Finding hidden Hamiltonian cycles

Andrei Z. Broder* Alan M. Frieze' Eli Shamir?

May 22, 2006

Abstract

Consider a random graph G composed of a Hamiltonian cycle on n
labeled vertices and dn random edges that “hide” the cycle. Is it pos-
sible to unravel the structure, that is, to efficiently find a Hamiltonian
cycle in G?

We describe an O(n?logn) steps algorithm A for this purpose, and
prove that it succeeds almost surely. Part one of A properly covers
the “trouble spots” of G by a collection of disjoint paths. (This is the
hard part to analyze.) Part two of A extends this cover to a full cycle
by the rotation-extension technique which is already classical for such
problems.

1 Introduction

Graph theoretic algorithms typically involve a search for a subgraph of the
input graph that satisfies certain given properties. Often the associated de-
cision problem (i.e. deciding whether such subgraph exists) is NP-hard al-
though the search problem is easy most of the the time if the input graph is

*DEC Systems Research Center, 130 Lytton Ave, Palo Alto, CA.

"Department of Mathematics, Carnegie-Mellon University. A portion of this work was
done while the author was visiting DEC SRC. Supported in part by NSF grant CCR
0890012.

iThe Institute of Mathematics and Computer Science, Hebrew University, Jerusalem.
A portion of this work was done while the author was visiting DEC SRC. Supported in
part by grant 438/89 of the Israeli Academy of Sciences.

chosen according to some natural probability distribution. This clearly de-
pends both on the given distribution and on the ingenuity of the algorithm.

In this article we study the “hidden structure” version of such a search
problem, that is, we are given a graph G that is known to contain a Hamilto-
nian cycle H, “hidden” among a relatively few additional random edges that
by themselves are not likely to induce a Hamiltonian cycle. Our goal is to
find some Hamiltonian cycle in GG, not necessarily H. A preliminary version
of this paper has appeared in [4].

More precisely, a random graph G' = (V, E) in this problem is defined by
n labeled vertices and the following set of edges:
(i) The n edges forming a specific Hamiltonian cycle.
(ii) The edges obtained by choosing each pair of distinct vertices {i,j} C V
to be an edge with probability d/n, independently for all pairs.
We assume that d is a constant. (Our algorithm extends easily for the case
when d is a growing function of n. We omit the details here.)

Condition (ii) alone defines the Erdds-Renyi space G(n,p), and for the
given p = d/n, the graphs in this space are typically sparse with about dn /2
edges. The class of graphs in G(n,d/n) that are Hamiltonian has a negligible
probability as n — oo.

Condition (i) means that we apply a “magnifying glass” to boost this
probability to 1, and now ask for an efficient search algorithm that that will
a.s. (almost surely) produce some Hamiltonian cycle in G. The literature
of recent years abounds with search algorithms for Hamiltonian cycles in
random graphs ([1, 2, 3, 9, 10, 11, 17]), but all the prior methods work only for
much denser graphs or sparse but regular graphs, and are not directly useful
for our problem. We present a new algorithm, which finds a Hamiltonian
cycle a.s., in the more demanding situation when the input space is defined
by (i) and (ii).

There are several motivations for the hidden structure algorithms:

1. Customized algorithms. Usually the search algorithms for random graphs
rely heavily on the statistical properties of the input space and to a great
extent proceed locally from step to step with no regard to the global input.
If one makes more stringent demands (e.g. very small failure probability,
or small expected time) then a correct algorithm must scrutinize individual

inputs more carefully. The hidden structure algorithm for Hamiltonian cycle
goes to the extreme in this respect; its success depends on a careful initial
handling of all “trouble corners” of the input graph. Practical experience
shows that this is a very good heuristic.

2. Practical considerations. Several hidden structure problems were studied
before: minimum bandwidth [18], minimum bisection [5, 6, 7], maximum
clique or maximum independent set [12], k-coloring, bisection-width, graph-
partitioning, 3-partition [7]. One reason for this interest is that graphs that
arise in practical applications (say VLSI design) tend to have a hidden struc-
ture (e.g. small bisection) that random graphs of the same density do not
possess. Hence random graphs with hidden structure are more suitable mod-
els for studying expected or almost sure behavior of algorithms for hard
search problems.

