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Abstract

Let H = (W, F) be a graph without multiple edges, but with the
possibility of having loops. Let G = (V, E) be a simple graph. A ho-
momorphism c is a map ¢ : V — W with the property that (v,w) € E
implies (c(v),c(w)) € F. We will often refer to c¢(v) as the colour of v
and c as an H -colouring of G. We consider the problem of choosing a
random H-colouring of G by Markov Chain Monte Carlo. The proba-
bilistic model we consider includes random proper colourings, random
independent sets and the Widom-Rowlinson and Beach models of Sta-
tistical Physics. We prove negative results for uniform sampling and
a positive result for weighted sampling when H is a tree.

1 Introduction

We consider a class of graph labellings which are the natural generalisation
of well-studied problems such as proper k-colourings and independent sets.
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These labellings arise as homomorphisms from a fixed graph H to the target
graph G.

To be precise, let H = (W, F') be a graph without multiple edges, but with
the possibility of having loops, with h = |W/|. Let G = (V, E) be a simple
graph, with n = |V|. A homomorphism c is a map ¢ : V — W with the
property that (v,w) € E implies (c(v),c(w)) € F. We will often refer to
c(v) as the colour of v and c as an H-colouring of G. As an example, when
H is the complete graph K, with no loops, a homomorphism c defines a
proper s-colouring of G. As a second example, when H is a single edge
(v, w) plus a loop (w,w) then ¢~ !(v) defines an independent set of G and the
H-colourings are in 1-1 correspondence with the independent sets of G. A
third example is when H is a path of two edges with a loop on all vertices.
Then a homomorphism c¢ defines a Widom-Rowlinson configuration on G, as
studied in statistical physics [2].

Such H-colourings have been considered by several authors. For example,
it was shown by Hell and Nesetfil [12] that deciding whether or not there
exists at least one H-colouring is NP-complete unless H has at least one loop
or is bipartite. Otherwise the decision problem is (trivially) in P. Dyer and
Greenhill [8] have recently shown that counting the number of H-colourings
is #P-complete unless every component of H is a complete graph with all
loops present or a complete bipartite graph with no loops present. Otherwise
the counting problem is in P. Moreover, the #P-completeness remains true
if G has bounded vertex degrees. This is in contrast to the decision case,
which seems rather more complicated in the bounded-degree case. See [11]
for further information.

Here, we focus further on the problem of counting H-colourings, or more
generally determining a “weighted sum” over all configurations, as in the
partition functions of statistical physics. (See, for example, [2].) Given the
negative results of [8] it is of interest to consider algorithms which try to
estimate approzimately the number of H-colourings of GG, in particular using
methods of randomized approrimation. Here the class of H-colouring prob-
lems is interesting, both because it contains problems which are important
in their own right, but more generally because it provides a “test bed” for
existing approaches to randomized approximate counting. In this respect, it
is well known that positive results can be obtained for many H if we are able
to generate a (nearly) uniform random H-colouring in polynomial time, i.e.



in time polynomial in n = |V|. We will not examine here the precise condi-
tions on H needed for this to be true. See [14] for fairly general conditions,
or [7] for the weighted case.

There have been several attempts along these lines for specific graphs H,
e.g. [13, 17, 15, 9]. In all cases an ergodic Markov chain M is constructed
with state space () equal to the set of H-colourings of G. Furthermore, the
steady state distribution of M is uniform. This is usually called the Markov
chain Monte Carlo (MCMC) method.

In [5], Dyer, Frieze and Jerrum proved two negative results for the case of
generating a random independent set of G by this method. (As previously
remarked, this is a special case of H-colouring.) Our first result below is a
generalisation of the first theorem given there, and the following definition
follows that in [5].

A Markov chain M on Q is d-cautious if h(c,c’) < d whenever it is possible
to make a transition from c to ¢ in one step of the chain. Here the quantity
h(c,d) = |{v € V : ¢(v) # c/(v)}| is the Hamming distance between ¢ and c'.
Many chains that have been analysed in this connection are d-cautious with
d = O(1), i.e. bounded independently of n.

First observe that if H is not connected, then no d-cautious chain with d < n
can be ergodic on (2, since it cannot move between colourings corresponding
to different components of H. This could be overcome simply by running a
different chain for each component. But either way we may as well assume
H is connected. A similar difficulty arises when H is bipartite with no loops,
in which case we may as well assume G is bipartite, since otherwise (2 is
empty. Since the bipartition (Wy, Ws) of H can be assigned to the bipartition
(V1,V,) of G in two ways, no d-cautious chain with d < n can be ergodic on
), because it cannot move between these two distinct sets of colourings.
Again this could be overcome by considering these two sets separately. So,
to handle this triviality, let us call M semi-ergodic if it is ergodic on both
01,y C Q, where

QG={ceQ:c'(V)CW,;, ¢c'(VB) CWs,;} (i=1,2).

