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Abstract

It is well known [9] that finding a maximal independent set in a
graph is in class NC, and [10] that finding a maximal independent
set in a hypergraph with fixed dimension is in RAC. It is not known
whether this latter problem remains in A'C when the dimension is part
of the input. We will study the problem when the problem instances
are randomly chosen.

It was shown in [6] that the expected running time of a simple
parallel algorithm for finding the lexicographically first maximal in-
dependent set (Ifmis) in a random simple graph is logarithmic in the
input size. In this paper, we will prove a generalization of this re-
sult. We show that if a random k-uniform hypergraph has vertex set
{1,2,...,n} and its edges are chosen independently with probability
p from the set of (}}) possible edges, then our algorithm finds the Ifmis
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in O(%gl%) expected time. The hidden constant is independent of

k, p.

1 Introduction

A hypergraph H(V, E) will have V = V(H) as a vertex set, edge e € E(H) is
simply a subset of V. The dimension of the hypergraph H is the cardinality
of its largest edge. If all the edges in the hypergraph have the same size k
then we say that the hypergraph is k-uniform. Thus a 2-uniform hypergraph
is simply a graph.

An independent set is a subset S of V' which contains no edge. An inde-
pendent set is maximal if it is not a proper subset of another independent
set. We discuss the problem of finding a maximal independent set in paral-
lel. Karp and Wigderson [9] were the first to design a deterministic polylog
parallel algorithm to find a maximal independent set in a graph. Beame and
Luby [1] also provided a randomized parallel algorithm to find a maximal
independent set in a bounded dimension hypergraph. However their analysis
only worked for the case of a hypergraph of dimension three. Kelsen [10] later
showed that their algorithm is actually an RN C algorithm for hypergraphs
with fixed dimension. Unfortunately the derandomization of their algorithm
[10] only gives a sublinear time bound for the deterministic version. Dalhaus,
Karpinski and Kelsen [7] extended the idea of Goldberg and Spencer [8] to
an NC algorithm for finding a maximal independent set in hypergraphs of
dimension three.

In this paper, we are interested in finding the lezicographically first maximal
independent set of a hypergraph. It is known that this problem is P-complete
even for graphs. Coppersmith, Raghavan and Tompa [6] show that for a ran-
dom graph the Ifmis can be found in o(log® n) expected time. This was later
improved to O(logn) by Calkin, Frieze and Kucera [4] [5]. These algorithms
requires only linearly many processors.

In our model H,;, of random hypergraphs, all the hypergraphs are k-
uniform. The vertex set V is {1,2,...,n}. Each of the (Z) edges has the



same independent probability p = p(n) of appearing. Thus when k& = 2, we
have the commonly used random graph model Gy, ,. The main contribution
of this paper is to show that the Ifmis of a random k-uniform hypergraph
can be found in o(log® n) expected time where there are no hidden factors
which depend on p or k. Our model of computation is a Concurrent Read
Concurrent Write (CRCW) PRAM with |V| 4 |E| processors.

We will assume k£ > 3 from now on as the case £ = 2 has been dealt with
previously.

We describe an algorithm PHMIS and prove

Theorem 1 On input H, 1 ,, PHMIS produces its Ifmis in O((logn)?/loglogn)
expected time, where the upper bound is uniform in p and k.

|

It is conceivable that an improved analysis such as that carried out in [4]
for graphs, could lead to a reduction in the upper bound on the expected
running time.

2 Algorithm PHMIS and Its Modification

In this section, we give an algorithm to find the Ifmis of a hypergraph, and
also give a modification of the algorithm needed for the analysis.

2.1 The Parallel Greedy Algorithm

Our algorithm is a natural generalization of the algorithm of [6]. To describe
the algorithm, we need the following definitions:

Definition Forx € V and S CV, we let

['(z,5) ={e\S:e € E,z = maxe}.



Definition For M C V , we let
N(M)=Ny(M)={x:3BC M : z>maxB and BU{z} € E}.
Below we give the pseudo code of the algorithm.