3. Cryptography. Modern cryptography is based on the concept of one-way
functions, which are functions easy to compute (encryption) but hard to
invert (decryption) on most instances. Common constructions for one-way
functions are based on the conjectured difficulty of certain number-theoretical
questions. The ability to invert a one-way function often constitute the
essence of an authentication scheme.

It is natural to try to use an NP-hard problem for the same purpose.
The encryption mechanism in this case would be to construct a random
instance of an NP-hard problem with a known solution. The authentication
protocol would be to present a solution to the given instance. For this scheme
to be secure, the generated random instances should be hard on average.
(Our discussion of cryptography here is necessarily brief and superficial. The
interested reader should consult the rapidly mounting literature in this field.)

In particular, to use the Hamiltonian cycle problem for this purpose, one
needs a probabilistic, polynomial-time algorithm for generating a hard-on-
average distribution of solved instances; that is, the encryptor must be able
to generate random (G, H) pairs in such a way that an adversary, upon seeing
G, almost surely cannot compute H (or any other Hamiltonian cycle H' in
G) in polynomial time.

A natural scheme to try is the one studied in this paper: Pick a ran-
dom Hamiltonian cycle on n vertices, and add to it random edges, chosen
independently with probability of existence d/n. (Observe that if d > Inn

then almost surely G contains a Hamiltonian cycle made exclusively out of
random edges and this cycle can be found in polynomial time [3].) Our al-
gorithm shows that this generation scheme will not work for d greater than
some constant: anyone who sees the graph G can, with high probability, find
a Hamiltonian cycle H' in polynomial time. This adds to the rising evidence
that combinatorial hidden structures (unlike the number theoretic ones) are
much more prone to fail in a cryptographic sense, that is, they are easy to
unravel.

1.1 Informal description of the algorithm

The approach behind our algorithm can be described as follows: if all vertices
had large degree then it would be easy to prove that the graph G almost
surely (a.s.) had a Hamilton cycle. We avoid the problem caused by the
set of vertices X, of “low” degree by finding a collection of vertex disjoint
paths P such that each x € X is an internal vertex of a path in P. We can
then “shrink” the paths P to (required) edges. All vertices in V' \ X, have
“high” degree and the problem is solved. Unfortunately, shrinking P implies
the deletion of edges incident with Xy, causing some vertices in V' '\ X, to
become of low degree. We avoid this by replacing X, by a slightly larger set
X which has the property that any vertex not in X has few neighbours not
in X. X and P are constructed in Phases 1 and 2. (See [9] for a similar
construction.)

The problem has now been reduced in essence to finding a Hamilton cycle
in a random graph with vertices of high degree but only a linear number of
random edges. We now use a version of the extension-rotation algorithm in
which some (randomly chosen) green edges are only used for extensions. This
strange artifact is needed in the proof of correctness of the algorithm (see
also [9, 10]). We strongly suspect that this “trick” is unnecessary, but we
cannot at present do without it.

Figure 1: Construction of X.

2 The algorithm

We assume that the input consists of graph G = (V, E') which is built from a
Hamiltonian cycle H plus a random graph drawn from the distribution G,, j,
with p = d/n, with d greater than some large constant dy.

The algorithm is divided into 4 phases.

Phase 1. Let K be a fixed large integer. (For instance, K = 100 will do.)
Let Xo = {v € V | d(v) < d/4}, where d(v) is the degree of v in G. Define
X; = Xo U {®y,x9,...,2;} iteratively by choosing x;,1 to be any vertex for
which there are K independent (no common endpoints) edges, ey, . .., ex and
K other edges, fi,..., fx such that for j =1,2,... . K

€; N)(Z 7& @
le; N fil = 1 (1)
Tiy1 € f;

(see Figure 1.)

Let X = X(G, K) be the final set of vertices produced by this subrou-
tine. Note that X does not depend on the order in which vertices are added
since once a vertex becomes eligible for addition to X; it remains eligible for
addition to X; 1, X;.0, ..., until actually added.

