edge. Then

(a) H U is bipartite.

(b) An s-coloring of H x U is also an s-coloring of H.

Proof (a) Let A, B be a partition of V into independent sets. If for exam-
ple, U C A then N(U) C B and so is independent.

10 notation suppresses a factor (log n)‘i for some positive constant d.
2with high probability i.e. probability 1 — o(1)



(b) Fix some s-coloring K of H xU. The edges of H which are not in H x U all
contain U. Since K properly colors U it properly colors all such edges. O

We can now describe the algorithm

Phase 1
begin
while there exists U C V with N(U) dependent;
H<+— HxU.
end

This can easily be carried out in time polynomial in m,n.

At the end of Phase 1, H satisfies
U CV, NU) # 0 implies N(U) is independent. (1)
If N(U) is independent then its elements can be colored with a single color. For
SCVietES={ecE:enS=0}and H\S = (V\S,E5).
Phase 2
begin
while there exists U C V with |N(U)| > nl/k;

Assign a new color to the elements in N(U);

H«+ H\N(U).
end
Phase 2 is also executable in polynomial time and requires no more than n'=1/*
colors.
By the end of Phase 2 the maximum possible number of edges in H has been

reduced.

Lemma 2 At the end of Phase 2, H contains at most nt~'t/* edges of size t,
2<t<k.

Proof Consider the set of pairs (U,z) where [U| =¢—1 and z € N(U).
Clearly there are at most (,”,)n'/¥ such pairs. On the other hand, each edge
of size t gives rise to ¢ distinct pairs. O

We complete the coloring randomly.
Phase 3
begin

Randomly color each vertex with one of r = [4n'~'/*] colors;



E' +— {e € E : e is not properly colored};

S Ueer &
H+ H\(V\S)

end

Lemma 3 Let S be as in Phase 8. Then
Pr(|S| > n/2) <1/2.
Proof Let m; denote the number of edges of size ¢ which remain in H and

let p, = r~ (=1 denote the probability that an edge of size ¢ is not properly
colored. Then

k
E(S)) < ) tmup
t=3

k
Z tnt—1+1/k4—tn—(t—l)(k—l)/k

<
=3
k
< Zt 4t nt/k
t=3
< n/T,
for n large. The result follows from the Markov inequality. O

We repeat Phase 3, with the same initial set of edges, until |S| < n/2. The
expected number of repetitions is less than 2. When this happens we have
succeeded in reducing the number of vertices in H by a factor of 2 and we have
used at most 51!~ /% colors.

We can repeat Phases 1 — 3, using new colors and halving the number of vertices
at each iteration until the number of vertices remaining is less than n'~2/% in
which case we give each vertex a unique color. The total number of colors used
is then at most

52 (%)H/k 4012k < 1op1- 1k,

It can also be seen that if the hypergraph does not have many edges, i.e. when
m < n*~1-1/k the simple random coloring idea will give a better bound ( use
r= [2(m/n)ﬁ]) To summarise

Theorem 1 If H is a bipartite hypergraph of dimension k which has m edges
then there is a polynomial time algorithm which properly colors the vertices of
H in

. 1-1/k =
min{O(n ), 0((m/n)* 1)} colors.



3  3-Uniform Bipartite Hypergraphs

We now consider coloring a bipartite hypergraph H in which each edge has size
3. The approach here is very similar to that of Karger, Motwani and Sudan [7].
Consequently we will be somewhat brief in our exposition. As H is bipartite
there is a partition A, B of V such that each edge of H meets both A and B.
Putting y; = +1 for ¢ € A and y; = —1 for ¢ € B we see that

{i,j,k} € E implies y;y; + yiyx + yjyx < —1. (2)

Arguing as in [7] we consider the semi-definite program
SDP

Minimise «
Subject to
v{i,j,k} € E

S Sn—la 1€ [TL],

v

where S, 1 ={ve R":|v|=1}.

We see from (2) that SDP has an optimal solution with o < —1. We can
compute a solution with & < —1 + € in time polynomial n and log1/e — see for
example Alizadeh [1]. Thus we can take € as zero on the understanding that the
errors introduced are swamped by other errors in the approximation.

So assume that we have computed v(V),v(®, ... v(®) € S, such that
v .y 4 v . y®) Ly vk < 1 Wik} € E 3)
We now choose ¢ (¢ defined later) random vectors x(),x® ... x(® such that

()
j
We say that x(") captures v(9) if

the components z;” are independent standard normal N (0, 1) random variables.

X v > x() 3O gLy

Let _
S, ={i eV :x") captures v(¥W}, 1<r<t.