Explanation: each execution of the loop, Steps 3 to 8, contributes a set
A of vertices which do not form an edge with the set of previously chosen
vertices M.

The procedure DELETE removes A and any vertices which form an edge with
M - line 12. The edges which contain vertices from N (M) are removed, as
they can never be subsets of the finally chosen set M - line 13. Vertices of A
are removed from the remaining edges, so that we have a hypergraph with
vertices X and edges Y.

Thus at the end of procedure DELETE Y contains all sets e\ M (e € M) which
contains no vertex in N(AM).

Algorithm PHMIS

0 Input H = H(V, E).

1 begin

2 M+ 0; X« V;Y + E.
3 while X # () do

4 begin

5 A+{a|T(a, M)NY = 0};
6 M +— M U A;

7 DELETE;

8 end

9 Output M,

10 end

DELETE

11 begin
12 X+ X\(AUN(M));



13 Y« Y\{e€Y :en N(M) # 0};
14 Y+ {e\A:e€Y}.
15 end

Lemma 1 PHMIS produces the lexicographically first mazximal independent
set.

Proof The algorithm must terminate because the lowest remaining ver-
tex is always added to M at line 6.

M s independent: Suppose M contains the edge e = {v; < vy < ... < i}
Consider the iteration when v, is added to M. At the start of this iteration
C(vg,, M)NY = () and so e\M ¢ Y. Thus during some previous iteration
eN N(M) # (. This implies e ¢ M, contradiction.

Mis mazimal: Consider v ¢ M. At some stage we must find v € N(M)
which means that BU {v} is an edge of H for some B C M.

M s lexicographically first: let L be the lexicographically first maximal inde-
pendent set. If M # L, then by maximality, L\M # (. Let v = min L\ M.
Since v ¢ M,v € N(M) at some iteration, and so at this time there exists
e=BU{v} € E with BC M and v > max B. Furthermore B L since L
is independent. But this implies M precedes L in the lexicographic order. O

It is easily seen that even if the original graph only has edges of size k, that
after the first iteration of the algorithm, edges of size ¢, 2 < ¢ < k — 1 may
appear. It turns out that the key to the analysis of the algorithm will be
knowledge of the distribution of edges of different sizes at each stage of the
algorithm.

2.2  Modified-PHMIS(H)

As in the case of graphs, it is difficult to analyze the running time of PHMIS
directly. After the first iteration of the algorithm, the remaining graph is
conditioned and it becomes difficult to handle this. To circumvent this, we



use the same trick as [6]. Thus at each time, intead of running PHMIS on the
whole graph, we pick a block of m least numbered elements and run PHMIS
until completion on this block. Then after a clean up step, we proceed
by picking the next m least numbered elements and so on. This procedure
mimics the behavior of the sequential algorithm which does not condition the
remaining graph so severely. The number of vertices m is carefully chosen so
as to achieve an efficient time bound.

It will be shown that the running time of this modified algorithm dominates
the running time of PHMIS, and that it also produces the Ifmis.

We give the pseudo code for the modified version of PHMIS below. Let
1
o = 2"

The quantity p; will later be seen to be the probability that a given edge of
size ¢ exists in the graph that remains. Recall that k is the dimension of the
hypergraph H.

We define H[Z], the subgraph induced by Z, as (Z,{e € E:e C Z}).
Algorithm Modified-PHMIS(H)

1 begin
2 M<—(Z);X<—V;Y<—E;m<—[kap‘ﬁj.
3 If | X| > m do begin
4 Z < the m lowest elements of X;
5 Run PHMIS to completion on H[Z];
6 Let the independent set found be A;
7 M +— MU A;
8 DELETE;
M|
9 p=1—1-p) 2<i<k.
10 m <|min{2ap;*, 3ap;%, o kap, B
11 end
12 Run PHMIS until completion on H[X];
13 Let the independent set found be A;
14 M +— MU A;
15 Output M;
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Remark 1 Note that when line 9 is first executed, |M| >k — 1.

