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Abstract

We show that there exists a a fully polynomial randomized approx-

imation scheme for counting the number of Hamilton cycles in almost

all directed graphs.

1 INTRODUCTION

In this note we consider the problem of counting the number of Hamilton

cycles h = h(D) in a digraph D. More precisely we consider the possibility

of computing an estimate ĥ = ĥ(D) which satisfies

(1 − ǫ)ĥ ≤ h ≤ (1 + ǫ)ĥ, (1)
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where ǫ is the required accuracy.

We consider randomised algorithms and so we only require (1) to hold with

probability ≥ 1 − δ, where δ is given as input. A randomised algorithm is

called a Fully Polynomial Time Approximation Scheme (FPRAS) if it runs in

time which is polynomial in |V (D)|, 1/ǫ and log 1/δ. Since it is NP-Complete

to determine whether or not D has a Hamilton cycle, we do not expect there

to be an FPRAS which works for all inputs D, unless RP=NP.

In this paper we consider a scheme which is likely to be efficient when the

input is the random graph Dn,m which has vertex set {1, 2, . . . , n} and m

random directed edges. We will also require that m3/n2 → ∞ with n.

So now let Hn denote the (random) number of Hamilton cycles in Dn,m.

Associated with a digraph D is a bipartite graph B(D) which has vertex sets

V (D), V ′(D) = {v′ : v ∈ V (D)} and an edge (u, v′) iff D has a directed edge

(u, v).

It is well known that each perfect matching M of B(D) corresponds to a

unique set of vertex disjoint cycles C(M) which cover all vertices of D. Let

Mn denote the number of perfect matchings in Bn,m = B(Dn,m). Our algo-

rithm is very simple:

1. Estimate Mn to within a factor 1 ± ǫ/3.

2. Estimate Hn/Mn to within a factor 1 ± ǫ/3.

3. Multiply these estimates together.

Jerrum and Sinclair [3] have proved the existence of an FPRAS which works

for almost all Bn,m and this can be applied to carry out Step 1.
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For Step 2 we generate (near) random perfect matchings M in Bn,m and count

the proportion of times that C(M) has one cycle i.e. is a Hamilton cycle.

(The generation of near random perfect matchings is part of the scheme in

[3].) It is a standard observation in this area of computation that if Hn/Mn is

bounded below by 1/p(n) for some polynomial p(n) then O(p(n)ǫ−2 log 1/δ)

trials are sufficient to estimate Hn/Mn with the required accuracy.

Now

E(Mn) = µn,m = n!

(

n2
−n

m−n

)

(

n2

m

)

and Jerrum [2] has recently shown that, for example,

Pr[Mn ≥ 2µm,n] = O

(

n2

m3

)

. (2)

On the other hand

E(Hn) = (n − 1)!

(

n2
−n

m−n

)

(

n2

m

)

and the main result of this paper comes from using the second moment

method to prove that

Pr



Hn ≤
(n − 1)!

2

(

n2
−n

m−n

)

(

n2

m

)



 = O

(

n2

m3

)

. (3)

Thus

Pr(Mn ≥ 4nHn) = O

(

n2

m3

)

and our scheme will work with high probability when m3/n2 → ∞ with n.

It can be seen from our expression for E(Hn) that we have assumed that

Dn,m can contain loops. If we do not allow loops then our result still holds.
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To see this we simply add a (random) number of loops and apply the previous

analysis. The number of Hamilton cycles stays the same and the number of

perfect matchings cannot decrease and so we see that we do no worse in the

loop-free case.

2 SECOND MOMENT CALCULATION

We will show here that when m2/n3 → ∞ as n → ∞,

E[H2

n] = (1 + O(n3/m2))(EHn)2. (4)

Note that

E[Hn] = (n − 1)!