With probability one, S1, Ss,...,S; is a partition of V and so defines a coloring
K. Some edges of H may not be properly colored. Let m’ be the number of
such edges. We say that IC is a semi-coloring if m’ < n/4. In which case, the
number of vertices in edges which are monochromatic is at most 3n/4. Hence
we can easily find a set S of at least n/4 vertices such that if eN.S # @ then e is
properly colored. We remove S, along with the associated colors and apply our
algorithm to H \ S. This yields an O(t) proper coloring of H ( The number of
colors needed in each next round will be geometrically decreasing).



We show later that for A = m/n and t = O(A'/2(log A)%/8) then
Pr(m' > n/4) <1/2. (4)

The initial hypergraph could have A as large as n?/6 and this would lead to the
use of O(nl/ %) colors. But by applying Phases 1 and 2 of the previous section,
with n'/* in A of Phase 2 replaced by n7/%/logn, we can reduce A to n'%/?logn
at the expense of using at most n%/° logn colors. This (modulo the proof of (4))
leads to

Theorem 2 If H is a bipartite hypergraph of dimension 3 then there is a poly-
nomial time algorithm which properly colors the vertices of H in O(nz/ 9) colors.

Proof of (4)
We need a simple geometric fact:
Lemma 4 Let v(),v(® v v € S, | and suppose
vD.v@ £y 06 ) B < g,
Then .
min v® .v <1/3.

i=1,2,3

Proof Observe first that

(v(l) +v® 4 V(3))2 — (|v(1)|2 + |V(2)|2 + |v(3)|2)
+2(vD . v@ £y .y 4 @) ()
< 1

So [v(H) +v(® 4+ v(3)| < 1. Hence
vy 1 v® v v® <1

and the lemma follows. O

Let now P(n,t) denote the maximum over vectors v(),i = 1,2,3 of the proba-
bility that the three vectors are captured by the same vector from x(9),1 < j < ¢.
We consider the probability that they are all captured by x(!) and multiply this
by t. By Lemma 4 we can assume without loss of generality that the angle
between x(1) and v(!) is at least # = arccos(1/3). Put ¢ = 1/logA,p = {/m
and ¢ = 1/cos(f — ¢)%. Consider the 2-dimensional subspace L generated by
v(D) and x() and let R denote the wedge of this plane within an angle € from
v, If x() captures v(!) then, as observed in [7] (proof of Theorem 7.7), the
projection of x(!) onto the nearer of the two lines bounding R exceeds the length



of any x() which lies in R. The probability of this event is shown in [7] to be
O((pt)~9). Thus

P(n,t) = O(t(pt)9)
= O(t(AlogA) 3100
o(1/4). (5)
By choosing the constant in the definition of ¢ sufficiently large, the hidden
constant in (5) can be made less than 1/8. In which case, the expected number

of improperly colored edges will be less than n/8. Equation (4) follows from the
Markov inequality. O

4 Dense Hypergraphs

Suppose that H is k-uniform. For X C V| X| =k -1, let N(X) ={v e V:
vUX € E}. Let a > 0 be fixed. We say that H is a-dense if |[N(X)| > an for
all X C V.

Theorem 3 If H is bipartite, 3-uniform and a-dense then H can be 2-colored
in n°/® time.
Proof

Let AU B be a partition of V into 2 independent sets. Clearly |A|,|B| > an.
Choose S, |S| = 3a~!logn randomly from V. Then

n2 1_@ an
n

< n L (6)

Pr(3z,y € V : N(z,y) NS = 0)

IN

So we can assume that N(z,y) NS # 0 for all z,y € V. By considering all
2181 = pO(/a) possibilities we can guess S4 = SN A and Sg = SN B. Now,
see Edwards [5], we construct an instance of 2-SAT with variables z,,v € V'\ §
and clauses C. z, = 1 will stand for v € A and the clauses will be denoted
Cuvs U, v € V' \ S where

{Zu, Ty} : N(u,v)NS4 #0, N(u,v) NS =0,
Cuw=1{ {Zuzs}: N(u,v)NS4 =0, N(u,v) N Sp # 0,
NO CLAUSE: otherwise

Now C is satisfiable by z, =1 forv e A\ S and z, = F for v € B\ S. Also
if A" = {v: z, = 1} is the 2-SAT solution we construct then |4’ \ 4| < 1.