Then we will show that it is not sufficient to remove this obvious obstruction
to rapid mixing. We prove the following negative result, ruling out a large
class of Markov chains with which one might try to sample H-colourings:



Theorem 1 Suppose H is connected and has at least one loop, but is not
a complete graph with a loop on every vertex. Then there exist constants
E=¢H) >0, =C((H) > 1, and a positive integer o = ro(H), such that
the following is true:

For every &n-cautious ergodic Markov chain M with uniform steady state on
the set Q) of H-colourings of G, there exist n-vertex r-reqular graphs for all
r > 1o such that the mizing time of M 1is at least (™.

If H is a connected bipartite graph, but not a complete bipartite graph, then
the corresponding statement holds for semi-ergodic chains on each of the sets

Q1, Qs defined above.

Note that the emphasis on either bipartiteness or having at least one loop is
to avoid the complexity issue of finding at least one colouring to initiate the
chain. Besides, if we cannot determine if the number of colourings is zero
or not, we obviously have no hope of computing any finite relative approxi-
mation to that number. Note also that there is more than one definition of
mixing time of a Markov chain, but we may observe that our theorem seems
insensitive to the exact choice of definition.

We prove Theorem 1 in section 2. In section 3, we consider the ergodicity
of the Markov chain which “recolours” one vertex at a time. This is often
called the Glauber dynamics. We give necessary and sufficient conditions for
the chain to be connected on all graphs G of sufficiently large, but bounded,
degree in the case where H has a loop or is bipartite. (Without this as-
sumption, we would be unable to find any H-colouring in the worst case,
so ergodicity is a less interesting question.) Our theorem for the case where
H has a loop (Theorem 2) was first proved by Brightwell and Winkler [3],
as part of a longer theorem concerning Gibbs measures on graphs. We give
a proof for completeness and to establish notation for our discussion of the
bipartite case.

Positive results which hold for all graphs of large degree seem hard to come
by. Nevertheless, in section 4, we construct a sampling algorithm for suitably
weighted configurations in the case where H is a tree with a loop on every
vertex.



2 Proof of Theorem 1

We consider any Markov chain which does not change the colour of “suf-
ficiently many” vertices at each step, whose asymptotic distribution is the
uniform measure on the set of colourings of a suitably chosen graph G. We
identify a set of colourings of of G of measure at most %, such that the
“boundary” of this set for the transitions of the chain has very much smaller
measure. Thus, if started in such a set, the chain will effectively “get stuck”,
since it has only a small probability of escaping at each step. Hence it must

take a very long time to closely approximate the uniform distribution.

The proof will be split into several cases. In all cases, the “bad” graphs
we use are either random r-regular graphs or r-regular bipartite graphs for
sufficiently large (but bounded) r.

To make this precise, let 0 = Qy ¢ denote the set of H-colourings of G.
Our proof strategy will be to choose a random graph from some probability
distribution and then to identify a subset A of 2, |A| < 1| such that whp!

Na(A)| _
A = W

where A < 1 is a constant, dependent only on H, and
Ny(A) ={ceQ\ A: h(c,d') < d=&n for some ¢’ € A}.

Then for any d-cautious chain M with transition matrix P we have that the
conductance [16] ® 4 of M is at most

a=AT Y Py <A Y P(w,y>=|jv|d,§]4)',

zcA,yeNg(A) zeQyeNy(A)

where the final equality uses the equations satisfied by the (uniform) sta-
tionary distribution. It follows from (1) that ®,, is exponentially small and
hence that the mixing time of M will be exponentially large.

1We use the notation whp as shorthand for “with probability tending to 1 as n — co”.



H has a loop

Let H° denote the subgraph of H induced by the looped vertices. We consider
two cases.

Case 1: H° contains at least two distinct maximal cliques, both of which
contain at least two vertices.

Let L, L' be two such cliques where 2 < ¢ = |L| < |L'|.

Let G = G, be a random r-regular graph with vertex set V = {1,2,... ,n}.
Here r is a constant which is sufficiently large for certain inequalities to be
valid. The proof uses other parameters o, 3,7 and takes d = %n. (To avoid
tedious detail, we assume such quantities are integral where convenient.)
Rather than define these constants explicitly, we simply give (consistent) in-
equalities which they must satisfy in order for the proof to be valid. Basically,
we need the following quantities to be sufficiently small: «, 3/a, v/a?.