Phase 2. Let Ex be the set of edges incident to X, in other words Ex =
{ee E|enX #0}. Let Gx be the graph with edge set Fx. (We shall
prove that Gx is a.s. composed only of trees and unicyclic graphs.)

Construct a set of vertex disjoint paths P = { Py, P,, ...} such that
(i) If x € X then x is an internal vertex of one of the P;.
(ii) All paths are fully contained in Ex.
(iii) For any two consecutive vertices on a path, at least one vertex is in X.
Thus all paths have endpoints not in X.

We shall show that given the above of structure of Gx and the fact that
GG is Hamiltonian, this construction succeeds in quadratic time.

Let Y denote the set of internal vertices on the paths in P. We shall see
later (see Remark 2) that a.s. every v ¢ Y has at most K neighbors in Y.

Delete all edges in Ex from G, except for the edges belonging to any path
P;. Denote the resulting graph G’. We shall show that G’ is connected, and
furthermore all vertices in G’ \ Y have degree at least d/4 — K > d/5.

(The final Hamiltonian cycle produced by our algorithm is contained in
G’ and will include all the paths found in this stage, unbroken.)

Phase 3. Color each edge e € E(G') randomly green or blue with equal
probability. If a vertex v € G’ has less than d/4 blue edges incident to it,
recolor all the edges incident to it blue. Let Gy, = (V,E,) be the graph
constructed from the blue edges and let E; be the set of green edges.

Phase 4. Now we find a Hamiltonian cycle, by constructing an increasingly
longer path in stages.

Suppose that in stage r we have a path P of length r such that, for every
P, € P either
(i) P; is a subpath of P,
or
(i) P; is disjoint from P.

Are we off by
one here?
There can not
be two
triangles with
a common
endpoint, but
what if H
contains
v,a,b,c, ...,
(in this order)
and a, b have
no other
neighbors.
Now a,b € X
but I can not
count both a
and b in the
construction
(I try to put
v in X) since
the
corresponding
edges are not
independent.

Vo LUy Vo Uy

UVt Vg1 Vg Vg1

Figure 2: Rotations

A rotation in P = (vg,vy,...,v,) consists in adding an edge {v,,v;} and
removing the edge {v;, v;41}. See Figure 2.

Stage r part 1. Let vy be one end of P. Keeping vy fixed do rotations in
an arbitrary order under the following restrictions:

a. Only blue edges can be used as rotations edges.
b. An edge can be used at most once as a rotation edge.
c. A vertex other than vy, can become an endpoint at most once.

d. The removed edge, is not an edge of some P;.
until one out of the three situations below happens:

(i) A path is found whose other endpoint (not vy) is adjacent in G to some
vertex y not in P. If y is an endpoint of some P; then add the whole
of P, to P and go to some stage > (r + 3); otherwise just add y to P
and go to stage r + 1. (Observe that here green edges might be used.)

(ii) A path is found whose endpoints are adjacent in G. Either we found a
Hamiltonian cycle or by connectivity in G’ we can find a longer path
without breaking the P;’s contained in P and thus go to stage r + 1.

(iii) We run out of legal rotations to do. In this case proceed to Stage r part
2.

Stage r part 2. Now we have a (large) number of paths Q1, Qs, . . ., each of

length r, and each with an endpoint vy and (after some deletions) a different
endpoint v;. Fori=1,2,... take @);, fix v;, and run the procedure described

7

in Stage r part 1, but without further recursion. Thus if we reach case (iii)
above for all the); then the algorithm fails.

The running time of the algorithm is dominated by Phase 4. In Part 1
of a stage we do O(n) rotations, and each rotations can be carried out in
O(logn) time (see Angluin and Valiant [1]); Part 2 requires O(n) times as
much work as Part 1; There are at most n stages. This justifies a time bound
of O(n3logn).

3 Proof of the algorithm

In all what follows we assume that d is greater than a sufficiently large
constant and at most 2Ilnn. Other constants were chosen for convenience
and no attempt was made to optimize them.

