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Abstract

We consider random walks on several classes of graphs and explore the likely structure
of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced
by the vacant set of the walk at step t. We show that for random graphs Gn,p (above
the connectivity threshold) and for random regular graphs Gr, r ≥ 3, the graph Γ(t)
undergoes a phase transition in the sense of the well-known Erdős-Renyi phase transition.
Thus for t ≤ (1 − ε)t∗, there is a unique giant component, plus components of size
O(log n), and for t ≥ (1 + ε)t∗ all components are of size O(log n). For Gn,p and Gr we
give the value of t∗, and the size of Γ(t). For Gr, we also give the degree sequence of
Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components
of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above
the strong connectivity threshold, there is a similar directed phase transition. Thus
for t ≤ (1 − ε)t∗, there is a unique strongly connected giant component, plus strongly
connected components of size O(log n), and for t ≥ (1 + ε)t∗ all strongly connected
components are of size O(log n).

1 Introduction

The problem we consider can be described as follows. We have a finite graph G = (V,E), and
a simple random walk Wu on G, starting at u ∈ V . What is the likely component structure
induced by the unvisited vertices of G at step t of the walk?
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Initially all vertices V of G are unvisited or vacant. We regard unvisited vertices as colored
red. When Wu visits a vertex, the vertex is re-colored blue. Let Wu(t) denote the position of
Wu at step t. Let B(t) = {Wu(0),Wu(1), . . . ,Wu(t)} be the set of blue vertices at the end
of step t, and Ru(t) = V \ Bu(t). Let Γ(t) be the subgraph of G induced by R(t). Initially
Γ(0) is connected, unless u is a cut-vertex. As the walk continues, Γ(t) will shrink to the
empty graph once every vertex has been visited. We wish to determine, as far as possible, the
likely evolution of the component structure as t increases. In this paper we will consider three
models of random graphs, with vertex set V = [n] where [n] = {1, 2, . . . , n}. These are the
random graph Gn,p in which each edge of Kn is included independently with probability p,
the random digraph Dn,p in which each edge of Kn is included independently with probability
p in each direction, and the random graph Gr, r ≥ 3, sampled uniformly at random from the
set of all simple r-regular graphs.

Because we consider random walks on random graphs, there are two sources of error in our
proofs; (i) that we sample a graph G which does not have the properties we need, or (ii)
that the random walk W does not behave in the way we require. The set of graphs G ′ with
properties we require have measure (1 − o(1)) of the graph space G. Some of our proofs are
for walks W on a fixed graph G from the subset G ′. In this case, walks W ′ on G with the
properties we require have measure (1 − o(1)) of W . In other proofs, we use the method of
deferred decisions, and reveal only the parts of the graph traversed by the walk. In that way,
the vacant set R(t) of the walk induces a random graph, whose properties we can analyze.

Apart from O(·), o(·),Ω(·) as a function of n→∞, where n = |V |, we use the following: We
say An � Bn or Bn � An if An/Bn → 0 as n→∞, and An ∼ Bn if limn→∞An/Bn = 1. The
notation ω(n) describes a function tending to infinity as n→∞. We use the expression with
high probability, whp, to mean, with probability 1− o(log−K n) for any positive constant K.
The variable n is the size of the vertex set of the graph, and we measure both walk and graph
probabilities in terms of this. Usually, it will be clear that we are discussing the graph, or the
walk, but if we wish to stress this point we write whpG or whpW . In the case where we use
deferred decisions, if |R(t)| = N , the whp statements are asymptotic in N , and we assume
N(n)→∞. The statement of theorems in this section uses the annealed probability measure
(graph and walk), i.e. whp relative to both graph sampling and walks.

We recall the typical evolution of the random graph Gn,p as p increases from 0 to 1. Initially
it consists of isolated vertices. As we increase p or equivalently add random edges, we find
that when p = c/n, the maximum component size is logarithmic for c < 1, followed by a
phase transition around the critical value c = 1. When c > 1 the maximum component size is
linear in n, and all other components have logarithmic size. Our aim in this paper is to show
that whp Γ(t) undergoes a reversal of this. Thus Γ(0) is connected and Γ(t) starts to break
up as t increases. There is a critical value t∗ such that if t < t∗ by a sufficient amount then
Γ(t) consists of a unique giant component plus components of size O(log n). Once we have
passed through the critical value, i.e. t > t∗ by a sufficient amount, then all components are
of size O(log n). As t increases, the maximum component size shrinks to zero. We make the
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following definitions. A graph with vertex set V1 is sub-critical if its maximum component
size is O(log n), and super-critical if is has a unique component C1(t) of size Ω(|V1(t)|), where
|V1(t)| � log n, and all other components are of size O(log n).

In the case of random digraphs Dn,p the evolution is more complex. Let q = 1−(1−p)2. There
is a phase transition around q = 1/n (i.e. p ∼ 1/2n) for the emergence of a giant component
in the underlying graph Gn,q of Dn,p, and, around p = 1/n (i.e. q ∼ 2/n) for the emergence of
a giant strongly connected component in Dn,p. We make the following definitions. A digraph
with vertex set V1 is directed-sub-critical if its maximum strongly connected component size
is O(log n), and directed-super-critical if is has a unique strongly connected component C1(t)
of size Ω(|V1(t)|), where |V1(t)| � log n, and all other strongly connected components are of
size O(log n).

Component structure of vacant set of random graphs Gn,p and Dn,p.
We first consider Gn,p. We assume that

np = c log n where (c− 1) log n→∞ with n, and c = n1/ω.

where ω = ω(n) can be any function tending to infinity with n.

Let
tθ = n(log log n+ (1 + θ) log c).

Theorem 1. Let ε > 0 be a small constant. Then whp in Gn,p we have (i) Γ(t) is super-
critical for t ≤ t−ε, (ii) Γ(t) is sub-critical for t ≥ tε.

In Section 5, we prove that for t = tθ, whp the size of R(t) is N(tθ) = (1+o(1))n/(c1+θ log n),
and that Γ(t) behaves as the random graph GN(tθ),p. The threshold for the giant component
in GN,p is at Np = 1. For θ < 0, let θ = −ε. Then N(t−ε)p = cε > 1, and there is a giant
component C1(t−ε) of size Ω(N(t−ε)) = Ω(n/(c log n)). The bound c = n1/ω, ignores larger
values of p. On the other hand there is not going to be a phase transition as p→ 1/ log n.

We next consider Dn,p. Let q = 1 − (1 − p)2. Let ~Γ(t) be the directed graph induced by
the vacant set of Dn,p and let Γ(t) be the undirected graph induced by the vacant set of the
underlying graph Gn,q of Dn,p. Theorem 1 holds unaltered for Γ(t), with nq = c log n. For

strongly connected components of ~Γ(t), we have the following theorem.

Theorem 2. Let ε > 0 be a small constant. Let np = c log n. Then whp in Dn,p we have (i)
~Γ(t) is directed-super-critical for t ≤ t−ε, (ii) ~Γ(t) is directed-sub-critical for t ≥ tε.