Now let
A={ceQ: |c'(v)| > (1 —a)n/L forall v € L}.

Now whp G will have the following two properties:

P1 I CV, I independent, implies that |I| < 227p,

P2 SSTCV,SNT =0,|S|> #n, |T| > ~n, implies that there is an
edge joining S and 7.

Property P1 is proved for example in Frieze and Luczak [10] and property
P2 will be confirmed below.

So let G be an r-regular graph with properties P1 and P2. Now consider
N4(A). It follows that

NyA)CB={ceQ: (i)IveLlst |[c'(v)]<Pn
(i) w ¢ L implies |¢ 1 (w)| < yn
(i) [ (L)] = (1 = h)n }

Here property (i) follows from the fact that Ng(A) N A = () and for property
(ii) note that if w ¢ L then either



(a) w has no loop and so ¢ !(w) is an independent set. In which case

2Inr

|c*1(w)| < n<yn

using P1 and assuming r is sufficiently large. Or, alternatively,

(b) w has a loop and there exists v € L such that v is not adjacent to w.
Using P2 and |c !(v)| > %n we see again that property (ii) must hold.

Property (iii) is a trivial consequence of property (ii).
Now let us estimate |A|, |[N3(A)| and see that (1) holds. First of all we see
that

Al = 3£ (2)
since (by concentration of measure) almost all colourings ¢ for which ¢(V') C

L will be members of A, assuming only that « is a positive constant.

Now consider the size of B D Ny(A). If ¢ € B thent = |¢c'(L)| > (1 — hy)n.
For a fixed t there are at most

<7Z) £t+le—62t/2l (3)

ways of defining ¢~!(L), where € satisfies

1— 1—-h —h
Ean:(l—e) E’Y’ e, e=2 >

- 1—hy —

N | =

o (4)

provided 7 is sufficiently small.

n

The explanation for (3) is as follows: (}) is the number of choices for X =
¢ '(L). Having chosen this there are ¢! ways of colouring X. There are
¢ choices for v € L with |c™'(v)| < 35%n and then the final factor et/
is a consequence of the Chernoff bound for the binomial probability that a

random ¢-colouring of X uses v fewer than 1_7“71 times.

Finally, there are at most h"™ ways of completing a colouring of X to the



whole of V. This gives

) < Y (G)erte e

t=(1—hvy)n

n

2 n
< —€ (lfh'y)n/%hh'yn €t+1
< e >

t=(1—hv)n

< 9 n e(l—h'y)n—l-le—ez(l—h'y)n/Zlhh'yn
- hyn

assuming that hv¢ < (1 — h7y)/2, whence the sum telescopes.

Thus
[N4(A)|

|4
where 9(6)~1 = 0°(1 — 6)'-°.

< ((1+ o(1)p(hry)e Mg Cm0/2pryn

Now observe that, if we keep «, 3 fixed and let v become small (which requires
r to become large), then (1) will hold. (By considering v = 0, it is clear that
some small enough positive v will do, by continuity.) Finally, notice that we
have not verified that |A| < 1|Q|. If this is not the case then we replace L by
L' to get a new set of colourings A disjoint from that defined w.r.t. L. This
completes the proof of Theorem 1 in this case, except to verify property P2.

Proof of property P2: Using the configuration model of a random graph,
see for example Bollobds [1].

Pr(-P2) = O << g;) (;;) 1- 0)“”"/2) (5)

where § = (1 — o — §)/¢. Here (g) () bounds the number of choices for
S,T. Clearly the right side of (5) is exponentially small for r sufficiently

large.

Case 2: H° contains a maximal clique L’ all of whose neighbours are vertices
without loops. (As usual, we say v is a neighbour of L’ if v has any neighbour
in L'.) Tt is possible for L’ to consist of a single vertex.

Choose L C L' and M C W \ L' such that the edges between L and M form
a maximal complete bipartite subgraph of H. Let ¢ = |L'| + |M|, £ = |L|.
Thus £ < /',



Let G = G, , be a random r-regular bipartite graph with vertex partition
i={12,... ,n}and Vo ={n+1,n+2,...,2n}.

Now we let

A={ceQ: (i) ve L implies |c'(v)NVi| > (1—a)n/t,
(i) v € L' U M implies [c Y (v) N V5| > (1 —a)n/l' }

Now we assert that for sufficiently large r, whp G satisfies

P3 S CV,|S| >y, T C VW, |T| > #n implies that there is an edge
joining S and 7.