Throughout the proof we use the following bounds on the binomial dis-
tribution B(n,p) without comment. For 0 < e <1

2

Pr(B(n,p) < (1 - ¢)np) < €2

2

Pr(B(n,p) > (14 €)np) < e3P,

W=

For a > 0 anp
Pr(B(n,p) > anp) < (E) :
oY
Let ng = ne™'% and p = d/n. The notation [i] stands for the set

{1,2,...,i}.

Lemma 1
Pr(|Xo| > ng) < e .

Proof: By definition X is the set of vertices in G that have degree at most
d/4 and therefore must have degree less than (d/4 —2) in G \ H. Therefore

Pr(|Xo| > ng) < (:) Pr([ng] € Xo).

0

But if [ng] € X then any vertex in [ng] has at most (d/4 — 2) neighbors in
[no + 1,n]. Hence

no
n n—no\ , e
Pr(X| > no) < () 5 (. °)pz<1—p>" :
N0/ \o<i<d/a—2 t

1—d/4\ "0
n e—nod/4 < ne /
Un - Un

e—nod/lo S e~ 1o

IN

IN

Lemma 2 [f« is such that1 < a < d/10, then any non-empty set of vertices

S CV, of size
n [/2a\ a1
— |85 < — (=2
s=| ‘_2€<€d>

a.s. spans no more than as edges in G.

Proof: Suppose a set S of s vertices spans at least as edges. The edges
in SN H form a set of ¢ disjoint paths of lengths s1,s5,...,5 > 0, where
1<t<s,and s; + 83+ -+ s = s —t. The number of choices for these
paths is at most (Ttl) (jj) There are also at least (v — 1)s + ¢ random edges
in S. So if we let 6 = a — 1 then

ez 2 ()R =
()G

S Y w=0m").

2<5<10d 1<t<s

where

Now

We can therefore assume that s > 10d. In this case

Ugpr m—t (;)—55—75 d
w t+1 fBs+t+1 n

9

Hence

>y < 2u,

1<t<s

Pr(35) < 2<n> ()()
(1 (F)') ?

((s o— 126a+1d0‘>8

= 92 —

n 20
36

So =

07 9¢ \ed ’

> (O) -~

10d<s<so

and

IA
N

Finally, let

and observe that

Lemma 3
Pr(|X| > 5ng) < 2e™™

Proof: Define X; inductively by
Xi:Xi_1U€1Uf1U...U€KUfK

(here we see each edge as a 2-element subset) and let E; = {edges e C X;}.

Then
2K

K+1
is easily proved by induction on ¢. Hence

| E| 2K | X0
> —71-
1 X;| — K+1 | X5

7 (Xl = [Xol) < [Ei|

10

Figure 3: Linked cycle pairs.

Suppose that | X| > 5ny. Now | Xy| < ng with probability at least 1 —e™"0
and so we may assume that at some point 5ng < |X;| < 5ng + K. But then
| E;| 2K 4 _ 16

> 2> &
|1 X;|] " K+1 5715
if K > 2. Applying (2), the probability of this is at most e~ and the lemma
follows. O

Definition A linked cycle pair consists of two cycles joined together. (See
figure 3) Such a pair can be viewed as a path vy, ..., v plus two extra edges,
{vi,v;} and {vj, v} with 1 <4,5 < k.

Lemma 4 The graph G a.s. does not contain any linked cycle pair S such
that | Xo NS| > | S| /10.

Proof: Lemma 1 implies that we can assume |S| < 10n.

Let s = |S|. We view S as a path P plus two extra edges, being made
out of a set of ¢t subpaths of H with lengths s1,s9,...5; > 0 plus £ 4+ 1 edges
from G\ H.

Therefore
o (n)(s—1 d\"
E(# linked cycle pairs) <> (t) (t B 1)322t+2(t—|—2)! (ﬁ) > w(A).
=1

ACS
|Al>s/10

where 7(A) is the probability that some fixed set A is contained in X, that
is that all vertices in some fixed set A have at most d/4 — 2 neighbors in

G\ H.

11

Explanation of the inequality: consecutive terms estimate choices for
starts of sub-paths of H; choices for si, s, ..., s;; choices for the extra edges
uy and ug (if a u edge is in H, then the corresponding subpath of H splits into
two subpaths); direction and ordering of the subpaths along P; probability
of the ¢ + 1 random edges; probability that the vertices in some A are in X.
Observe that not all choices result in legal configurations.