Component structure of vacant set of random regular graphs.
We next consider Gr for r ≥ 3, constant. Let

t∗ =
r(r − 1) log(r − 1)

(r − 2)2
n. (1)
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Let
Nt = ne−

(r−2)t
(r−1)n = ne−

t
ρn , (2)

where ρ = (r − 1)/(r − 2), and let

pt = e−
(r−2)t
ρrn . (3)

Theorem 3. Let ε > 0 be a small constant. Then whp we have

(i) Γ(t) is super-critical for t ≤ (1− ε)t∗, and |C1(t)| = Ω(n). Let p = pt, then

|C1(t)| ∼ θNt

where,
θ = 1− (1− p+ pφ1/2)r (4)

and where φ is the largest positive solution in (0, 1) to

φ = (1− p+ pφ1/2)2(r−1). (5)

(ii) Γ(t) is sub-critical for t ≥ (1 + ε)t∗,

(iii) At some time t ∼ t∗ the maximum component size in Γ(t) is n2/3+o(1).

When r = 3, equations (4), (5) give φ = ((1− p)/p)4 and θ = 1− (et/(6n) − 1)3.

We can also say something about |R(t)| and the degree sequence of Γ(t).

Let τ0 = 0 and for k ≥ 1 let

τk = n1−1/k, and tk =
ρrn log n

k(r − 2) + r
. (6)

Theorem 4. Let ε, δ be small positive constants. Suppose that log log n� ω = ω(n)� log n.

(a) whp simultaneously for all t ≤ (1 − ε)t0, |R(t)| = (1 + o(1))Nt. This result also holds
whp for any fixed (1− ε)t0 ≤ t ≤ t0 − ωn.

(b) Let Ds(t) be the number of vertices of degree s in Γ(t). Then whp, simultaneously for all
0 ≤ s ≤ r and for all (τr−s)

1+δ ≤ t ≤ (1− ε)ts,

Ds(t) = (1 + o(1))Nt

(
r

s

)
pst(1− pt)r−s.

This result also holds whp for any fixed (1− ε)ts ≤ t ≤ ts − ωn.
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We make the following remarks.

• It was proved in [7] that the cover time of Gr is C(Gr) ∼ ((r − 1)/(r − 2))n log n = t0.

• The whp concentration of e.g. |R(t)| in Theorem 4 holds simultaneously for all t ≤
(1 − ε)t0. The value of ε can be made arbitrarily small. We have not attempted to
optimize these results. It is also true for any given t ≤ t0 − ωn, but not proven to hold
for every t.

• The range ts − ωn ≤ t ≤ ts + ωn contains the times when the number of vertices of
degree s is constant in expectation and unlikely to be concentrated around its mean.

We can give some more information about the number of small components in Γ(t). Again
there is a gap containing the times when the expected number of such components is constant.

Theorem 5. Let ε be a small positive constant. Let

η(k, t) = ne−t/(ρn) r

k((r − 2)k + 2)

(
(r − 1)k

k − 1

)
pk−1
t (1− pt)k(r−2)+2.

(a) Let 1 ≤ k ≤ ε log n and εn ≤ t ≤ (1 − ε)tk−1. Let N(k, t) denote the number of tree
components of Γ(t) with k vertices. Then whp for any given t, N(k, t) = (1+o(1))η(k, t).

(b) For k constant, whp, simultaneously for all t in the range εn ≤ t ≤ (1 − ε)tk−1, the
number of trees with k vertices is concentrated around the value η(k, t). This result also
holds whp for any given t in the range (τk(r−2)+2)1+δ ≤ t ≤ εn, where δ is a small
positive constant.

Again we make some remarks.

• Most small components are trees, as e.g. whp Gr induces at most O(log n) cycles of
constant size.

• Theorem 5 holds simultaneously for k constant and any t. We do not claim that Theorem
5 holds simultaneously for all k = O(log n) and t. Our proof only show this to be true
for most values of t.

• The intervals containing trees of size k constant are nested. Thus, whp isolated red
vertices are the first trees to appear, (at around time n1−1/r), and the last to disappear,
at the cover time (around t0 = ρn log n).
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Finally, we state without detailed proof the results on the vacant set arising from the use of
k simultaneous random walks, k ≥ 1 constant. The structure of Γk(t) is equivalent to Γ(t′)
where t′ = (1 + o(1))kt. In particular t∗k = t∗/k. The reasons for this assertion are based on
Lemma 9 and Corollary 10. The probability that none of k independent random walks visit
a vertex v during steps T, ..., t, is the k-th power of the probability that a single random walk
does not visit v during steps T, ..., t.

1.1 Previous work

The only previous works on this subject that we are aware of are Benjamini and Sznitman [1],
Windisch [21] and Černy, Teixeira and Windisch [5]. Papers [1], [21] deal with the component
structure of the vacant set of a random walk on a d-dimensional torus. Paper [5] deals with
random walks on Gr. It shows that whp Γ(t) is sub-critical for t ≥ (1 + ε)t∗ and that there
is a unique linear size component for t ≤ (1− ε)t∗. They conjecture that Γ(t) is super-critical
for t ≤ (1− ε)t∗ and we prove this conjecture.

Subsequent to our posting a preliminary version on the ArXiV, Černy and Teixeira [6] have
used the methods of this paper to give a sharper analysis of Γ(t) in the critical window.

2 Uniformity

The method we use to study the vacant set, uses the random walk to generate the graph G
in question. The main idea is to realize that as G is a random graph, the graph Γ(t) of the
vacant set has a simple description.

We first consider Gn,p. To prove Theorem 1 we only need high probability estimates of |R(t)|.

Lemma 6.
Consider a random walk on Gn,p. Conditional on N = |R(t)|, Γ(t) is distributed as GN,p.

Proof This follows easily from the principle of deferred decisions. We do not have to
decide the existence or absence of edges between vertices in R(t) until one of them is exposed.

2

We next consider Gr. We give two structural lemmas.

Lemma 7.
Consider a random walk on Gr. Let Γ(t) have vertex set R(t) and degree sequence d =
(dΓ(t)(v), v ∈ R(t)). Conditional on N = |R(t)| and degree sequence d, Γ(t) is distributed as
GN,d, the random graph with vertex set [N ] and degree sequence d.
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Proof Intuitively, if we condition on R(t) and the history of the process, and if G1, G2

are graphs with vertex set R(t) and if they have the same degree sequence, then substituting
G2 for G1 will not conflict with the history. Every extension of G1 is an extension of G2 and
vice-versa. We now give a formal explanation of this.

The history of the process can be represented by a sequence X = (X0, . . . , Xt−1) where
X ∈ [r]t. This sequence is to be interpreted as follows. We assume the neighbours u1, ..., ur of
each vertex v are given in some fixed order, e.g. increasing label order, (recall that V = [n]).
When at the j-th vertex v =Wu(j − 1), the walk moved to the Xj-th neighbour uXj of v, in
the given order. The probability space for the lemma is uniform over Gr× [r]t, where Gr is the
set of r-regular graphs on [n]. Given ω = (G,X), we let Rω,Bω, Eω,dω denote the induced
values of R(t),B(t), the edges of G that are incident with B(t) and the degree sequence of the
graph Γω induced by R(t). These quantities are all determined by ω. For consistency with
the statement of the Lemma, when N = |R(t)|, let dω(i) be the degree of the i-th vertex of
Γω in numerical order. We can in this way associate Γω with GN,d.