The proof of this is similar to that for P2 and is omitted.
If d=pn/l, then N4(A) C B, where

B={ceQ: (i) |cYL)nWV| > (1 - hy)n, and
e (LU M) N Va| > (1= hy)n,
(ii) v € L implies |c '(v) N V1] > (1 — @ — B)n/¢, and
v € I’ UM implies |c*(v) N V3| > (1 —a— B)n/¥,
(ili) v € LU M s.t. [cr(v)NVa] < (1 — a)n/l,
or weL st |ctlv)nV<(l—a)n/t
(iv) w ¢ L' U M implies |c }(w)| < yn
(v)ve MU(L'\ L) implies [c7*(v) N V1| < yn }

Property (ii) follows from the definition of N4(A). Properties (iv) and (v)
then follow from (ii), and the fact that L, M induce a maximal bipartite
sub-graph. Property (i) then follows from properties (iv) and (v). Property
(iii) follows from the fact that N4(A) N A = (. Arguing similarly to Case 1,
we see that

Al > (o

M) < 2 Y (’;) (Etyre—a-mm/at g2

t=(1—hy)n

where € is as in (4), but with ¢ replacing ¢, and ¢t = |¢™'(L)|. The factor 2
arises from the two cases in property (iii) of B.

Now, by making 3 small with respect to «, and y even smaller, we can ensure
that (1) holds. If |A] > 1|Q|, we can interchange the roles of V; and V5 in

9



the definition of A and obtain a disjoint set of colourings A’ for which (1)
holds and which satisfies |A’| < 1|Q)].

Cases 1 and 2 cover all possibilities for H having a loop, except when it is
complete with a loop on every vertex.

H is unlooped bipartite

Suppose H has vertex bipartition W;, W5 and is not a complete bipartite
graph. Without loss of generality, we will consider M restricted to 2;.

Let Ly, L} C Wy, Ly, Ly C W, induce distinct maximal complete bipartite
subgraphs of H with vertex bipartitions (L;, L) and (L), L) respectively.
Let ¢; = |L;| (¢ = 1,2), and £ = {1 + ¢5. We choose G to be the random
r-regular bipartite graph defined in Case 2 above. Now define

A={ceQ: (i) ve L;implies |[c ' (v) NVi| > (1 — a)n/t,
(ii) v € Ly implies [c7'(v) N Vo > (1 — a)n/é; }.

We may assume without loss that |A| < 1[€2], since otherwise we may use A’
defined similarly by L, L}, noting that AN A’ = (). Now, letting d = fn/¢,
we have Nyg(A) C B, where

B={ceQ: (i) |cYL)NV|>(1—hy)n, and

(L) V| > (1~ by,

(ii) v € Ly implies ¢} (v) N V4| > (1 — a — B)n/f;, and
v € Ly implies [c7}(v) N V3| > (1 — a — B)n/ls,

(iii) v € Ly s.t. | Hv) N V4| < (1 — a)n/ly,
or € Ly st. [ (v)NVa| < (1 —a)n/ly

(iv) w ¢ Ly implies |¢™*(w) N V4| < yn, and

w ¢ Lo implies ¢ 1(w) N V5| < yn }

Property (ii) follows from the definition of N4(A). Property (iv) then follows
from (ii) and the fact that L;, L, induce a maximal complete bipartite sub-
graph, using P3. Property (i) then follows from property (iv), and property
(iii) follows from Ny4(A) N A = (. Arguing as in Case 2 above, we see that

Al > (k)"

N <2 ) (7;) (st a-mm/ 2t

t=(1—hv)n

10



where € is again as in (4), and t = |¢ }(L;)| (i € {1,2}). The factor 2 again
arises from the two cases in property (iii) of B. The rest of the argument
proceeds exactly as in Case 2, and the proof of Theorem 1 is complete. O

3 Connectedness of chain

In this section, we examine the ergodicity of the simplest Markov chain on
H-colourings, where we try to re-colour at random a single randomly chosen
vertex at each step. This is often called the Glauber dynamics and, in our
above terminology, is a 1-cautious chain. This chain is known, for example,
to be ergodic on the set of proper g-colourings of any graph of maximum
degree A provided ¢ > A + 2. We will denote the Glauber dynamics for
H-colouring G by Gg(G). Note that there is little loss in assuming H to be
connected. Otherwise we should consider each component separately, since
Gu(G) is clearly disconnected.