Clearly m(A) < e~441/10. Hence

s

¢ NG
E(# linked cycle pairs) <) n—25322t+2(t + 2)! (—) 25¢~51/100
n

— !
1 S
< = Z 85(8 + 2)4dt+16—sd/100 (3)
niz
< lSSH(s 4 2)4ds+16—sd/100
- n
Note that -
- Z 8s+1(s + 2)4ds+1€—sd/100 _ 0(1)
n s=1

for sufficiently large d. O

Remark 1. The estimate in (3) shows that if s < $log,n then there are
a.s. no linked cycle pairs, regardless of how many vertices of X, they might
contain. In particular, there are a.s. no two triangles with a common vertex.

Lemma 5 The graph G a.s. does not contain any linked cycle pair S such
that | X N S| > |S] /5.

Proof: Let s = |S|. We can assume by Remark 1 and Lemma 3 that
1000 < s < 25ny.

Suppose that G contains such a linked cycle pair and that s is as small as
possible. Let S consist of a path P plus two extra edges e, ey as in the
previous lemma. We start by proving the following

12

Claim 1 For any vertex v € V' there are at most 20 distinct paths of length
1 or 2 which begin at v and end in SN X.

Proof: (of claim) Suppose that v is the endpoint of 20 paths of length at most
2 to SN X. (The number 20 was chosen for convenience.) Let the endpoints
in SN X be xy, 29, ...29 where x; precedes x;,1 on P for 1 < i < 20. Let
Q;, for 1 <1 < 20 denote the subpath of P joining z; to z;;1. It follows
from Remark 1 that at most one of these paths has length less than 100. At
most 6 contain an endpoint of e; or e;. Also if v € S at most 2 of the x; can
be neighbors of v on P. We can therefore find ¢ such that both of the paths
Q¢, Qi1 are of length at least 100 and neither contains an endpoint of e; or
€9.

Assume now that in fact ¢ = 1. Let §;, for 7 = 1,2,3 be the number of
internal vertices of the path P; from v to z;. (Thus ; =0 or 1.) Let § =1

if v g S and 6=0if v € §. Let); contain k; internal vertices out of which
k; x belong to X. Let kx be the number of vertices in S U X.

Consider the set of vertices S; in PyUP,UP;UQ;UQ,. Now |S;| < s and
S7 contains a linked cycle pair. Also S; has at most k; + kg + 01 + 9o+ 93+ 4
vertices, out of which at least ki x + k2 x +3 belong to X. Since S is minimal,

ki+ko+01+d0+0d5+4 S
k17X+k327X—|-3 -

5. (4)

Now consider the set of vertices Sy in (S'\ (Q1 U Q2)) U {x1, 23} U P U Ps.
The set Sy also contains a linked cycle pair and |Ss| < s. Furthermore S,
has at most s — (ky + ko + 1) 4+ 01 + 03 + J vertices out of which at least
kx — (k1x + ko x + 1) belong to X. Hence

s—(hithk+1)+0+0+0

5. 5
kx—(kl,x+k27x+1) - ()

But (4) and (5) imply that

5]€X S+2(51+(52+2(53+5—7

<
< s-—1

This, of course, contradicts ky > s/5, and concludes the proof of the claim.
O

13

Continuing with the proof of the Lemma, now let S; = (X \ Xo) NS, It
follows from Lemma 4 that we may assume |S;| > s/10.

Next let
N, ={z e X\ S :distg(z,S)) =i} i=1,2.
Also let

5171 = {ZL‘ €5 diStg(ZL‘,Nl) = 1}
5172 = {l’ S \ 51’1 : diStg(l’,Ng) = 2}

Observe that because K is greater than 20, Claim 1 implies that S = 57, U
S1.2, and therefore at least one of | Sy 1| or |S; 2] is no less than s/20.