(

n2 − n

m − n

)(

n2

m

)

−1

= (n − 1)!
m(m − 1) . . . (m − n + 1)

n2(n2 − 1) . . . (n2 − n + 1)

= (n − 1)!
(

m

n2

)n

exp

(

−
n(n − 1)

2m
+

n(n − 1)

2n2
+ O

(

n3

m2
+

1

n

))

= (n − 1)!
(

m

n2

)n

exp

(

−
n2

2m
+

1

2
+ O

(

n

m
+

n3

m2
+

1

n

))

,

and since m2/n3 → ∞ as n → ∞, we have

E[Hn] = (n − 1)!
(

m

n2

)n

exp

(

−
n2

2m
+

1

2

)(

1 + O

(

n3

m2

))

. (5)

We next would like to estimate E[H2
n]. Given a Hamilton cycle H in the

complete digraph DKn with n vertices, where n ≥ 2, we first obtain a formula

for the number fn(t) of Hamilton cycles H ′ in DKn such that H and H ′ have
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exactly t edges in common. Fix t (t ≤ n − 2) edges on H. Suppose that

these t edges form k paths with t + k vertices on these paths. Note that a

Hamilton cycle H ′ in DKn containing these t edges can be uniquely identified

by a Hamilton cycle on DKn−t with k distinguished vertices representing the

k paths. Therefore, given t specified edges on H, the number of Hamilton

cycles H ′ in DKn that have exactly the t specified edges in common with H

is equal to fn−t(0). That is, for t = 0, 1, . . . , n − 2,

fn(t) =

(

n

t

)

fn−t(0).

Note that fn(n − 1) = 0 and fn(n) = 1.

We next proceed to find the number fn(0) (where n ≥ 2) of Hamilton cycles

in DKn that has no edges in common with H. Assume now that the Hamilton

cycle H has edges e1, e2, . . . , en. For i = 1, 2, . . . , n, let Ai be the set of all

Hamilton cycles in DKn containing ei. Note that |A1 ∩ A2 ∩ . . . ∩ Ak| is

the number of Hamilton cycles in DKn containing edges e1, e2, . . . , ek and by

previous reasoning, is equal to (n− k − 1)! when k ≤ n− 2. Note that when

k = n − 1 or n, |A1 ∩ A2 ∩ . . . ∩ Ak| is equal to 1. Thus using the principle

of inclusion-exclusion, we have for n ≥ 2,

fn(0) =
n
∑

k=0

(

n

k

)

(−1)k|A1 ∩ A2 ∩ . . . ∩ Ak|

=
n−1
∑

k=0

(

n

k

)

(−1)k(n − k − 1)! + (−1)n.

Since f1(0) = 0 we may take fn(t) =
(

n

t

)

fn−t(0) when t ≤ n − 1 and

fn(n) = 1. Writing gn(t) =
(

n2
−2n+t

m−2n+t

)

/
(

n2

m

)

, it follows that

E[H2

n] = (n − 1)!
n
∑

t=0

fn(t)gn(t)
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= (n − 1)!
n−1
∑

t=0

(

n

t

)

fn−tgn(t) + (n − 1)!gn(n)

= (n − 1)!2
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kngn(t)

t!k!(n − t − k)
+ (n − 1)!2

n
∑

t=0

(−1)n−tngn(t)

t!(n − t)!

= (n − 1)!2 (S ′

n + S ′′

n) , (6)

where

S ′

n =
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kngn(t)

t!k!(n − t − k)
and S ′′

n =
n
∑

t=0

(−1)n−tngn(t)

t!(n − t)!
.

Hence, in view of equations( 5), ( 6) and the fact that m2/n3 → ∞ as n → ∞,

it will suffice to show that as n → ∞,

S ′

n + S ′′

n = (1 + o(1))
(

m

n2

)2n

exp

(

−
n2

m
+ 1

)

.

Now

S ′′

n =
(−1)n

(n − 1)!
(

n2

m

)

n
∑

t=0

(−1)t

(

n

t

)(

n2 − 2n + t

n2 − m

)

,

and it is not difficult to show that (see Graham, Knuth and Patashnik

[1](5.24))

n
∑

t=0

(−1)t

(

n

t

)(

n2 − 2n + t

n2 − m

)

= (−1)n

(

n2 − 2n

n2 − m − n

)

,

and that since n2 ≥ m ≥ n,

(

n2
−2n

n2
−m−n

)

(

n2

m

) ≤
(

m

n2

)n

.

Thus

S ′′

n ≤
1

(n − 1)!