We now consider general conditions on H = (W, F) under which Gy (G)
is ergodic for all G. To this end, for w € W, let Ng(w) = {w' € W :
{w,w'} € F}. Now, if wy,wy € W, we will say that ws dominates w,
if Ng(w1) € Ng(wsp). If Ng(wy) = Ng(ws), we will say w; and ws are
equivalent. Consider the following procedure:

CLOSURE(H) : A
(0) A« H.

(1) while there exists wy dominating w; in A do Na(wq) < Na(ws).

The following theorem was first proved by Brightwell and Winkler [3], as
part of a longer theorem concerning Gibbs measures on graphs. There an
operation similar to that used in line (1) of CLOSURE is called “folding”,
and any graph that folds to to a single vertex is called “dismantlable”. We
give a proof here for completeness.

Theorem 2 ([3]) Suppose H is connected and has a loop. Then Gg(G) is
ergodic for all G if and only if CLOSURE(H) is complete, with loops on
all vertices. When it is not ergodic for all G, there exists a graph Gy with
A(Go) = max,ew |Ng(w)| for which this remains true.

11



Proof Suppose A = CLOSURE(H) is complete looped. Let s be the
number of steps s in the while loop of CLOSURE, starting from an arbitrary
H-colouring c. If s = 0, then the theorem is clearly true. Otherwise, consider
w; in the first step of CLOSURE. Let A; denote A after the execution of
Na(wy) < Na(ws). Successively re-colour all vertices of G coloured w;
with ws. This is clearly permissible. Since A; only differs from H by edges
incident with w;, and we will not use this colour again, the difference between
A; and H is irrelevant. Now recolour a further (s — 1) times, each time
“eliminating” one colour. At the termination of CLOSURE, the colours still
in use obviously form a looped clique C in A and we observe that if v is
such a colour then N4(v) = Ng(v). Thus C must also be a looped clique in
H. Thus we have moved from ¢ to a C-colouring of G, using only steps of
Gu(G). We may move freely between any two C-colourings, and this half of
the theorem is proved.

For the converse, suppose A is not complete looped. Since H is a subgraph
of A, it suffices to prove the claim for G4(Gy), provided that we can exhibit
two H-colourings which are disconnected in the chain. The vertices of A
are divided into classes by the equivalence relation defined above. Let B be
the subgraph of H given by deleting all vertices found to be dominated in
CLOSURE, and all but one vertex in each equivalence class among those
remaining. There will be exactly one representative of each A-equivalence
class in B. By the observation in the first part of the theorem, B is a
subgraph of H. Clearly B is unique up to relabelling its vertices with A-
equivalent vertices, and has at least two vertices. (Otherwise it follows that
A = H is an unlooped independent set.) Let By, By be two copies of B, but
having all loops deleted, with natural bijections f; : B — B; (i = 1,2). Now
let G be the disjoint union of By, By, with an additional edge {fi(w), f2(w)}
for each looped vertex w in B. The claimed degree bound on G| clearly holds.
Let G have the H-colouring ¢, where ¢(f;(w)) = w (i = 1,2). This is clearly
proper.

We claim that in ¢, if a vertex f;(w) € V can be re-coloured with w' in
A, then w' is equivalent to w: f;(w) has a neighbour in Gy coloured by a
representative of each equivalence class to which w is adjacent in A. (Here
w is adjacent to itself in A if and only if it has a loop.) Thus w’ must also be
adjacent to a vertex of A in each equivalence class adjacent to w. It follows
that w' must be adjacent in A to every vertex in each of these classes. Thus

12
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Figure 1: An isolated H-colouring of Gg

w' is adjacent to every vertex to which w is adjacent. It follows that w' is
equivalent to w.

Now it follows that, if H has any loop wg, G4(Gp) cannot move from c to the
proper H-colouring ¢g such that cy(v) = wyg for all v € V4. Thus it cannot be
ergodic. a

As discussed in section 1, the reason for non-ergodicity in the bipartite case
can simply be that the bipartition (W7, W;) of H can be used to colour
the bipartition (Vi,V3) of G in two ways. To exclude this triviality, we
called Gg(G) semi-ergodic provided it is ergodic on both of the colour sets
1, Qs C Q defined there. We then have the following extension of Theorem 2.

Theorem 3 Suppose H is connected, bipartite, and has no loops. Then
Gu(G) is semi-ergodic for all G if and only if CLOSURE(H) is a complete
unlooped bipartite graph. When it is not semi-ergodic for all G, there exists
a graph Gy with A(Gy) = maxy,ew | Ng(w)| for which this remains true.