Fix R and a degree sequence d. Let GR,d be the set of graphs with vertex set R and degree
sequence d. For a graph H ∈ GR,d and X ∈ [r]t we let ΨX(H) = {ω = (G,X) : Γω = H}
and ΩX(H) = {G : (G,X) ∈ ΨX(H)}. Note that |ΨX(H)| = |ΩX(H)|. Now for any fixed
X0 ∈ [r]t,

Pr(Γω = H | X = X0) =
Pr((Γω = H) ∧ (X = X0))

Pr(X = X0)
=
|ΨX0(H)|/(|Gr|rt)

Pr(X = X0)
=
|ΨX0(H)|
|Gr|

. (7)

We argue next that for given X and H1, H2 ∈ GR,d we have |ΩX(H1)| = |ΩX(H2)|. The lemma
follows from this and (7).

For G ∈ ΩX(H1) let φ(G) = φH1,H2(G) = (G \ E(H1)) ∪ E(H2), i.e. we remove the edges
of H1 from G and replace them by the edges of H2. Note first that φ(G) ∈ Gr, and that if
φ(G) = φ(G′) then G = G′. We next show that if G ∈ ΩX(H1) then φ(G) ∈ ΩX(H2), in which
case, because φ is bijective, we have |ΩX(H1)| = |ΩX(H2)|.

Given ω1 = (G,X), let ω2 = (φ(G), X). Since we have not changed X or G \E(H1), the walk
Wu(s) described by X made the same edge transitions at steps 0 ≤ s ≤ t− 1, on G and φ(G).
This means that Bω2 = Bω1 , and hence Rω1 = Rω2 . Thus Γω2 = H2, so that φ(G) ∈ ΩX(H2).
The lemma follows. 2

Thus to prove Theorem 3 we only need high probability estimates of the degree sequence of
Γ(t). The proof of Theorem 5 can in principle be derived from this, although we do not have
a simple way of doing it. Instead we rely on a further characterization of Γ(t).

We use the configuration or pairing model of Bollobás [3] and Bender and Canfield [4]. We
start with n disjoint sets of points W1,W2, . . . ,Wn each of size r. We let W =

⋃n
i=1Wi.

A configuration F is a partition of W into rn/2 pairs i.e. a pairing. Ω is the set of
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configurations. If F ∈ Ω defines an r-regular multi-graph GF = ([n], EF ) where EF =
{(i, j) : ∃ {x, y} ∈ F : x ∈ Wi, y ∈ Wj} i.e. we contract Wi to a vertex i for i ∈ [n].

It is known that: (i) Each simple graph arises the same number of times as GF . i.e. if
G, G′ are simple, then |{F : GF = G}| = |{F ′ : G′F = G′}|. (ii) Provided r is constant, the
probability GF is simple is bounded below by a constant. Thus if F is chosen uniformly at
random from Ω then any event that occurs whp for F , occurs whp for GF , and hence whp
for Gr.

Suppose now that we generate a random F using a random walk on [n]. To do this, we begin
with a starting vertex i1, and at the start of t-th step we are at some vertex it, and have a
partition Rt, Bt of W into Red and Blue points respectively. Initially, R1 = W and B1 = ∅.
In addition we have a collection Ft of disjoint pairs from W where F1 = ∅.

At step t + 1 we choose a random edge incident with it. Recall that the neighbours of it are
in a fixed order indexed by 1, ..., r. Obviously it ∈ B(t), as it is visited by the walk, but we
treat the configuration points in Wit as blue or red, depending on whether the corresponding
edge is previously traversed (blue) or not (red). Let x be chosen randomly from Wit . There
are two cases.

If x ∈ Rt, then the edge is unvisited, so we choose y randomly from Rt \ {x}. Suppose that
y ∈ Wj. This is equivalent to moving from it ∈ B(t) to it+1 = j. If j ∈ B(t) this is equivalent
to moving between blue vertices on a previously unvisited edge. If j ∈ R(t), this is equivalent
to moving to a previously unvisited vertex. We update as follows. Rt+1 = Rt \ {x, y} and
Bt+1 = Bt ∪ {x, y}, and Ft+1 = Ft ∪ {{x, y}}.

If on the other hand, x ∈ Bt then it has previously been paired with a y ∈ Wj ∩ Bt and we
move from it to it+1 = j without updating. We let Rt+1 = Rt, Bt+1 = Bt and we let Ft+1 = Ft.

After t steps we will have constructed a random collection Ft of at most t disjoint pairs from
W . Ft consists of a pairing of Bt, and Rt is unpaired. In principle we can extend Ft to a
random configuration F by adding a random pairing of Rt to it. The next lemma summarizes
this discussion.

Lemma 8.

(a) Ft plus a random pairing of Rt is a uniform random member of Ω.

(b) i ∈ R(t) iff Wi ⊆ Rt.
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3 Vacancy probabilities

As in our previous papers on random walks on random graphs, we make heavy use of Lemma
9 below. Let P be the transition matrix of the walk and let P

(t)
u (v) = Pr(Wu(t) = v) be the

t-step transition probability. We assume the random walk Wu on G is ergodic, and thus the
random walk has stationary distribution π, where πv = d(v)/(2m).

Suppose that the eigenvalues of P are 1 = λ1 > λ2 ≥ · · · ≥ λn. Let λmax = max {|λi| : i ≥ 2}.
We can make λ2 = λmax, if necessary, by making the chain lazy i.e. by not moving with
probability 1/2 at each step. This has no significant effect on the analysis. Let ΦG be the
conductance of G i.e.

ΦG = min
S⊆V,πS≤1/2

∑
x∈S πxP (x, S̄)

πS
. (8)

Then,

1− ΦG ≤ λ2 ≤ 1− Φ2
G

2
(9)

|P (t)
u (x)− πx| ≤ (πx/πu)

1/2λtmax. (10)

A proof of this can be found for example in Jerrum and Sinclair [16].

Mixing time of Gn,p, Gr. Let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| = O

(
minx∈V πx

n3

)
. (11)

For G = Gn,p and np = c log n, c > 1, whp the conductance Φ(G) > 0 constant, and so

T (Gn,p) = O(log n). (12)

For G = Gr, Friedman [13] has shown that whp λ2 ≤ (2
√
r − 1 + ε)/r ≤ 29/30, say. In

which case we can whp take
T (Gr) ≤ 120 log n. (13)

If inequality (11) holds, we say the distribution of the walk is in near stationarity. Fix two
vertices u, v. Let ht = Pr(Wu(t) = v) be the probability that the walk Wu visits v at step t.
Let

H(z) =
∞∑
t=T

htz
t (14)

generate ht for t ≥ T .
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We next consider the returns to vertex v made by a walk Wv, starting at v. Let rt =
Pr(Wv(t) = v) be the probability that the walk returns to v at step t = 0, 1, .... In particular
note that r0 = 1, as the walk starts on v. Let

R(z) =
∞∑
t=0

rtz
t

generate rt, and let

RT (z) =
T−1∑
j=0

rjz
j. (15)

Thus, evaluating RT (z) at z = 1, we have RT (1) ≥ r0 = 1.