Remark 2 The value of © for which iap; Y= i minimized in the definition
of m in line 10, 1s called the dominant edge size ¢.

Remark 3 In both algorithms, v € X implies there exists an edge e =
{v1,v9,...,vk—1,v} € E where each v; is either in X or in the current inde-
pendent set, at least one being in X.

Remark 4 We let an execution of DELETE denote the end of an iteration in
both algorithms. Thus the execution of Step 5 of Modified-PHMIS may tnvolve
several iterations. An execution of Step 8 in Modified-PHMIS signifies the end
of a round of this algorithm.

Lemma 2 The number of iterations executed by Modified-PHMIS is at least
the number of iterations of PHMIS.

Proof Let the subscripts p and mp refer to corresponding sets in algo-
rithms PHMIS and Modified-PHMIS. Let the superscript (i) denote the set
at the end of iteration i. Thus the sets X and M are initially X{* and M
for PHMIS, and X9 and M) for Modified-PHMIS.

It suffices to prove the following statements for each i > 0 : X ,§i> CX T(,%, MT(,;;, C
M® and M) — M) C X{) These statements clearly hold for i = 0. As-
suming they hold for 7 let us establish them for 2 + 1.

First we show that M) C MY, Let v € X)) — M{*Y be added to
MY at iteration ¢ + 1. If v € X, then v was not added at this step to
Mé”l) because v is maximal in an edge e = (v; < vy < ... < vx_1 <) all of
those vertices belong to XI(,i) U Mzgi). By the inductive claim e C XT(,Q, U MT(,QJ
But then v will not be added to M},ﬁ;l) because of e, a contradiction.



Now consider the case v ¢ XISZ'). That means v was deleted from X ) for
some j < 4. Thus there exists an edge e = (v; < vy < ... < vy < v) in E
such that all the v;’s belong to M () By the inductive claim they also belong
to X (Z UM “) But that implies that v will not be put into M ’;1 because
of e, agaln a contradlctlon We conclude that M (“’1) C M, (1)

Next we need to show that X{") C X and M{" — M) C X{). Suppose that
v is deleted from ij;;) in iteration ¢4 1. This is because v € N(Méj;l)). But
this implies v € N (M*Y), since we just showed M{E) C M{+Y. Hence v
is deleted by PHMIS at iteration 7+ 1 or at an earlier iteration. We conclude
X0 C X and M — M C X{H . This completes the proof of the lemma.

O

Corollary 1 The independent set produced by PHMIS is the same as the
independent set produced by Modified-PHMIS.

Proof Let M denote the independent set produced by PHMIS and M
denote the independent set produced by Modified-PHMIS. By Statement 1,
M C M. Let v = min M\M. Since v is not in M, it has to be deleted by
Modified-PHMIS as a neighbor of k£ — 1 members of M. But then v cannot
be placed in M either since M C M - contradiction. O

3 Analysis of Modified-PHMIS(H)

The analysis will be in two parts. In Section 3.1, we prove that whp' there
will be no long chain in each block Z, so that each round of Modified-PHMIS
will finish in O(logn/loglogn) steps.

In Section 3.2, we study the change of ¢, and show that whp after O(log®n)
rounds, either the algorithm terminates; or the ¢ will be 2. The rapid con-
vergence of the algorithm then follows from a similar analysis to that of [6].
Combining these two parts gives a polylogarithmic time bound.

By whp, we mean that an event occurs with probability 1 — o(1/n)
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Outline of the proof The second part of the proof of our result is rather
technical and it will be helpful to give an outline. All statements in this
section will later be shown to hold whp and we will drop this qualification
for the outline.

We first show (Lemma 4) that if at any stage m < (logn)?/2loglogn then
the algorithm will finish in O((logn)?/loglogn) more iterations. So assume
for the remainder of this section that m > (logn)?/2loglogn.