Proof Consider, without loss, €2;. The constructions of A and B are
exactly as before. Suppose CLOSURE(H) is complete unlooped and bipar-
tite. We reduce any colouring to one in a set of H-colourings between which
we can move freely, giving the first part of the theorem. For the converse,
suppose CLOSURE(H) is not complete. We let Go = B with the same H-
colouring c as before. Then we may show that we can only move between
colourings which re-colour vertices with equivalent colours. This set is dis-

13



connected from the H-colouring cy where ¢y }(V;) = {w;} (i = 1,2), where
{wy,ws} is any edge of H with w; € W; (i = 1,2). O

The cycle on six vertices (i.e. bipartite 3-colouring) is an example of an
unlooped bipartite H whose closure is not complete.

The graph Gy in the above theorems is a graph of bounded size, but this
is not the cause of non-ergodicity. It is easy to construct arbitrarily large
connected graphs, with Gy as a subgraph, which have the same behaviour,
by making the maximum degree at most 1 larger.

We have proved nothing for the nonbipartite unlooped case, though we may
observe that the theorem of [3] covers this case also. Observe that here
CLOSURE(H) will also be a nonbipartite unlooped graph, so we do not
have any obvious connectedness property for CLOSURE(H). Thus we might
expect that the Glauber dynamics will not be ergodic for all G. Brightwell
and Winkler [3] show this intuition to be true, by exhibiting examples with
“stuck” colourings as above, using the “weak square” of H. This is certainly
interesting from the combinatorial viewpoint but, as regards computation,
there is a greater difficulty. Finding a single H-colouring is an NP-Complete
problem. Thus, even if we were guaranteed that some chain with a richer
set of transitions was ergodic, we might still be unable to find any state at
which to start the chain.

Observe finally that ergodicity is not a monotone property of H. Figure 1
shows an H (with CLOSURE(H) = H), the graph Gy and its canonical
H-colouring. The Glauber dynamics is “stuck”, even though there are more
than a thousand other H-colourings of G. However, deleting any single edge
of H causes it to become ergodic for all G, as does adding either of the two
edges “missing” from H.

4 Sampling Algorithm

The recursive characterisation of ergodicity we have proved above seems too
weak to guarantee the existence of good sampling algorithms in general.
However, there is one case where this recursive stucture is directably em-
ployable, when H is a “looped tree”. This family has some significance,
since it includes both the discrete Widom-Rowlinson and Beach models.

14



Therefore, let H be a tree with loops on every vertex and let G be the
(arbitrary) graph which we wish to H-colour randomly, according to the
distribution p, defined below. Choose any vertex p in H and root the tree at
p. Then, for vertex z of H, we define its depth d(z) to be its edge-distance
from p in H.

For A > 0 we will define a weight function w : W — R by w(z) = A%®). The
weight 1, (c) of H-colouring c is then defined by

pale) = ] wle(w)).

Let
Z\x=2Z)nc = Z,UA(C)

ceN

and define the probability distribution py = py m,c on Q2 by pa(c) = px(c)/Zx.
This is the (finite-volume) Gibbs distribution for H-colouring G. We will
show that for sufficiently small A it is possible to sample efficiently from
px. We employ a simple Markov chain on the set {2 of H-colourings of G,
and show that it is rapidly mixing. As discussed in section 3, the simplest,
and possibly most important, such chain is the Glauber dynamics, where we
change the colour of one vertex at a time. The precise description of the
chain in the weighted case is as follows.

Glauber dynamics Gg(G)

Let X denote the current state of the chain, so X (v) is the colour of v. We
describe a random move from X to a new state X'.

Step 1: Choose v uniformly at random from V.
Step 2: For all z € W, the vertex set of H, let
pxo(z) = Pr(c(v) =z | c(v') = X (V') for v’ # v).

In this expression the unconditional distribution is p) and we are simply
conditioning on the colour of v, given the colour of v/, for all v' # v.

Step 3: Choose z according to the distribution px,,.
X'(o) = {X(v’) ;v #w

T v =0
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The steady state distribution for the Glauber dynamics is p,, as follows from
consideration of “detailed balance”. See [7] for further information.

Let us continue by considering px, in more detail. Let N, denote the set
of neighbours of v in G, and D, denote the set of children of z in H. (The
descendants of x will mean the iterated children.) The distribution px,
depends only on the colours of N,. There are several cases to consider:

(a) X(v') =pforall v € N,,.
The possible colours for v are p and the children D, of p in H.