Case 1: |S11]| > 5
Let X' = X(G\ S, K —20). We argue now that

NCXnScXx (6)

Consider the construction of X (G, K) = Xg, 21, s, ..., x, and the construc-
tion of X’. Observe first that X’ O Xy(G \ S). We can assume that
when constructing X’ we always try first to add the lowest indexed z; &€ S.
We always succeed here, for if we have added {z,zs,...,2;_1} N S and
e1,...,¢ex, f1,..., fx are the edges associated with the addition of z; to
X(G, K) then removing S eliminates at most 20 pairs e;, f; (Claim 1). This
completes the proof of (6)

Now it follows from Claim 1 that we can find a subset 7, C 511,57 ,| >
551511 > 735 and a subset N{ C Ny, |Nj| = |S] ;| and a bijection ¢ : 57, —
N such that G contains the edges {(v, p(v))}.

We can now proceed as in the proof of Lemma 4 except that we replace
m(A) by 7'(A), which is the probability that exists B C X’ such that |B| =
|A|, and there exists a bijection ¢ : A — B such that Vv € A, (v,¢(v)) € G

But, where a = |A|,

= Bl Yoo (D)

b=0
< a4ada€—ad/15 < 6—ad/20

14

Here b refers to the number of edges (v, ¢(v)) which are in H and the term
e %/15 arises as follows: having fixed S, B, the edges inside S, and the

edges between S and B, we can argue that, by symmetry, X’ is a random
| X'|—subset of S and so

Pr(BCX') = Ep ((p(i')/(nf))

< Pr(BC X'||X'| <5(n—s)e 410
+ Pr(|X'| > 5(n — s)e”410)
X' -
< Ey <<| |>/<n s) ||1X'] < 5(n — S)e—d/m)
a a

—d/10

+ 26—(71,—3)@
< (5€—d/10)a + 26—(71—5

Yye—d/10 < 6—ad/15

The rest of the proof for this case is as in Lemma 4.
Case 2: [S1| > 5

It follows from Claim 1 that we can find a subset 515 C 51, with |S] 5| >
51,2|/40 > 5/800 and Ny € N, such that there is a set of | Ny| = [S] 5| vertex
disjoint paths of length 2 from N, to S} ,. Since K > 24 we can furthermore
assume that none of the edges of these paths are part of the cycles Cy,Cs
even though the internal vertices may actually be in S.

We can then proceed as in Case 1 with 7'(A) replaced by 7”(A) defined
as the probability that there exists By, Bo C V with |B;| = |By| = |A|, such
that By C X (G \ (SU By), K —20), and there exists bijections ¢; : By — A
and ¢q : By — By such that Vv; € By, i = 1,2) : (v, ¢1(v1)), (v2, d2(v2)) € G.

Letting b; run over the number of edges (v;, ¢(v;)) which are in H for
1= 1,2 we find that

< ey
" éo (@ > (a . b2> (a=b2)! (i)a_bz e/

< a216ad2a€—ad/15 < 6—ad/20

and this completes the proof of the lemma. O

15

A path cover of X is a set of vertex disjoint paths containing X all of
whose endpoints are outside X. Lemma 5 implies that a.s. each component
of the graph Gx defined at the beginning of Phase 2 is either a tree or a
unicyclic graph. (If not we have a linked cycle pair S with SNX > |5]/5.)
For such graphs there are fast dynamic programming algorithms for finding
a path cover of the interior points, if one exists — linear for trees, at worst
quadratic for unicyclic components. The argument here is even simpler than
in [9], Lemma 3.2. On the other hand G'x contains a path cover of X because
G is Hamiltonian.

Lemma 6 Any set S C V \'Y, whose size satisfies

n
1<|8|<—
< 15]= 50e3(K + 3)3’

almost surely has
[No(S)| > (K +2)]5],

where Np(S) ={w ¢ S| Fv € S, {v,w} € E,(G)}.

Proof: Suppose that there exists S C V \ Y with |[Ny(S)| < (K + 2)|5|.
Then if T'= S U Ny(S) we have

T < (K +3)|5]
and T spans at least 15|S| edges in G, and hence in G as well.
Assuming d is large and applying Lemma 2 with o = mK%‘lJrzo we see that

we must have
d/(d—10K—30)
d 2
7 - 2 ()

2¢ \ 10K + 30 ed

n 1 2
~ 2 (56(1(T 3))

and the result follows. O

Remark 2: Suppose v € Y (recall that Y is the set of vertices internal to
the paths in P.) Then we claim that v has at most K — 1 neighbors in Y,
since any v that has K neighbors in Y then v is in X by construction. (We
need to use the fact that no two triangles share a common vertex, a.s. — see
Remark 1.)