We show next (Lemma 5) that either the independent set M increases by
at least m/e during any round or failing this, the algorithm terminates in
O(logn) more iterations.

We show (Lemma 7) that
|Ifmis| < e '(k + 2logn)fu.

where p = p‘l/(k_l) and 1 < 6 < e is the solution of the transcendental
equation (10).

We then show (Lemma 8) that if
(M| = e (k- A)0u (1)

where k > A > 4(logn)?, then it takes O(logn) rounds to increase |M| to
size at least e '(k — A/logn)fu.

Thus after O((logn)?/loglogn) rounds, the value of A in (1) is at most
4logn.

We then show (Lemma 10) that after a further O(log®n) rounds ¢ = 2 and
remains so for the rest of the algorithm.

Once ¢ = 2 we can apply essentially the same argument as in [6] to show that
a final O(logn) rounds suffice.

3.1 Distribution of Edge Sizes

Next let us consider the distribution of edge sizes in the hypergraph K =
(X,Y) remaining at each round. If f C X with |f| = i then f appears as

9



an edge in K if and only if there is some ¢ C M, |g| = k& — i such that
e = fUg € E. Since distinct ¢ yield distinct e, we have, by definition of
Hn,k,p

Pr[ f C Xis not an edge of (X,Y)] = (1 _p)(}fﬂ)
= 1-p

Furthermore, edges of different size can only arise from the contraction of
different original edges of H. So the distribution of edges at any stage can
be summarized: for 2 < ¢ < k, each of the ('f‘) possible remaining edges
appears independently with probability p;.

3.2 Long Forcing Sequences in an m-Block

In simple graphs, as studied in [6], for PHMIS to require [ rounds to deal
with an m-block Z (chosen in line 4 of Modified-PHMIS), there has to be a
path of length 2/. We define a structure with the same effect in the case of
a k-uniform hypergraph.

We show that if at least [ iterations in one round of Modified-PHMIS are
needed then there is a forcing sequence v < vy < ... < v; where v; is deleted
in iteration ¢ and certain other properties hold.

Let v = v; be added to M in the Ith iteration. Let Y;_; denote the set at the
start of iteration [ — 1. Since v survives the (I — 1)st iteration, the following
is true:

v is the highest vertex of a t-edge e = {w; < wy < ... < wy = v} € Y, for
some t, 2 <t < k. At least one of wy, wo, ..., w;_1 is deleted as a member of
N(M) in iteration [ — 1. Otherwise v won'’t be placed in M in iteration .

Let v, = w, be such a deleted vertex. There has to be another t'-edge
e ={u <uy <...<up =w}t €Yy for somet, 2 <t <k, such that
U1, Ug, ..., up 1 are placed in the M in the (I — 1)st iteration. Let v; 1 = u;.

Clearly v; > v > v;_;. This argument is repeated to define v;_o,v;_3,...,v;.

Let £(z,y) denote the event that vertices x and y are related in the way v;

10



and v; are as described above. Then we claim that for all z, y,
E k e
Pr(e] > I 110 - per) -6

This is because £(z,y) occurs if there is no triple (e, ¢/, w) where e is a t-edge
containing y, w and €’ is a t'-edge containing x and w.

Lemma 3 whp a given m-block Z contains no forcing sequence of length
[ > [4logn/loglogn].