1
{1+,\|D,,| - T=p

A .
m. $€Dp

Pxw (iL‘) =

(b) 3¢ # p such that X (v') = ¢ for all o' € N,,.
The possible colours for v are £, the parent of £ in H, £ and the children

Dg Of f
1+)\+1)\2|D5| e =¢
Pxo(2) = { Ty 1T =6
2
1+,\J;\,\2|D§| rx € Dy

(c) Jy,z such that y is the parent of z in H and X (v') € {y,z} for all
v' € N,. Furthermore, both colours y, z are used in N,,.

1

Ty - L =YY
Px.(T) = {1?- _

T - r =2z

(d) Jz such that N, contains vertices of colour z,y, z where y, z are distinct
neighbours of z in H.
The only possible colour for v is x.

We may now state and prove the main result of this section. We use dry to
denote the variation distance (i.e. half the L; norm) between distributions.
Also let A = max{Apg, Ag}, where Ay, Ag are the maximum degrees in
H, G respectively.
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Theorem 4 Let \y = 1/6A% For any € > 0 and A < )y, O(nlog(n/e))
steps of the Glauber dynamics will give a random H -colouring C' of G, with
distribution L(C) such that drv(L,p,) < €.

Proof The theorem is trivial if A = 1 and so we assume that A > 2. We
will prove rapid mixing by the method of path coupling introduced by Bubley
and Dyer [4].

So let (X4, Y;),t = 1,2,... be two (coupled) copies of Gy(G). In path cou-
pling we try to reduce the expected distance between the copies at each step,
in some suitable metric. An obvious candidate is the Hamming distance
h(X:,Y;) = |[{v : Xi(v) # Yi(v)}|. However, Hamming distance does not
appear to give the desired result here, as the reader might choose to verify.
Therefore, we will replace it by a more useful metric. Choose ¢ > 0 and
for an edge (z,y) of H, where z is the parent of y, let p_(z,y) = o). If
z,y are arbitrary vertices of H, let u_(x,y) be the shortest distance in H
between z and y, using p, as edge length. Finally, if X,Y are distinct H-
colourings of G, we let 1, (X,Y) = > o (X (v),Y(v)). We will use py,
where M = 3A, to prove the theorem, but we also employ y,, the metric
based on edge distance in H.

In path coupling, we need analyse only certain pairs of colourings. However,
these must be chosen to “respect” the metric. We begin by proving the
desired property for the colourings we will use in the proof. See [7] for
further details.

Lemma 5 Let X,Y be H-colourings of G. There ezists a sequence X =
Zoy 21, yZy =Y such that

(i) Z;, Z;11 differ only at a single vertex z; € V (i =10,1,... ,£—1),
(11) Zi(z), Ziv1(2;) are adjacent in H (i=0,1,... ,0—1),

(iii) par(X,Y) = o tiag(Ziy Zig).

Proof We prove this by induction on p,(X,Y). The result is trivial for
4 (X,Y) = 1. Let

d* =max{d(z): v eV st. X(v) ZY(v),z € {X(v),Y(v)}}.
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Clearly d* > 0. Let d* = d(z*), where z* = X (v*) # Y (v*). Note that Y (v*)
cannot be a descendant of z* in H. Let y be the parent of * in H. Define

X' by
X'(v) = {X(v): v;év:
y: V=0

Then p,(X,Y) = p (X, X') + p,(X',Y) for any o, in particular o = 1, M.
Furthermore, X' is an H-colouring. This is because no neighbour v of v* can
be coloured with a child z of z*. If it were then we must have Y (v) = z,
by the depth property of z*. But then Y (v*),Y (v) are not adjacent in H, a
contradiction. O

So let us now assume that, for some w € V, we have X;(w') = Y;(w') for
w' # w and X(w) = z, Yy(w) = y where z is the parent of y in H. We will
write d = d(z) and, unless x = p, we denote the parent of z by £. Using path
coupling, it is now enough to couple X; 1, Y;11 so that

By (Xers, Yirn)) | X ¥i) < (1 - %) iaa (X0, V0. (6)

The diameter of 2 is at most 2n(M*—1)/(M —1), where a = max,ew d(w).
The theorem now follows easily from this and (6). (See, for example, [9].)

In our coupling the same vertex v is chosen for X;,Y; in Step 1. Unless
v € N,, we will choose the same new colour for v in both X;,Y;. This has
the correct marginal distributions, and will be our coupling in all cases below
where there is no further comment.

Case 1 v = w. This occurs with probability n=! and results in X;,; = Y;,;.

Case 2 v ¢ N, U {w}. This has probability 1 — % and results in
par(Xey1, Yirr) = pa(Xe, Ye).