For if v1,v2 € A"\ A C B\S then the clause Cy, v, = {Zv,, Tv, } is not satisfied.
Similarly, |B"\ B| < 1 and a simple brute force final check can correct any errors
in O(n?) time. ]

The proof of correctness of the algorithm does not seem to generalize to higher
dimensions. Though there seems to be no intrinsic reason why coloring becomes
harder when k > 4, a completely different method seems to be necessary.

5 Random Hypergraphs

We first describe our model of a random bipartite hypergraph. Let W; =
{1,2,...,n} and W3 = {n+1,n +2,...,2n}. There are N = 2n(72’) triples
contained in W; U W5 which contain at least one element from both of W;
and W,. We generate H = Hs, 3, = H(V,£) by independently including each
possible triple with probability p. This is a natural analogue of the standard
model of a random 3-colorable graph.

We will show that there exists a constant dy > 0 such that if p > dyn=2
then H = Hs, 3, can be properly 2-colored in polynomial time whp (without
knowledge of the partition W;, W,). We only consider the case p = dn=2,d > dy
constant. Things get easier if d — co. The method used is an adaptation of the
spectral method of Alon and Kahale [2].

5.1 The reduction

To apply the methodology of [2] we need a graph. So let G = (V, E) where
V =W;UW,; and e € E if there is some triple ¢t of H with ¢ D e i.e. make each
triple into a triangle in G and merge multiple edges into one. We now proceed
more or less as in [2].

1. Construct G' = (V,E') by deleting all edges incident with vertices of
degree at least 5d in G.

2. Compute the eigenvector v corresponding to the most negative eigenvalue
of the adjacency matrix A’ of G'.

3. Let X={ieV:v,>0}and Y =V \ X.

4. Use X,Y as the start of an iterative process to 2-color H.

5.2 [Eigenvalues of G’

The intuition behind the approach is as follows: if each vertex of H lies in its
expected number of triples with 1 or 2 members of W (d/2 and d for a vertex



in W;) then f = (-1,-1,...,-1,41,+41,...,41) (-1 for ¢ € W; and +1 for
i € W) is an eigenvector of the adjacency matrix A of G, with eigenvalue —d.
Since this is approximately true whp, there should be an eigenvector close to f
which will give us a good idea of W; and W5.

Let Ay > A2 > -+ > Ao, be the eigenvalues of A’, and ey, e, ..., e, be corre-
sponding eigenvectors which form an orthonormal basis of R?".

Lemma 5 The following are true whp:

(1) A1 > (1—-27%9)34,
(i) Agn < —(1 — 2 %d)g,

(iii) | M| = O(Vd) for all2 <i<2n—1.

Proof The proof is very similar to that of Proposition 2.1 of [2] which is
based on ideas of Kahn and Szemeredi [8]. We give only a bare outline. We use
the fact (see for example [11]) that

) zTA'z

A; = min max
L eck Tz

z#0

; (7)

where L ranges over all subspaces of R?"™ of dimension 2n — i + 1.

The matrices A, A’ partition naturally into 4 blocks arising from the partition
of V into Wi, W,. The off-diagonal elements of A4, ;, i = 1,2 (corresponding to
edges of G edges within the same W;) are 0/1 where the 1’s occur independently
with probability

pp = 1-(1-p)"
d d?
- teo(f
n n
The off-diagonal elements of A; 2 (corresponding to edges of G joining W7 and
W3) do not occur independently, but this can be sidestepped. Consider A; .
For each of the N triples contained in V there are 2 edges of G which have one
end in W7 and one end in W>. Randomly color one edge red and the other blue.
Let A12 = A12,r + A1,2,B where, for example, A; 5 g is the adjacency matrix

of the bipartite grpah Gr = (W1, W2, ER) defined by the red edges. We claim
that the edges of Gr occur independently with probability

p2 = (1-(1-p)?"V)/2
- teo(d)



Independence comes from the fact that the occurrence or non-occurrence of
distinct red edges depends on the occurrence or non-occurrence of disjoint sets
of triples.

We are now in good shape to appply the ideas of [2].
(i) Observe first that simple calculations show that whp
|E| = (1—-0(1))3d/2 (8)
|E\E'| < ne %@, (9)
Now apply (7) with L = R*® and z = g = (1,1,1,...,1).
(ii) Apply (7) with L =F = {\f: A € R}.

(iii) Let S be the set of all unit vectors z € R®" such that Yzew,; Tv = 0,
7 =1,2. We first need to show that whp and uniformly over = € S,

|zT A'z| = O(Vd). (10)

It is enough to separately bound the contributions of each of the A4; ; to zTA'z
by O(v/d). Further split the contribution of A;j 2 into that from A; 2 g and
Aj,2 B. Similarly for Ay ;. We thus have to bound the contribution of 6 n x n
0/1 matrices with off-diagonal entries occurring independently with probability
(d+0(1))/n. This is precisely what is done in [2] Lemma 2.4 and the preceding
discussion. Thus, we can consider (10) to be proved.