Proof Clearly the probability of the existence of a forcing sequence of
length [ is bounded by

-1

S Pr() (s vi)) (’?) [1 t:ﬁ?ﬁ 1—ptpt:)<‘1)(Tll)(?735)] (2)

v1<v2<...<Y; =1 t'=2

] ;;:;t-”(t-l)( S

at)" (o)~ ]

IA

VAN
St
N
M=

(3)

IA
S
—
M=

3

t=21'=2 2) (tl - 2)
- -1
mle! |1 (& (at)i™? 2
< — | — 4
-t m (,5:22 (t—2)! (4)
PN
< (—) for some constant ¢; > 0
It \m
= m (% l
= m ]
= o(n?)
For (3) use
m—1 < (m— 1)1
t—1) = ey
and

m < tap, ", for2<t<k. (5)



A justification is needed for inequality (2). We claim that the edge sets
involved in different events £(v;,v;41) are disjoint. This is because edges
causing & (v;, v;4+1) will either have v; ;1 or 7,41 as their highest element. O

We show next that whp a substantial portion of m will be placed in the Ifmis
in each round. This is stated as Lemma 5. Before proving the lemma, we

show that we can assume that at any stage of the algorithm m > %lézﬁzg”n.

Lemma 4 If at some stage m < 1log’n_ypop whp, the number of vertices

2 loglogn’
added in later rounds to the independent set is O(loﬁgl‘"‘_n)
glogn
: l _Ll 1 _logZn :
Proof Suppose that at some point m = [5p, '] < zﬁglog_n' This

implies that [ = o(log2 n). Once the size of the independent set subsequently

reaches a = [121%°%] then whp no more vertices can be added. This follows
loglogn

as the expected number of possible additions ny after this time satisfies,

ne < n(l—p)i™)
ol
< now{ -5 )
< ool [0
< nexp {—\/ﬁ@ log n)"l} ( Since p, only increases)

nexp{—3logn}

= n72.

Each iteration of Modified-PHMIS adds at least one vertex to the independent
set. So if m < 11" then whp there are fewer than [10log® n/loglogn]

2 loglogn
more iterations until completion. O
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So from now on we assume that throughout the algorithm

log®n
Y P (6)
2loglogn
Lemma 5 Let Z be the set of elements we run Modified-PHMIS on in some
round, and let A C Z be the independent set that is placed in |fmis in this
round. Then whp either

(i) the algorithm terminates in at most 25logn more iterations; or
(ii) |A| = m/e.

Proof The probability of an element being placed in A is bounded below
by the probability it is placed in A C A where A is the set of elements in Z
with I'(z, M) N'Y = (). But

Prizc 4] > [[(1-p)l™)

(V4
@
M
o}
—N—
|
L=
TN
o~
I3
—_
~
—_
iE
IS
——r

vV

[¢]

>4

el
—N—

|
s 1
-
NE
=

—
E
IS
——

mo(ad)tt 1
g(i—l)!l—pi}' (7)

v
@D
o]
i)
—N—
|

Here we use the inequality
l—z > 072 for0<z<1. (8)

Case 1: 42 <4 < logn such that p; > %. In this case at most 25 log n more
elements will be added to the independent set. Indeed for ¢ = [25logn], ¢
elements can be added only if they contain no edge of size :. Hence

Pr[ t more elements can be added | < <n> (1- pi)(ﬁ)

AN
3
@D
"
ol
—N—
|
7 N
. o~
N~
~
—_
]
——

IN
S
d
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Case 2: p; < 1/10 for 2 < i < logn. Suppose next that p; > 1/10 for some
1 > logn. Then

1
m = |min{2ap;,30p;°,..., kap "}
< 3, since i > logn.
e

This is a contradiction if 7 < m and thus shows that p; < % for 1 < m.
5 10 m (21)1'—1
Pr[z € A] > exp {— Z RV

So, from (7),
9 =i 1)}

2 6_0'9. (9)

Now the events z € A are mutually independent since they depend on disjoint
sets of edges of H, x,. Using (6) and standard estimates for the tails of the
binomial distribution and the fact that m = Q(log® n/loglogn), it is easy to
see that whp, |A| > m/e. O

3.3 Size of lfmis

In this section, we will give an upper bound on the size of the Ifmis of a
k-uniform random hypergraph with edge density p.

Definition. For 0 < z < 1, let

U(z) = o' (z+ (1 —2)log(l - x))

/’1’ = p k—1

and 6 be the unique positive solution of the equation,

@(:E):%exp{\ll (ﬁ%)} = 1. (10)
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6 exists as the LHS of (10) decreases from p > 1 to 0 as x increases from e/p
to oo.