For t ≥ T let ft = ft(u→v) be the probability that the first visit made to v by the walk Wu

to v in the period [T, T + 1, . . .] occurs at step t. Let

F (z) =
∞∑
t=T

ftz
t

generate ft. Then we have
H(z) = F (z)R(z). (16)

The following lemma gives the probability that a walk, starting from near stationarity makes
a first visit to vertex v at a given step. For proofs of the lemma and its corollary, see [9].
The proof differs from the earlier version given in [7], in that we only consider first visits to
a vertex v after the mixing time T . We use the lemma to estimate E|RT (t)|, the expected
number of vertices unvisited after T , this differs from E|R(t)| by at most T vertices.

Lemma 9. Let Rv = RT (1), where RT (z) is from (15). For some sufficiently large constant
K, let

λ =
1

KT
, (17)

where T satisfies (11). Suppose that

(i) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(ii) Tπv = o(1) and Tπv = Ω(n−2).

There exists
pv =

πv
Rv(1 +O(Tπv))

, (18)
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such that for all t ≥ T ,

ft(u→v) = (1 +O(Tπv))
pv

(1 + pv)t+1
+O(Tπve

−λt/2). (19)

= (1 +O(Tπv))
pv

(1 + pv)t
for t ≥ log3 n. (20)

Corollary 10. For t ≥ T let Av(t) be the event thatWu does not visit v at steps T, T+1, . . . , t.
Then, under the assumptions of Lemma 9,

PrW(Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−λt/2) (21)

=
(1 +O(Tπv))

(1 + pv)t
for t ≥ log3 n. (22)

We use the notation PrW when we want to emphasize that we are dealing with the probability
space of walks on G.

Corollary 10 gives the probability of not visiting a single vertex in time [T, t]. We need to
extend this result to certain small sets of vertices. In particular we need to consider sets
consisting of v and a subset of its neighbours N(v). Let S be such a subset.

Suppose now that S is a subset of V with |S| = o(n). By contracting S to single vertex
γ = γ(S), we form a graph H = H(S) in which the set S is replaced by γ and the edges that
were contained in S are contracted to loops. The probability of no visit to S in G can be
found (up to a multiplicative error of 1 +O(1/n3)) from the probability of a first visit to γ in
H. This is the content of Lemma 11 below.

We can estimate the mixing time of a random walk on H as follows. Note that the conductance
of H is at least that of G. As some subsets of vertices of V have been removed by the
contraction of S, the set of values that we minimise over, to calculate the conductance of
H, (see (8)), is a subset of the set of values that we minimise over for G. It follows that
the conductance of H is bounded below by the conductance of G. The conductance of G is
constant, (see discussion below (11)), and so using (9), (10), we see that the mixing time for
W in H is O(log n).

Lemma 11. [9] Let Wu be a random walk in G starting at u 6∈ S, and let Xu be a random
walk in H starting at u 6= γ. Let T be a mixing time satisfying (11) in both G and H. Then

Pr(Aγ(t);H) = Pr(∧v∈SAv(t);G)

(
1 +O

(
1

n3

))
,

where the probabilities are those derived from the walk in the given graph.
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Proof

Note that m = rn/2 = |E(G)| = |E(H)|. Let Wx(j) (resp. Xx(j)) be the position of walk
Wx (resp. Xx(j)) at step j. Let Γ = G,H and let P s

u(x; Γ) be the transition probability in Γ,
for the walk to go from u to x in s steps.

Pr(Aγ(t);H) =
∑
x6=γ

P T
u (x;H) Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t;H)

=
∑
x 6=γ

(
d(x)

2m
(1 +O(n−3))

)
Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t;H) (23)

=
∑
x 6∈S

(
P T
u (x;G)(1 +O(n−3))

)
Pr(Wx(s− T ) 6∈ S, T ≤ s ≤ t;G) (24)

= Pr(∧v∈SAv(t);G)(1 +O(1/n3)).

Equation (23) follows from (11). Equation (24) follows because there is a natural measure
preserving map φ between walks in G that start at x 6∈ S and avoid S and walks in H that
start at x 6= γ and avoid γ. 2

4 The evolution of Γ(t) in Gr

4.1 Estimates of Rv

Let
`1 = ε1 logr n, (25)

for some sufficiently small ε1. A cycle C is small if |C| ≤ `1. A vertex is nice if it is at distance
at least `1 from any small cycle. Let N denote the nice vertices and N denote the vertices
that are not nice.

It is straightforward to prove by first moment calculations that:

Whp there are at most n2ε1 vertices that are not nice. (26)

Whp there are no two small cycles within distance `1 of each other. (27)

The results we prove are all conditional on (26) and (27) holding. This can only inflate
the probabilities of unlikely events by 1 + o(1). This includes events defined in terms of the
configuration model as claimed in Lemma 8. For example, if a calculation shows that an
event E has probability at most ε in the configuration model, then it has probability O(ε)
with respect to the corresponding subgraph of G and then we only need to multiply this by
1 + o(1) in order to estimate the probability conditional on (26) and (27). We will continue
relying on this without further comment.
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A vertex v is tree-like to depth k if Nk(v) induces a tree, rooted at v. Here Nk(v) denotes the
set of vertices at distance at most k from v, k ≥ 1. Thus a nice vertex is tree-like to depth
`1/2.

Lemma 12.

(a) If v is nice then

Rv = (1 + o(1))ρ where ρ =
r − 1

r − 2
,

where the o(1) term is o(log−K n) for any positive constant K.

(b) If v is not nice then

Rv ≤ (1 + o(1))
r

r − 2

Proof (a) Let H denote the subgraph of G induced by N`1/2(v). This is a tree and we
can embed it into an infinite r-regular tree T rooted at v. Let X be the walk on T , starting
from v, and let Xt be the distance of X from the root vertex at step t.

Let D0 = 0, and let Dt be the distance from v of W in G at step t. We note that we can
couple Wv,X so that Dt = Xt up until the first time that Dt > `1/2.

The values of Xt are as follows: X0 = 0, X1 = 1, and if Xt = 0 then Xt+1 = 1. If Xt > 0 then

Xt =

{
Xt−1 − 1 with probability q = 1

r

Xt−1 + 1 with probability p = r−1
r
.

(28)

We note the following result (see e.g. [12]), for a random walk on the line = {0, ..., a} with
absorbing states {0, a}, and transition probabilities q, p for moves left and right respectively.
Starting at vertex z, the probability of absorption at the origin 0 is

ρ(z, a) =
(q/p)z − (q/p)a

1− (q/p)a
≤
(
q

p

)z
, (29)

provided q ≤ p.

Let U∞ = {∃t ≥ 1 : Xt = 0}, i.e. the event that the particle ever returns to the root vertex in
T . It follows from (29) with z = 1 and a =∞ that

Pr(U∞) =
1

r − 1
. (30)

It follows that the expected number of visits by X to v is 1
1− 1

r−1

= ρ. We write

Rv =
T∑
t=0

rt and ρ =
∞∑
t=0

ρt

13



where ρt = Pr(Xt = v).