The next two equations are proved in a similar manner to Lemma 2.8 of [2].
It helps to use the above decomposition into 6 matrices, to avoid problems of
independence.

(A" +dI)f|
(A" — 3dI)g]

O(|f|Vd) whp (11)
O(|g|Vd) whp

The proof of (iii) can now be completed. To show Ay = O(v/d) we take L in (7)
to be the set {zx € R" : zTg = 0}. Write z € L as af + s where s € S. Then,

zTAz = o?fTAf+2asTAf+sTA's

2 fTAf 4+ 2asT (A +dI)f +sTA's

—a’(1— e )d|f? + 2a|f[|s|0(Vd) + |s|*0(Vd)
lz|*0(Vd).

To show |A\an_1| = O(Vd) let L be any 2-dimensional subspace of R*". L
contains z such that 7 f = 0. Write # = ag + s where s € S. Then

[VARVAN

2TAz = o?gTA'g+2asT(A —3d)g+sTA's
> (1 - e @)d|g* - 2algl[s|O(Vd) — [s]*O(Vd)
> —|zlP0(V4d).

10



O

2n

Let vy, va,...,v2, be an orthonormal set of eigenvectors. If f = > .", c;v; then
whp
2n—1
Z civi| = O(n/d). (12)
i=1

To prove (12) we use
2n
(A +dDfP = Y d(N+d)?
i=1

2n
= Qd)) d,
i=1

from Lemma 5. Applying (11) we get Yo", ' ¢? = O(n/d) which is (12). Let
Von = (&1,€2,.- -, &) and Uy = {i: & >0} and Uz = {i : & < 0}. It follows
from (12) that we can assume without loss of generality that

|W; \ U;| = O(n/d) for j =1,2. (13)

5.3 Perfecting the coloring

We can therefore assume that the choice of Uy, U, as a coloring leaves all but
at most n/1000 vertices properly colored. We proceed as in [2] to perfect the
coloring.

We first list some properties that that G will have whp: v > 0 is some small
absolute constant.

P1 All but n(1—e~"%) members of W; have between .99d and 1.01d neighbours
in W3_; and between .49d and .51d neighbours in W; for ¢ = 1, 2.

P2 For all A, B C V with ne ?¢ = |A| > |B|/2 the number of edges joining A
and B is at most .001d|A|.

P3 There are no two subsets U,W C V such that |U| < 0.001n and |W| =
|U|/2, and every vertex of W has at least d/5 neighbors in U.

The proofs of these assertions are straightforward and are omitted.

5.3.1 An Iterative Procedure

for i =0,1,...,[logn] do

11



begin
Simultaneously, for all v € V, re-color v with the minority color of its
neighbours in the previous round.

end

Analysis

Let H; be the set of vertices with at most 1.01d G-neighbors in W3_; and 0.51d
G-neighbours in W;. Let H = Hy = H; U Hy. Then, while possible, delete
from H;, i = 1,2 a vertex h with at most 0.99d H-neighbors in W3_; and 0.51d
H-neighbours in W;.

Lemma 6 H has at least 2n(1 — e~%*4)) vertices whp.

Proof Property P1 shows that Hj is large. Let the vertices removed from

H be hi,hs,...,h,. Let mg = ne~7%. If m > myg then there are at least
.002mod edges joining A = {hi1,ha,...,hm} and AU (V \ Hp), contradicting
P2. O

Lemma 7 At the end of the iterative procedure H is properly colored, whp.

Proof Let U; be the set of wrongly colored vertices in H at the start of
iteration ¢. If v € U; then by the minority recoloring rule, at least d/5 of its
neighbors are in U; ;. Since whp |U;| = e *9n we can apply P3 repeatedly
to show that |U;| < |U;_1|/2. 0

5.3.2 Brute force re-coloring

In this phase, we simply uncolor any vertex in the set V' \ H to ensure that
all the colored vertices are correctly colored. We then use exhaustive search to
re-color each component of the graph I' induced by V' \ H. This generally takes
polynomial time as

Proposition 4 Whp the largest connected component of T has at most [log, n]|
vertices.

Proof We sketch the proof which is similar to Proposition 3.9 of [2].