Lemma 6 1 <60 <e.

Proof If e > pthen § > e/u > 1. If e < p, & > 1 follows from
(1) =exp{¥ (e/p)} > 1.

For the upper bound, notice that if § > e then p > 1 implies,

1
oo ()
A contradiction. O

In the following proof and some later ones, C represents a generic (absolute)
large constant and c a small constant. Their values may change from time to
time but the reader can easily substitute fixed values to make the arguments
correct.

Lemma 7 whp, the size of the fmis of H,, is bounded above by e™'(k +
2logn)0Ou.

Proof Let a = | M| denote the size of the independent set at the start
of some round and b = a/u. The expected number of nodes ny that now can
be added satisfies

ng < n(l—p)(ka—l)

ol

VAN

n exp

o

c a
\/m(k—l)k 1(a—k+1a k+1p} (11)

= nexp

{_
- nenl - [ (-4
{_ k0—1:/cb—€1exp{_w<k >H 1}
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[(11) follows from substituting Stirling’s formula for factorials.]

Let a = e ' (k + 2logn)fu. Since

exp {_q; (%) } = exp {—‘I’ ((k J(rkzIo;)S)Gu) }
)

e {-v ()} 21

we have

This implies

C 2logn kot
< - 1
< nexp{ k—1<+k—1>
= o(n7?).

So, whp, |Ifmis| < e~ !(k + 2logn)fpu. O

3.4 Size of Dominant Edges

In this section we will study the change of edge densities as the algorithm
proceeds. The main technical lemma we are going to prove is the following:

Lemma 8 Let the independent set M be of size a = e 1 (k—A)Ou at the start
of some round, where k > A > 4logn. Let v be as in Remark 2 Thereafter
whp,

A/5< 1 <5e’A (13)
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and

aAp/5 < ap, 0 < (1+0(1))aAp (14)

except for possibly O(logn) rounds.

Proof We first observe that if 0 < 2’ =1— (1 —2)™ <
integer then

N[
3
v
—
7

< mx <z +a2"? (15)

The LHS of (15) follows from (1 — z)™ > 1 — mx. For the RHS we use
' > 1— e ™ which implies
—log(1 — ')

'+ x.

mx

IA N

We consider two cases:
1

Case 1: p > 4e?. (Recall p=p, " ")

m = |aku| in the first round, and whp ( Lemma 5) , at least m/e elements
will be placed in M. The assumption guarantees that whp, the independent
set after round 1 will be of size at least 2k.

Now at any stage p = pr < pr—1 < --- < po. So if any p; is greater than

\/1/logn then py > (/1/logn.

In this case the current independent set is maximal whp, since the expected
number of possible additional members is at most

logn)3/2
1oy < _ (logn)** 1
a1=p) " < nexp{-{E0 (16

using (6) and Lemma 5.

It follows from the LHS of (15) and p; < (logn)~%/2 that, if a = |M| = bu
and k > ¢ then

pi < ( ¢ ,)p
k—1

17
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9 ( b )k—i ( k— i)—a-Hc—i i
- 1 — pk-1
om(k —i) \k—1 a

gl (e

We apply the upper bound of (15), with x = p, m = (k‘iz) and 1’ + z? =
(14 o0(1))z', since 2’ = p; = o(1). Then a similar calculation shows that

. k=i
pi > ! l b .eXp{l—q’(k_Z)H pE=T.
2/2m(k — i) Lk —1 a

Thus we have

P = (146 lkb_eiexp{\lf (k;zm Hp (17)

where 1/2 < (14 ¢) ' [2m(k —4)]7/2 < 2.

Equation (17) is clearly true for £ = ¢ as ¢; = 0 in this case.