Case 3 v € N,,. Then X;(v) = Y;(v) is a neighbour of z and y in H and so
Xi(v) € {z,y}. We now describe a suitable coupling in each of several
sub-cases for v, and determine the consequent (conditional) expected
change in u,,, i.e. the quantity

E; = E(ppr(Xet1, Ye1) — 1y (Xe, Y2) | 0).
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(i)

(ii)

(iii)

(iv)

v)

(vi)

(vii)

In X}, v has neighbours which are coloured z, 2’ € D,U{¢}, z # 2'.
It follows that X;(v) = z, and we must have X;;(v) = Y;11(v) =
x. Hence, E; = 0.

In Y}, v has neighbours which are coloured z, 2’ € D,U{z}, z # 2.
It follows that X;(v) = Y;(v) = y, and we must have X;,(v) =
Y;+1(v) =y. Hence, E; = 0.

In X;, v has a neighbour coloured z € D, \ {y}, but no neigh-
bour coloured from (D, U {¢}) \ {z}. It follows that X;(v) = z.
Then X;i1(v) € {z, 2}, but Yi11(v) = z. Then the only possible
coupling gives F; = M9\/(1 + \) < AM<.

In Y;, v has a neighbour coloured z € D,, but no neighbour
coloured from (D, U {z}) \ {z}. It follows that X;(v) = y. Then
Xiy1(v) = y, but Yi1(v) € {y,2}. The only coupling gives
E, = M1\ /(1 + \) < AM4+H,

In both X; and Y;, v has neighbours coloured both x and y, but
no neighbour coloured from D, U {{} U D, \ {y}. Then both
Xi11(v),Y1(v) € {z,y} and hence we can couple so that E; = 0.

In X;, v has only neighbours coloured x # p. Then X;.1(v) €
{z,£} U D,, but Y;11(v) € {z,y} only. With probability £, =
1/(1+ X+ X?|D,]), we set X;y1(v) = &, YViy1(v) = z and with
probability 8, = A/(1+A+A?|D,|), we set X;11(v) = z, Viy1(v) =
y. With probability 1/(1+X) — G, we set X;;1(v) € D,, uniformly
at random, and Y;;1(v) = . With probability A/(1+ X) — G, we
set X;+1(v) € D,, uniformly at random, and Y;;;(v) = y. This
gives

E, < M1+ (A + 202D, )M < M4 4+ \(1 + 20A) M4

In X;, v has only neighbours coloured p. It follows that X;(v) =
z = p. Then X;11(v) € {p} U D,, but Y;11(v) € {p,y}. With
probability 8, = 1/(1 4+ A|D,|), we set X;11(v) = Yiya(v) = p.
With probability 1/(1 + X) — 8, we set X;1 € D,, uniformly at
random, and Y;,1(v) = p. With probability A/(1 + \), we set
Xi+1 € D,, uniformly at random, and Y;;1(v) = y. This gives

E; < 2)\|D,| < 20A = 20AM*,
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(viii) In Y;, v has only neighbours coloured y. Then X;.;(v) € {z,y},
but Y;41(v) € {z,y} U D,. Then we set X;1(v) = Yiy1(v) = 2
with probability 7, = 1/(1+ A+ A?|D,|) and X;11(v) = Yiy1(v) =
y with probability v, = A/(1 + A + X?|D,|). With probability
1/(14+X) — v, we set X;11(v) = z and Y;41(v) € D, uniformly at
random. With probability A\/(1+ ) —1,, we set X;,1(v) = y and
Y;11(v) € D, uniformly at random. Thus

E, < 2M*)\?|D,| < 2M*)2A.

(ix) In X;, v has neighbours coloured from {z,{}. It follows that
Xi(v) = . Then Y;y1(v) = z, but Xy11(v) € {z,£}. The only
coupling gives

E, =M /(14X < M
Suppose now we put M = 3A and A < 1/6A?. Then the reader may

check that the largest contribution comes from sub-case (iv) above, and
is at most M?/2A.

Putting this all together we get that, conditional only on X;, Y,

E(pupy(Xer1,Yer1) —pupy (X, V) < ——+ = = —— = ———— -2

This verifies (6) and completes the proof of Theorem 4. O

Finally, we might naturally ask how far this result can be extended, i.e. for
which H are there any sets of positive vertex weights such that random
generation is possible ? It is easy to extend the proof above to the case
where some of the leaves of H may be unlooped. As well as independent
sets, this includes some H studied in [6], such as the “wrench”. Beyond
this, a reasonable conjecture is that a positive result holds for any H such
that, in the notation of section 3, CLOSURE(H) is a complete looped graph.
However, we will leave this simply as a question.
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