(

m

n2

)n

. (7)
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To estimate S ′

n, we note that

S ′

n =
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kngn(t)

t!k!(n − t − k)

=
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kgn(t)

t!k!
+

n−2
∑

t=0

n−t−2
∑

k=0

(−1)kgn(t + 1)

t!k!(n − t − k − 1)

+
n−2
∑

t=0

n−t−2
∑

k=0

(−1)kgn(t)

t!k!(n − t − k − 1)

=
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kgn(t)

t!k!

+
n−2
∑

t=0

n−t−2
∑

k=0

(−1)kgn(t)

t!k!(n − t − k − 1)

(

n2 − 2n + t + 1

m − 2n + t + 1
− 1

)

= T ′

n + T ′′

n , say (8)

where

T ′

n =
n−1
∑

t=0

n−t−1
∑

k=0

(−1)kgn(t)

t!k!
and T ′′

n =
n−2
∑

t=0

n−t−2
∑

k=0

(−1)kgn(t)hn(t)

t!k!(n − t − k − 1)
,

and

hn(t) =
n2 − 2n + t + 1

m − 2n + t + 1
− 1.

We next choose τ as the greatest even integer not greater than n/4 and we

write

T ′

n =
τ
∑

t=0

τ
∑

k=0

(−1)kgn(t)

t!k!
+

n−1
∑

t=τ+1

τ
∑

k=0

(−1)kgn(t)

t!k!
+

τ
∑

t=0

n−t−1
∑

k=τ+1

(−1)kgn(t)

t!k!
.

Note that
τ
∑

k=0

(−1)k

k!
≤ exp(−1),

and that

gn(t)/t! is non-increasing wrt t for t ∈ {τ, . . . , n − 1}.
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Hence,

T ′

n ≤ e−1

τ
∑

t=0

gn(t)

t!
+ n2

gn(τ)

τ !
+

n

τ !

τ
∑

t=0

gn(t)

t!
. (9)

For T ′′

n , note first that for t ≤ n/4,

τ
∑

k=0

(−1)k

k!(n − t − k)
≤

1

(n − t)
,

and that

hn(t) =
n2 − 2n + t + 1

m − 2n + t + 1
− 1 = O

(

n2

m

)

.

So it follows similarly as above that

T ′′

n ≤
τ
∑

t=0

gn(t)

t!(n − t)
+ O

(

n2

m

)

n2gn(τ)

τ !
+

1

τ !
O

(

n2

m

)

τ
∑

t=0

ngn(t)

t!

≤
2

n

τ
∑

t=0

gn(t)

t!
+ O

(

n4

m

)

gn(τ)

τ !
+ O

(

n3

mτ !

)

τ
∑

t=0

gn(t)

t!
. (10)

We therefore have from equations ( 8), ( 9) and ( 10) that

S ′

n ≤
(

1 + O
(

n−1
))

e−1

τ
∑

t=0

gn(t)

t!
+ O

(

n4gn(τ)

mτ !

)

. (11)

We next note that writing M = M(n) = m−1 − n−2,

gn(t) =

(

n2 − 2n + t

m − 2n + t

)(

n2

m

)

−1

=
(

m

n2

)2n−t 2n−t−1
∏

i=1

(

1 − i/m

1 − i/n2

)

≤
(

m

n2

)2n−t

exp
(

−
1

2
(2n − t − 1)2M

)

. (12)

Hence,

τ
∑

t=0

gn(t)

t!
≤

τ
∑

t=0

1

t!

(

m

n2

)2n−t

exp
(

−
1

2
(2n − t − 1)2M

)
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≤
τ
∑

t=0

1

t!

(

m

n2

)2n−t

exp
(

−(2n2 − 2nt − 2n)M
)

≤
(

m

n2

)2n

exp(−2n(n − 1)M)
∞
∑

t=0

1

t!

(

n2e2nM

m

)

=
(

m

n2

)2n

exp

(

−
n2

m
+ 2

)(

1 + O

(

n3

m2

))

and using inequality( 12) again,

gn(τ)

τ !
≤
(

m

n2

)2n
(

n2e

mτ

)τ

.

With the above estimates, we have from equations ( 7) and ( 11) that

S ′

n + S ′′

n ≤
(

m

n2

)2n

exp

(

−
n2

m
+ 1

)(

1 + O

(

n3

m2

))

.

(4) now follows from (5) and (6).

Final remarks: a similar scheme seems likely to work for undirected graphs,

but the calculations are more arduous and will be left for a later paper.
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