Now rt = ρt for t ≤ `1/2 and part (a) follows once we prove that

T∑
t=`1/2+1

rt = o(1) and
∞∑

t=`1/2+1

ρt = o(1). (31)

The first equation of (31) follows from∣∣∣∣rt − 1

n

∣∣∣∣ ≤ λtmax (32)

where λmax is the second largest eigenvalue of the walk. This follows from (10).

The second equation of (31) is proved in Lemma 7 of [7] where it is shown that

∞∑
t=`1/2+1

ρt ≤
∞∑

2j=`1/2+1

(
2j

j

)
(r − 1)j

r2j
≤

∞∑
2j=`1/2+1

(
4(r − 1)

r2

)j
. (33)

Thus
Rv = ρ+O(Tλ`1/2max + T/n+ (8/9)`1/2)

and part (a) follows. (b) We next note a property of random walks on undirected graphs
which follows from results on electrical networks (see e.g. Doyle and Snell [11]). Let v be
a given vertex in a graph G and S a set of vertices disjoint from v. Let p(G), the escape
probability, be the probability that, starting at v, the walk reaches S before returning to v.
For an unbiased random walk,

p =
1

d(v)REFF

,

where REFF is the effective resistance between v and S in G. We assume each edge of G has
resistance 1. In the notation of this paradigm, deleting an edge corresponds to increasing the
resistance of that edge to infinity. Thus by Raleigh’s Monotonicity Law, if edges are deleted
from G to form a sub-graph G′ then R′EFF ≥ REFF . So, if we do not delete any edges incident
with v then p′ ≤ p.

It follows from (27) that H becomes a tree after removing one edge. We can remove an edge
not incident with v. By the above discussion on electrical resistance we see that this will not
decrease Pr(U∗∞), where this is U∞ defined with respect to T ∗ which is T less one edge, not
incident with v. We can argue crudely that

Pr(U∗∞) ≤ 1

r
+
r − 1

r
· 1

r − 1
=

2

r
.

This is because there is an r−1
r

chance of a first move to a part of the tree that has branching
factor r − 1 at every vertex.

14



Let U∗1 = {X returns to the root vertex after starting at `1/2}. Then, with FT equal to the
probability of a return by Wv to v during [1, T ], we have

FT ≤ Pr(U∗∞) + TPr(U∗1 ). (34)

The RHS of (34) is at least the probability that Wv returns before reaching distance `1/2 or
returns after reaching distance `1/2 at some time t ≤ T .

Now, using (29), we see that

Pr(U∗1 ) ≤ 1

(r − 1)`1/4
. (35)

Here we have `1/4 in place of `1/2 to account for the one place where we move left with
probability 1

r−2
. We argue that at least one of the paths from v to w or w to the boundary

must be at least `1/4 and not use the vertex incident to the deleted edge.

Thus FT ≤ (2 + o(1))/r and since Rv ≤ 1
1−FT

we have Rv ≤ r+o(1)
r−2

. 2

4.2 Proof of Theorem 4

This section establishes the whp values of |R(t)| and Ds(t) for Γ(t). We also calculate the
whp value of |U(t)|, where U(t) is the number of unvisited edges at step t. This gives us the
value of |Rt| = 2|U(t)| (see Section 2), which we need for the proof of Theorem 5.

Fix v ∈ V and let N(v) = {w1, w2, . . . , wr} and choose 0 ≤ s ≤ r. Let

P (v, s, t) = PrW({v, w1, . . . , ws} ⊆ R(t) and {ws+1, . . . , wr} ⊆ B(t)).

Then

PrW(v ∈ R(t) and has degree s in Γ(t)) =

(
r

s

)
P (v, s, t). (36)

Lemma 9 is only valid after the mixing time T , and Corollary 10 gives precise results only
after some t sufficiently larger than T . We assume henceforth that t ≥ log3 n. We deal
with the very beginning of the walk (t < T ) in Section 4.5. Define the set RT (t) to be
those vertices visited by the walk during steps T, ..., t, and let BT (t) = V \ RT (t). Thus
R(t) = RT (t) \ {Wu(0),Wu(1), . . . ,Wu(T − 1)}

We recall the definition of a nice vertex, as given at the start of Section 4.1. We will say an
edge e = {u, v} is nice, if both u, v are nice. The next lemma gives enough information to
compute the expected number of unvisited nice vertices, edges between nice vertices, and the
expected degree sequence of nice vertices in R(t).
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Lemma 13. Let pt = e−((r−2)t)/(ρrn) as given by (3). WhpG
1, for all nice vertices v, and for

all nice edges {u, v}, for t ≥ log3 n,

(a) PrW(v ∈ RT (t)) = (1 + o(1))e−
t
ρn .

(b) PrW({u, v} ∈ UT (t)) = (1 + o(1))e−
2t
ρrn .

(c) Let
PT (v, s, t) = PrW({v, w1, . . . , ws} ⊆ RT (t) and {ws+1, . . . , wr} ⊆ BT (t)),

then
PT (v, s, t) = (1 + o(1))e−

t
ρnpst(1− pt)r−s.

Proof Part (a) follows directly from Corollary 10 using pv from (18) and the value of Rv

from 12(a).

Part (b) follows similarly, by subdividing the edge e = {u, v} with an artificial vertex α to
form the graph H. The stationary distribution of α in H is πα = 2/(rn+ 2), and the value of
Rα is given by Rv of Lemma 12(a).

For part (c) we proceed as follows. Let X ⊆ N(v). Let γX denote the contraction of {v}∪X.
Corollary 10 applies to γX and

pγX = (1 + o(1))
(r − 2)(r + (r − 2)|X|)

r(r − 1) n
, (37)

as we now explain. From (18), the expression for pγX ∼ πγX/RγX . The stationary distribution
of γX is πγX = (|X|+ 1)/n. Since v is nice, the expected number of returns, is (up to a factor
1 + o(1)), RγX = 1

1−f ; where f is the probability of return to the root γX of an infinite tree

with branching factor r − 1 at each non-root vertex. Thus pγX = (1 + o(1))πγX (1 − f). It
remains to calculate f . At the root there are |X| loops and r − |X| + (r − 1)|X| branching
edges. This gives

f =
2|X|

r(|X|+ 1)
+

(r − 2)|X|+ r

r(|X|+ 1)

1

r − 1
,

and hence (37) above.

Let N(v) = {w1, w2, . . . , wr}, and let X = {w1, . . . , ws}∪ Y where Y ⊆ {ws+1, . . . , wr}. Then

PrW({v, w1, . . . , ws} ⊆ RT (t) and {ws+1, . . . , wr} ⊆ BT (t))

=
∑

Y⊆{ws+1,...,r}

(−1)|Y |PrW(({v, w1, . . . , ws} ∪ Y ) ⊆ RT (t))

=
∑

Y⊆{ws+1,...,r}

(−1)|Y |
1 +O(TπγX )

(1 + pγX )t
, (38)

1We use the subscript G to emphasize that the probability space is random r-regular graphs
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where |X| = 0, ..., r − s. If s = 0, we suppose that {v, w1, . . . , ws} = {v}.