Let 4, = [A]. Then

Case l1la: i > 4A.

ozip;i%l = ai(l +¢) [kb_e ! exp {\I’ (k ; Z) H - U
= «ai(l +¢) [k Z:eio exp {\I’ (k _a Zo)}
e ()
. .

= ai(l+¢+o(1)) [k_z exp{

(18)

Note that we have used (10) to obtain the expression (18) from the previous
line.
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Let

|

k . k—i k—i
it

 and Mgzexp{\If<k_Z>—\If<k_ZO>}l
k-1, a a

We show that M; and M, are bounded below by constants.

k—i

k—i\it
M, =
' (k—z)
i —i,\ 1
_ 1_ 0 i—1
(-=2)
{ i—igk—ik—i
> expq—

k—i i—1 k—z’} from 8
i—i,

- eXp{_i—1}

> el

Now let 7 =e/uf < e/u < 1/4e.
Then

My = exp

v
&=

\%
@
"
o)

exp
> 9/10, since a > k — 1.
It follows from (17) and (18) that

1

aigp;, " < (1+0(1))aAp

Y
@

S
~.
H,_/
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and that for 7 > 4A

1
aip; T > iaA,u (23)

which confirms the RHS of (13).
Case 1b: i < A/5.
Applying (17) we obtain

k—i
- k—1i k—i T
aip; T = a(l+ &) [ ! exp {\Il ( Z) H 1
be a
k—i
ol B\
2 A %
k—1i
A—i\i-
= az(l k—AZ> lu (24)
Consider two subcases here.
If kA:Ai > 1, then
-1 k—i
aip; TN > @ity
> 16aAu/5. (25)
If kA__Ai < 1, then from (24) and 14+ 2 > €*20< 2 <1,
- ) 1A—i k—1
oLp; > auexp 5T -1k_A n
A—1
> o 26
> aiexp{ =} (26)
> e*alAp/b

2 1
i < A/5 as i decreases. Since 2 > % > 1, this confirms the LHS of (13) in
Case 1.

which follows from the fact that iexp{lAfi} is monotone increasing for

Case 2: 1 < u < 4e?. (Recall that k > 4logn).
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Case 2a: > k/logn. Now whp each round adds at least

mje > afe

= /(2¢?)
elements into our independent set.

Furthermore, Lemma 7 and p < 4e? imply that whp the size of the [fmis is
at most 6e%k. So this case can occur at most 12e*logn times.

Case 2b: ¢« < k/logn.

< ———p

= o(1),

provided k — i — oo. In particular this is true for ¢ < A/3. In which case
we can use the analysis of Case 1b. The only problem is that when 7 > 4A,
(k‘iz) p might be large and so cannot used as an approximation for p;.

Let now i, = |A — v/A]. Then

1

aip, ™ = (1+o(1))aion (27)
So when 7 > 5e%i,,
1
aip; Y > wi
> 562ai0
> badou/4,

since p1 < 4e2. This completes the proof of the first part of Lemma 8.

For the second part, it follows from (22) and (27) that whp,
awp, " < (14 0(1))aAp, which confirms the RHS of (14).

For the LHS of (14), consider the following two cases:
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(a) « > A. Since M} > e™!, M, > 0.9 , we obtain from (17) that

1
-1

1
atp, =1 > My Msay > SaA,u.

(b) « < A. From (25) (26) (which are valid for all ) and the fact that

1 exp %A;i} reaches its minimum for i < A at i = A/2,
1
awp, 1 > ?aA/J.
This completes the proof of the LHS of (14). O

With this lemma, we can bound the change of «.

Lemma 9 Whp it takes O(logn) rounds for the size of the independent
set to increase from e~ (k — A)Ou to at least e (k — @)Gu, assuming that
A > 4log’n . Equivalently, it takes O(logn) rounds to decrease v from ©(A)
to O(2-).

logn

Proof We estimate the number of rounds required to increase |M| from
e 'k — A)Ou to at least e~ (k — A')Ou, where k > A = A’logn > 4log”n.