16

Are we off by
one here? See
the side note

on page 6.

Lemma 7 The graph G’ obtained at the end of Phase 2 of the algorithm, is
almost surely connected.

Proof: Suppose that G’ has a component A of size < n/2. For each path
P € P we see that A contains all of the vertices of P or none of them. Now
consider A’ = A\ Y. If | 4| < n; = n/(50e3(K + 3)3) then from Lemma 6,
A’ has at least (K + 2)|A’| neighbors outside |A’|. But at most (K — 1)|A’|
of these can be in ANY (Remark 2.) This deals with |A| < ny. For |A| > ny
observe that if S : S denotes the set of H-edges with one end in S then

Pr (EIA st. [Al=a,nm <a<1in and |[A: Al <a(n- a)d/(2n))

= e ()

< pon dn
n €ex —
= P\ 750063 (K + 3)3

IA

= o(1)

Thus we can a.s. assume that |A : A| > ny(n —ny)d/(2n).

On the other hand we are unlikely to have deleted this many edges in
going from G to G'. Observe

Pr (EIS s.t. [S] < 5ng and |S : S| > ny = tny(n — nl)d/(2n))

5O

1<s<5np \° ni(n —ni)

and the lemma follows as we have only deleted edges of G incident with X
and Lemma 2 implies that X a.s. meets less than %ng edges. O

To complete our analysis we need to estimate the failure probability in
Phase 4. Assume that in a certain stage r < n the algorithm failed, that
is all legal rotations were exhausted and no cycle closing was possible. Let
P be the path used in stage r part 1. Let the endpoints of P be vy and v,
and let END(vy) denote the endpoints found when rotating with v, fixed.
Similarly, for each v € END(vy) let END(v) be the endpoints found when

17

rotating with v fixed in stage r part 2. Clearly the failure of the algorithm
means that

Vo € {vg} UEND(vy)

w € END(v) = {v,w} ¢ E(G); (7)

otherwise a cycle extension applies.

Let x,y, z be three consecutive vertices within the initial order of a path
@ with endpoint v fixed. Pdsa [14] observed that if w € END(v) and y €
N(w) \ END(v), and all rotations are allowed, then one of x or z is also in
END(v). In our case we need to take into account that only blue edges are
used for rotations, and rotations that split the P; subpaths are not allowed.
But since we took care to insure that a vertex in END(v), has at most than
K neighbors in Y in G, a fortiori it has at most K neighbors in Y in G,.
Hence

INy(END(v)) N Y| < K [END(v)

Consider now the initial ordering of the path @ with endpoint v fixed.
By Poésa’s argument the number of vertices in N,(END(v)) \ Y is at most
2 |END(v)|. Therefore

Vo € {vo} UEND(vy)

[No(END(v))| < (K +2) {END(v)} (8)

and so by Lemma 6

Vo € {vo} UEND(vy)

IEND(v)| > SIS (K T3P (9)

We can see immediately that (7) requires en? non-edges for some constant
¢ > 0 (independent of d) and this event is unlikely even for the sparse random

graphs that we consider. The precise way to make these estimations follows
the techniques from [8], [9] and [10].

Observe that after converting G into a blue-green instance in Phase 3,
the rest of the algorithm is deterministic and actually uses at most n green
edges, because each use of a green edge results in an extension. Let U be the

18

If the premise
is true (see
my previous
side note)
then it
actually
follows that
|Ny(END(v))
nY|

< K |END(v)|
Why
2|END(v)|?
At first blush
it seems that
it should be
3|END(v)]|.
Each
yeNw)\
END(v) must
have a
neighbor in
END(v);
hence each

z € END(v)
contributes
two vertices
to N(w) \
END(v),
hence

[N(w)| <
3|END(v)|. Is
there a better
argument?

set of green edges used by the algorithm up to stage where it fails. Call a
set D C E, of [Inn] green edges, deletable from E, if it is disjoint from U.
Clearly if D is deletable, the run of Phase 4 using E, \ D instead of E, is
identical to the run using £,.