Thus, for s = 0, 1, ..., r,

PrW({v, w1, . . . , ws} ⊆ RT (t) and {ws+1, . . . , wr} ⊆ BT (t)) =

exp

{
−(1 + o(1))

(r − 2)2s+ r(r − 2)

r(r − 1)n
t

} ∑
Y⊆[s+1,r]

(−1)|Y | exp

{
−(1 + o(1))

(r − 2)2|Y |
r(r − 1)n

t

}
.

(39)

There are two cases. When t = O(n) we can write (39) as

exp

{
−(1 + o(1))

(r − 2)2s+ r(r − 2)

r(r − 1)n
t

}(
1− exp

{
− (r − 2)2

r(r − 1)n
t

})r−s
+ o(1).

and (c) follows, since the terms above are Ω(1). When t/n → ∞ we go back to (39) and
observe that the sum is 1− o(1) and thus

PrW({v, w1, . . . , ws} ⊆ RT (t) and {ws+1, . . . , wr} ⊆ BT (t)) =

(1 + o(1)) exp

{
−(r − 2)2s+ r(r − 2)

r(r − 1)n
t

}
as required. 2

Proof of Theorem 4(a).

Let t ≤ t0 − ωn, where t0 = ρn log n and ω satisfies the conditions of Theorem 4.

Using (26), (27) we have whp, that |N | = O(n2ε1 log n), and thus |N | = n(1 − o(1)). Let
Z(t) = |R(t) ∩N|. As there are at most T = O(log n) vertices in R(t) \ RT (t),

EZ(t) = n(1− o(1))PrW(v ∈ RT (t)) +O(T ) (40)

= (1 + o(1))ne−
t
ρn . (41)

Thus EZ(t)→∞ for t ≤ ρn log n− ωn.

We use the Chebyshev inequality to prove concentration of Z(t) for a single t ≤ t0 − ωn.

Suppose that
log log n� ω′ = ω′(n)� ω. (42)

We first show that
Var(Z(t)) = O(rω

′
EZ(t)) + e−aω

′
E(Z(t))2, (43)

for some constant a > 0.
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Fix t and let Ev be the event that vertex v ∈ R(t). We claim that if v, w are at distance at
least ω′ then

Pr(Ev ∩ Ew) = (1 + e−Ω(ω′)) Pr(Ev)Pr(Ew). (44)

To prove this we use Lemma 11. Let S = {v, w}, and let γ(S) be the contraction of S. For
the random walk on the associated H we have

1

2
(Rv +Rw) ≤ Rγ ≤

1

2
(Rv +Rw)(1 +O(Te−Ω(ω′))).

Indeed, the first move from γ will be to a neighbour of v or w. Assume it is to a neighbour
of v. The expected number of returns will be Rv plus Rw times the probability of a visit
to w during the mixing time. Because v and w are at distance at least ω′, using (32), the
probability of a visit to w during T can be bounded by T (n−1 + λω

′
max). Thus

Rγ = ρ
(

1 + e−Ω(ω′)
)
, πγ =

2

n
, pγ = (1−O(Te−Ω(ω′)))

2

ρn
. (45)

Equation (44) follows on using Lemmas 9, 11 and equation (45).

Thus

E(Z2(t)) = EZ(t) +
∑
v,w

dist(v,w)≥ω′

Pr(Ev ∩ Ew) +
∑
v,w

dist(v,w)<ω′

Pr(Ev ∩ Ew)

≤ EZ(t) + (1 + e−aω
′
)E(Z(t))2 + rω

′
E(Z(t))

and (43) follows. Applying the Chebyshev inequality we see that

Pr
(
|Z(t)− EZ(t)| ≥ E(Z(t))e−aω

′/3
)
≤ 2rω

′
eaω

′

EZ(t)
+ e−aω

′/3. (46)

Provided t ≤ t0 − ωn, EZ(t) ≥ eω/ρ/2 and our choice of ω′ in (42) implies that the RHS of
(46) is o(1) for such t.

To prove the concentration of Z(t) simultaneously for all t ≤ (1− ε)t0, we proceed as follows.
Let now ω′ = `1/2 where `1 = ε1 logr n is given by (25). From (40)-(41), for t ≤ (1−ε)ρn log n,
we have EZ(t) = (1 + o(1))ne−t/ρn ≥ nε/2. We see that (46) becomes

Pr(|Z(t)− EZ(t)| ≥ E(Z(t))e−aω
′/3) ≤ 2rω

′
eaω

′
et/(ρn)

n
+ e−aω

′/3 = o(n−δ), (47)

for some (small) δ > 0 constant. We can make δ = (aε1 log r)/4 provided we make ε >

ε1

(
1 + a

log r

)
.

We interpolate [0, t0] at M = nδ/2 integer points s1, ..., sM a distance σ = t0 n−δ/2 apart
(ignoring rounding). Let H(M) be the event that

{
|Z(t)− EZ(t)| ≤ E(Z(t))e−aω

′/3
}

holds

simultaneously at s1, ..., sM . Then Pr(¬H(M)) = o(n−δ/2) = o(1).
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The value of Z(t) is non-increasing, with EZ(t) = (1 + o(1))ne−t/ρn. Thus for any t, si ≤ t ≤
si+1,

Z(si) ≥ Z(t) ≥ Z(si+1)

(1 + o(1))e(t−si)/ρn ≥ Z(t)

EZ(t)
≥ (1− o(1))e(t−si+1)/ρn.

But e(t−si)/ρn, e(t−si+1)/ρn are both 1−o(1) and so the concentration result holds for nice vertices
for t ≤ (1− ε)t0.

Lemma 13 applies only to nice vertices. We next consider N ∩R(t). It follows from Lemmas
9 and 12 that

whp N ⊆ BT (t) for t ≥ 10ε1n log n. (48)

However for t ≤ 10ε1n log n,

EZ(t) ≥ n1−10ε1 � |N| ≥ |N ∩R(t)|. (49)

This completes the proof of part (a) of Theorem 4.

Proof of Theorem 4(b).

The proof of part (b) is similar to that of (a). Observe first that part (a) and Lemma 13 imply

E(D′s(t)) = (1 + o(1))Nt

(
r

s

)
pst(1− pt)r−s. (50)

where D′s(t) is the number of nice vertices of degree s in Γ(t).

Our next aim is to show

E(D′s(t)) = eΩ(ω) for (τr−s)
1+δ ≤ t ≤ ts − ωn (51)

As a function of t, Ntp
s
t(1− pt)r−s is log-concave and to bound E(D′s(t)) from below we only

need to check E(D′s(t)) at the lower bound t = (τr−s)
1+δ and at the upper bound t = ts−ωn.

See (6) for the definitions of τs, ts. For t = o(n) we have pt = 1 − o(1) and Nt ∼ n and
then (51) is simple to verify at the lower bounds for t in (51). When t = ts − ωn we have

pt = e
ω(r−2)
ρr n−

r−2
s(r−2)+r and Nt = e

ω
r n1− r

s(r−2)+r and (51) is also easy to verify.