Let T be a fixed tree on log, n vertices of V. Let E(T') and V(T denote the the
edge set and vertex set of T. Let I be the subset of V(T) all of whose vertices
having degree at most 4 in T'. So |I| > |V(T')|/2. Build H' in the following way:

i. Let H' be the set of vertices with at most 1.01d — 4 G-neighbors in W3_; and
0.51d G-neighbors in W;, i =1, 2.

12



ii. Delete from H’ all vertices of V/(T') — I.

iii. Repeatedly delete from H' all vertices having at most 0.99d H'-neighbors
in W3_; and 0.51d H'-neighbors in W;.

The following two claims from [2] are also true in our case. For a set of triples
F we let F, denote the set of edges they induce in the graph G.

CLAIM Let F be any subset of £. Let H(F UT) be the value of H in case
E =F.UT, and H'(F) be the value of H' in the case E = F,. Then H'(F) C
H(FUT).

Proof We first show that the initial value of H'(F'), obtained after step (i)
and (ii), is a subset of H(F UT). Let v be any vertex that does not belong to
the initial value of H(F UT). Then v has more than 1.01d neighbors in the
opposite color class of (V,F UT) or more than .51d neighbors into own color
class. Therefore if:

Case 1. v € V(T') — I. Then v ¢ H'(F) as it will be deleted at step (ii).

Case 2. v ¢ V(T) — I. Then v is incident with at most 4 edges of T, thus it
either has at least 1.01d — 4 neightbors in the opposite color class in (V, F) or
has at least .51d neighbors in its own color class.

In either case, v does not belong to the initial value of H'(F'). By a similar
argument to that for Lemma 3.8 from [2]( notice that the assumption of a
tripartition is not significant here) any vertex which is deleted in the process
of constructing H will be deleted in the process of constructing H' as well and
this completes the proof.

0O
CLAIM
Pr[T is a subgraph of GAV(T)NH = 0] < Pr|[T is a subgraph of G|Pr[INH' = 0].

Proof It is sufficient to show that
Pr[INH =0 |T is a subgraph of G] < Pr[I N H' = ().

Let T be the set of triples that contain an edge of T'. For a set of triples Z let
Z'=Z\T and Z" = Z \ Z'. By the previous claim, we have

Pr[InH =0 = Y Prig=F]
F:INH'(F)=0
> > Pr£=F]

F:INnH(FUT)=0

= > Pr[F' = £'|Pr[F" = £"]
F:INH(FuUT)=0

13



= > Pr[£' = F']

F:INH(F'UT)=0,F' nT=0

= Z Pr[¢' = F'| T is a subgraph of G]
F:INH(F'UT)=0,F'nT=0
= Pr[INH=0|T is a subgraph of G|

where F ranges over all the subset of triples , and F’ ranges over those that do
not contain an edge in 7' while F"' ranges over those that contain at least an
edge in T'. O

Assume that d < aloglogn for some fixed constant o, as otherwise almost
surely H = V. One can show that whp H' misses at most 2~ *¥n vertices
in each color classes. Let ® be the events that there are at most logn pair of
vertices u, v such that the number of triples containing u, v is at least 2. CLAIM

) =o(1).

The proof is a simple first moment calculation. We omit it here. Now we can
delete all pairs of vertices that have at least 2 triples containing them and their
neighbors, since there are only O(logn) of them, a simple brute force coloring
will find the correct one.

— loglogn
Pr[®| = O0(————
r(®] = O logn

The intuition now is that since the conditioning between edges is small, we can
assume that a large portion ( nearly half ) of the edges in T can be treated as
unconditioned. Given edge e = {u, v}, let

N(e) = {{w’ U}, {’LU, U} : {w,u, 'U} S 8}
By the previous claim,whp after deleting O(logn) vertices, Ve € E(T), [N(e)N
E(T)| < 1.

Since the choice of H' is independent of I the probability that there exists some
T of size at least logy 7 is

Pr[T is a subgraph of G|®]

Pr[el ek (G)]

< -

< S PB@)\W (e € B(G)l8)
< O(d/n?)IVDI-1)/2 using an inductive argument
< Cl(d/nZ)logzn/2

for some large constants C,C’ and

()

Pr[InH =0 < -
()
< o0
< 2—Q(d10g2 n)

14



Since the total number of possible connected trees of this size or more is at most

2
(o) gy e

logy

)

The multiplication of the above terms is of O(n (%)), which is the probability
that the algorithm will fail in the third phase. We have thus completed the
proof of Proposition 4. O

Acknowledgement We thank Avrim Blum for reminding us of the problem of
2-coloring hypergraphs.
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