By conditioning we may assume that we work in a random graph model
with a fixed number of blue and green edges (about nd/4 each). For the
purpose of the failure probability estimation only, we delete a random set D
of I = [Inn] green edges and consider the following two events:

&1 = All the a.s. properties described in the lemmas hold and yet the algo-
rithm fails.

E, = & and D is deletable.

We shall prove that as n — oo
Pr(&; | &) > (1 - 0(1/d))', (10)
and
Pr(&) < (1—¢), (11)
for a certain constant e.

We can then use

Pr(&)) < Pr(&)/ Pr(& | &).

The proof of (10) is easy since |E,| is about nd/4 and D has to avoid at
most n edges of U. To prove (11) notice that if & holds then the algorithm
fails on G and G\ D in exactly the same way and at the same stage r. In
other words, if we condition on G'\ D, the event & holds only if the addition
of [random green edges to the graph in stage r does not allow continuation
to stage r+1. But that means that the added green edges do not fall into any
of the en? forbidden spots, which happens with probability at most (1 — ¢).

4 Open problems

A more careful analysis would probably yield a smaller lower bound on the
minimum density required for the algorithm to work. However, the approach

19

presented here is not likely to be extendable to the situation when the input is
a Hamiltonian cycle plus a random perfect matching or to similar very small
degree inputs. The former problem appears to be amenable to an attack
based on recent results of Robinson and Wormald [15] [16] (Jerrum [13]).

Acknowledgement

We would like to thank Joan Feigenbaum who greatly helped us understand
and expose the connections between the question considered here and zero-
knowledge protocols. We would also like to thank Tomasz Luczak whose
comments have helped to make the paper a little more readable.

References

1]

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamilto-
nian circuits and matchings. Journal of Computer and System Sciences,
18:155-193, 1979.

B. Bollobas. Random Graphs. Academic Press, 1985.

B. Bollobas, T. I. Fenner, and A. Frieze. An algorithm for finding Hamil-
ton paths and cycles in random graphs. Combinatorica, 7:327-341, 1987.

A. Z. Broder, A. M. Frieze, and E. Shamir Finding hidden Hamiltonian
cycles In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, pages 182-189, May 1991.

R. Boppana. Eigenvalues and graph bisection: An average-case anal-
ysis. In Proceedings of the 28th Annual Symposium on Foundations of
Computer Science, pages 280-285, October 1987.

T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection
algorithms with good average case behavior. Combinatorica, 6, 1986.

M.E. Dyer and A. Frieze. Fast algorithms for some random np-hard
problems. Journal of Algorithms, 10:451-489, 1989.

20

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

T. I. Fenner and A. Frieze On the existence of Hamiltonian cycles in a
class of random graphs. Discrete mathematics, 45:301-305, 1983.

A. Frieze. On the exact solution of random traveling salesman problems
with medium-sized integer costs. SIAM Journal on Computing, 16:1052—
1072, 1987.

A. Frieze. Finding Hamilton cycles in sparse random graphs. Journal
of Combinatorial Theory B, 44:230-250, 1988.

Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian
path problem. SIAM Journal on Computing, 16(3):486-502, 1987.

L. Kucera and S. Micali. Cryptography and random graphs. Unpub-
lished manuscript, 1988.

M.R.Jerrum. Private Communication’

L. Pésa. Hamiltonian circuits in random graphs. Discrete Mathematics,
14:359-364, 1976.

R.W.Robinson and N.C.Wormald. Almost all cubic graphs are Hamil-
tonian. Random Structures and Algorithms 3 (1992) 117-126.

R.W.Robinson and N.C.Wormald. Almost all regular graphs are Hamil-
tonian. Random Structures and Algorithms to appear.

E. Shamir. How many edges make a graph Hamiltonian? Combinatorica,
3:123-132, 1983.

J. S. Turner. On the probable performance of heuristics for bandwidth
minimization. SIAM Journal on Computing, 15(2):561-580, 1986.

21