We can use the Chebyshev inequality to prove concentration. We let Fv(s) be the event that
v is a vertex of degree s in Γ(t). We prove that for v, w ∈ N ,

Pr(Fv(s) ∩ Fw(s)) = (1 + e−Ω(ω′))Pr(Fv(s))Pr(Fw(s)) (52)

whenever v, w are at least ω′ apart, where ω′/ log log n→∞ and ω = o(log n) and ω′ = o(ω)..
We can argue for this by a small change in the argument for (44). This proves concentration

19



for (τr−s)
1+δ ≤ t ≤ ts+1−ωn. Let D≥s(t) =

∑r
k=sDk(t). This sum is monotone non-increasing

with t. Simultaneous concentration of D≥s(t) and hence Ds(t) follows from the interpolation
method of part (a) applied to D≥s(t).

We must now argue that the contribution of N is negligible. Equation (48) shows that whp
N ⊆ B(t) for t ≥ T1 = 10ε1n log n. On the other hand, by (50), for t ≤ T1 and any 0 ≤ s ≤ r,

E(D′s(T1)) = Ω(n1− 10ε1(r+s(r−2))
ρr )� n2ε1 .

It follows from this and concentration of D′s(t) and (26) that D′s(t) ∼ Ds(t) whp and the
proof of part (b) is complete.

4.3 Proof of Theorem 3

We combine Lemma 7 and Theorem 4 with the results of Molloy and Reed [19, 20]. We
summarize what we need from these two papers:

Theorem 14. Let λ0, λ1, . . . , λr ∈ [0, 1] be such that λ0 + λ1 + · · · + λr = 1. Suppose that
d = (d1, d2, . . . , dN) satisfies | {j : dj = s} | = (1 + o(1))λsN for s = 0, 1, . . . , r. Let Gn,d be
chosen randomly from graphs with vertex set [N ] and degree sequence d. Let

L =
r∑
s=1

s(s− 2)λs.

(a) If L < 0 then whp Gn,d is sub-critical.

(b) If L > 0 then whp Gn,d is super-critical. Furthermore the unique giant component has
size θn where θ is defined as follows: Let Λ =

∑r
s=1 sλs. Define α to be the smallest

positive solution to

Λ− 2α−
r∑
s=1

sλs

(
1− 2α

Λ

)s/2
= 0. (53)

Then

θ = 1−
r∑
s=0

λs

(
1− 2α

Λ

)s/2
. (54)

2

We now evaluate L in the context of Γ(t). Then Theorem 4 implies that we can take λs =(
r
s

)
pst(1− pt)r−s so that

L =
r∑
s=0

(
r

s

)
pst(1− pt)r−ss(s− 2) = rpt((r − 1)pt − 1).
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Thus the critical value for t is the one that gives L = 0 and pt = 1
r−1

. One can easily check
that this is indeed the case for t∗ as defined in (1). Intuitively, this can be seen as follows.
When we grow components outward from a given vertex, the branching factor is (r− 1)pt, so
when (r − 1)pt < 1, all components are of finite size.

Parts (i) and (ii) of Theorem 3 follow. We next check the claimed size of C1(t). First of all,
Λ = rpt > 0. We divide (53) by Λ and then let φ = 1− 2α

Λ
so that (53) becomes (5), and (54)

becomes (4). The equation φ = (1 − p + pφ1/2)2(r−1) for φ, has one solution at φ = 1 and a
possible further solution 0 < φ < 1, which determines the size of the giant component. With
this value for φ we see that and then whp |C1(t)| ∼ θNt as claimed.

To prove (iii) we use the result of Hatami and Molloy [15] that when |L| = O(n−1/3) the size
of the giant is n2/3+o(1). At each step, at most r vertices in Γ(t) change their degree and so L
changes by O(1/n). L starts out at r(r−2) and so at some time it becomes equal to O(n−1/3).
This will happen at t ∼ t∗ and the conditions of [15] will be satisfied. At this point whp there
are Θ(n) vertices in Γ(t) and (iii) follows. 2

4.4 Proof of Theorem 5

In this section we study the number of components of a given size. In principle one should
be able to work this out from Lemma 7 and Theorem 4. This has proven more difficult than
we anticipated. Instead, we try to estimate the number directly. We can use these lemmas
though to argue that almost all small components are trees. Indeed if we fix t and condition
on the values Ds = Ds(t) satisfying Theorem 4 then we have the following:

Lemma 15.

(a) If t ≤ ε1n log n then whp there are at most n3ε1 components of size k ≤ ε1 log n that are
not trees.

(b) If t ≥ ε1n log n then whp there are no components of size k ≤ log2 n that are not trees.

Proof Let N = |R(t)|. Applying Lemma 7 we see that the expected number of sets of k
vertices that contain at least k edges is bounded by(

N

k

)((k
2

)
k

)( r
n

)k
≤
(
rNe2

2n

)k
.

To prove (a) we take N = n and apply the Markov inequality. To prove (b) we take N = Nt.
2

With this in mind we concentrate on the number of tree components of size k for some
k ≤ ε1 log n. Since there are whp at most n2ε1 vertices that are not nice, we will concentrate
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on counting the number of components that are made up of nice vertices only. We will also
assume that t ≤ t0, see (51).

The following is Lemma 4 of [2].

Lemma 16. [2] Let T be a labeled infinite r-regular tree. Let bk be the number of labeled
subtrees of size k rooted at vertex v of T . Then

bk =
r

(r − 2)k + 2

(
(r − 1)k

k − 1

)
.

2

Lemma 16 counts labeled sub-trees. Let T be such a tree. Each edge e = (x, y), with x
closest to v, is associated with a label λe indicating that it is the λe-th edge incident with x,
in numerical order. Now consider the situation described in Lemma 8. Fix v ∈ R(t) ∩ N .
Assuming v ∈ N introduces some conditioning on the allowable pairings described in Lemma
8. However Pr(v ∈ N ) = 1−O(n2ε1−1) (see (26)) and then we can use

Pr(A)−Pr(¬B)

Pr(B)
≤ Pr(A | B) ≤ Pr(A)

Pr(B)

for events A,B to correct (55) below for this conditioning. Consider the k neighbourhood of
v in the multi-graph on [n] induced by a random pairing on R(t). It is a tree. Now delete
any edge that corresponds to an edge (x, y) with x ∈ R(t), y ∈ B(t). Let T be the component
that contains v. If T has k vertices then T corresponds to a tree component of Γ(t) with k
vertices.

So, fix a tree T ∗ as counted in Lemma 16 and let us determine the probability that T = T ∗.
The probability space for this calculation is as follows: Let Ft, Rt be as in Lemma 8. We have
paired up the elements of Ft and we are now considering random pairings of Rt. To extend
Ft to F , we can generate the pairing of Rt in any order we please. Thus we start by pairing
elements of Wv the root of our tree.

If we choose x ∈ Wv then the probability it is paired with y ∈ Wz, for some z ∈ R(t), is

ν = r|R(t)|−1
|Rt|−1

. Using Lemma (13)(a),(b), with |R(t)| = (1 + o(1))Nt and |Rt| = 2|U(t)| we
obtain

ν =
r|R(t)| − 1

|Rt| − 1
= (1 + o(1))e−(r−2)t/(ρrn) = (1 + o(1))pt, (55)

where pt is given by (3), and the o(1) term is o(log−K n) for any positive constant K.