By the previous Lemma and Lemma 5, in each round while |M| < e~ '(k —
A")Ou it increases in size by at least aA’u/10e. So the number of rounds
required is at most 10e(A — A")af/A’. Consequently, only O(logn) rounds
transpire before | M| increases from e~ !(k — A)Ou to at least e ' (k — A")Op.

|

Now we will show that whp in a further O(log®n) rounds, ¢« will be reduced
to two. Then the convergence analysis of the algorithm will be similar to
that in [6].

Lemma 10 If A of Lemma 8 satisfies A < 4logn, then whp after another

O(log®n) rounds ( or O(log®n/loglogn) iterations ), either the algorithm
halts or v drops to two and remains at two for the rest of the algorithm.

Remark 5 Notice that since A < k , this Lemma also takes care of the case
when the dimension k of the hypergraph is smaller than 4logn.
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Proof Since A < 4logn, the size of M will be at least e~ (k—4logn)0u.
Since w.h.p ( Lemma 7) the size of the Ifmis is at most e~ (k+2 logn)0Ou, the

log n

difference is O(plogn) whp. We can assume that p > , for otherwise

the number of elements remaining to be added is O(kizgl—og"n), and they will
be found in O( o) further iterations.

We will now show that if © exceeds two, then whp, in each round we can
add at least [u/logn]| elements into our independent set. This means the
procedure will end in O(log® n) rounds.

Once again let a be the current size of M and b = a/u. We can assume that

po is smaller than 1/1/logn as otherwise, whp the current independent set
is maximal, see (16).

We will break the analysis into two parts. Let

=l B

Now

IN
N
?r'
S
v
k]

Di
e
_ kC [IZ exp{ <k;2)_w<k;1>}]ki[/\\/_]k2
So for ¢ > 2,
o, = > Z/$M1M2M3)\ G=2)G-1)
where
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M, = @W{W<k;i)—w<k;2)y4

M, — l 21 (k — i) ]“

i

(/27 (k — 2))2

We show next that M;, M, and M3 are bounded below by a constant. Now

2wk — 1 o
v (=1

k—i

(V2r(k—2)"

. /27 (k 2)}111
|2k —2)

> M.

So we only have to show that M; and M, are not too small.

But M; > e~! and M, > 9/10 can be proven as in (20), (21) by replacing 7,
by 2.

So

1 —i
aip; "N > Cozi,u/\_(k—g)(i—l) (29)
Case 1: A < logn.
It follows from (29) that for ¢ > 2,

;
aip; 1 > Cu/logn.

Thus m > Cp/logn and then whp at least C'u/(elogn) elements are added
to our independent set. By Lemma 7, we are only going to add O(ulogn)
more elements. Hence this can only happen for O(log? n) rounds.

Case 2. X > logn.
Using (15) and py = o(1) we see that

po > CApFT,
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and so
6_1p2_1 < C’)\_l,u.
on the other hand, (29) implies that

/R k—i
2—pi > CON Gy,
e

Since A = Q(logn), \7' < A_<k—§;<§—1>, for i > 3 and so
I - :
e p,t < 0P b (for > 3).
Hence ¢ = 2. a

When ¢ drops to two, we adapt the analysis in [6]. It can be stated as the
following lemma,

Lemma 11 If . = 2, then whp the algorithm will stop in O(logn) more
rounds.

Proof Let m be the number of elements we pick. From Lemma 5 whp
the algorithm finishes in logn more rounds or the number of elements placed
in M is at least m/e. So if x € X then

Priz¢ NM)] < (1—pp)(") (1 = pp) (&)

< oo (") mn ()]
e

exp{—pa2|p5']/e}
S 671/26.

IN

Thus the expected size of the remaining vertices X shrinks by a constant
factor in each round. So the algorithm finishes whp in O(logn) rounds. O

This completes the proof of Theorem 1.
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especially thank the referee who gave corrections to two places of the proof.
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