Suppose now that we have generated O(log n) pairings. Then both |R(t)| and |Rt| change
by O(log n) and, provided t ≤ t0(1 − ε), ε > 0, since they are both of size Ω(n). Choosing
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an unpaired x′ ∈ Wv′ for v′ ∈ R(t) we see that the probability of x being paired with some
y′ ∈ Wz′ where z′ ∈ R(t), is again (1 + o(1))pt.

To estimate Pr(T = T ∗) we start at the root v and examine the points paired with Wv, where
Wv ⊆ Rt, because v ∈ R(t). The count in Lemma 16 assumes an ordering of the neighbours
of each vertex and by implication an ordering of Wv and a statement about which members
of Wv are paired with WR(t) and which should not. Suppose we pair Wv with points from
Wxi , i = 1, 2, . . . , d. Then we continue by pairing up Wx1 and then Wx2 and so on. The factor
pk−1
t is from the k− 1 times we have to pair with WR(t) and the factor (1− pt)(r−2)k+2 is from

the number of times we do not.

It follows that
Pr(T = T ∗) = (1 + o(1))pk−1

t (1− pt)(r−2)k+2. (56)

It follows from (56) that

E(N(k, t)) = (1 + o(1))Nt
bk
k
pk−1
t (1− pt)(r−2)k+2.

It remains to prove concentration around the mean. We use the Chebyshev inequality. We
fix two vertex disjoint trees T1, T2 in G. Arguing as above we see that

Pr(T1, T2 are components of Γ(t)) ≤ (1 + o(1))
2∏
i=1

Pr(Ti is a component of Γ(t)).

Provided E(N(k, t)) → ∞ and it does so for (τk(r−2)+2)1+δ ≤ t ≤ (1 − ε)tk we can use the
Chebychev inequality to prove Theorem 5(a) for any fixed t. Note that here we have used
concentration in the configuration model to imply concentration in the simple graph model.

We now prove Theorem 5(b). For k constant, E(N(k, t)) = (1+o(1))η(k, t) ≥ nε
′
, throughout

the range εn ≤ t ≤ (1 − ε)tk−1. Concentration can be established by the methods used in
Section 4.2. Let A be a large constant. For εn ≤ t ≤ An we use the Chebychev inequality
directly, and for An ≤ t ≤ (1 − ε)tk−1 we use the interpolation method. For εn ≤ t ≤ An,
EN(k, t) ≥ akn where ak is some constant. Using the Chebychev inequality as in (46), but
with the factor e−aω

′/3 replaced by o(n−δ), for some δ > 0, (which we can do because of the
size of EN(k, t) in this range),

Pr(|N(k, t)− EN(k, t)| ≥ EN(k, t)o(n−δ)) = o(n−δ).

Interpolate εn ≤ t ≤ An at h = nδ/2 points (t1, ..., th), ` = (A − ε)n1−δ/2 apart. Let t ∈
(tj, tj+1). Then |N(k, t) − N(k, tj)| ≤ r` and |η(k, t) − η(k, tj)| = O(`). It follows that, with
probability 1 − o(n−δ/2), |N(k, t) − EN(k, t)| ≤ EN(k, t)o(n−δ/2) for all εn ≤ t ≤ An. For
AN ≤ t ≤ (1 − ε)tk−1 we use the interpolation method of Section 4.2 as follows. Whp the
maximum component size is O(log n) and there are O(log n) vertices on non-tree components.
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Let M(k, t) be the number of vertices on components of size at least k. Then M(k, t) is
monotone non-increasing and

M(k, t) =

O(logn)∑
j=k

jN(j, t) +O(log n)

kN(k, t) = M(k − 1, t)−M(k, t) +O(log n).

Applying the interpolation method to M(k, t) will complete the proof of Theorem 5(b).

4.5 In the beginning

We remind the reader that our proofs so far, we have assumed t ≥ log3 n. We now consider
the first few moves of the walk. Using Lemma 7 we see that for 1 ≤ t ≤ log3 n we have that
Γ(t) is a random graph with a degree sequence of the following form: There are n− s vertices
of degree r, where s ≤ rt, and s vertices of degree < r. If the minimum degree in Γ(t) is at
least one then whp we find that Γ(t) is connected. Indeed, let Vr be the set of vertices of
degree r in Γ(t). We argue that whp

Vr induces a connected subgraph of Γ(t). (57)

Each x ∈ R(t) \ Vr is adjacent to Vr. (58)

For k even let

φ(k) =
k!

(k/2)!2k/2

be the number of ways of partitioning [k] into k/2 pairs.

Let m = O(log3 n) be the sum of the degrees, in Γ(t), of the vertices in R(t) \ Vr. Then

Pr((57)fails) ≤
n/2∑
k=3

m∑
l=0

(
n

k

)(
m

l

)
φ(kr + l)φ((n− s− k)r +m− l)

φ((n− s)r +m)
(59)

=

n/2∑
k=3

m∑
l=0

(
n

k

)(
m

l

)((r(n−s)+m)/2
(kr+l)/2

)(
r(n−s)+m

kr+l

)
≤

n/2∑
k=3

m∑
l=0

(
n

k

)(
m

l

)
1(

(r(n−s)+m)/2
(kr+l)/2

)
≤

n/2∑
k=3

m∑
l=0

(
n

k

)(
m

l

)(
kr + l

r(n− s) +m

)(kr+l)/2

= o(1).
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Explanation of (59): Choose a set of k vertices S of degree r and l points from the m points
in W associated with vertices T of degree less than r. (Some of the points associated with
these latter vertices have already been paired). Now pair up the kr + l points randomly and
the remaining points randomly. The l points contain the edges between S and T .

The probability that (58) fails is O(log n/n). A vertex of R(t) \ Vr of degree d has an O(n−d)
chance of not being connected to Vr.

So we only have to deal with the possibility that there are isolated vertices in Γ(t) for t ≤ log3 n.
So consider the event

A(t) = {∃v ∈ N(Wt) : v ∈ R(t) and N(v) ⊆ B(t)} .

We claim that

Pr(A(t)) = O

(
log3 n

(r − 1)`1/2

)
. (60)

It follows that

Pr((58) fails) ≤
log3 n∑
t=1

Pr(A(t)) = o(1).

To prove (60) fix t and a neighbour v of Wt. Equation (27) implies that there is at least one
neighbour w of v that is not contained in a small cycle. If w 6= Xt then to reach w the walk
W must emulate a walk on the infinite tree T that starts at distance `1/2 from the root and
visits it. This has probability 1/(r − 1)`1/2 and this must be inflated by log3 n to account for
log3 n possible starting times. If w = Xt then to visit another neighbour of v then we must
first reach distance at least `1/2 and then we can repeat the argument and use inequality (35).

5 The evolution of Γ(t) in Gn,p and Dn,p

We first consider Gn,p and prove Theorem 1.

We first note some properties of the degree sequence dG(v) of Gn,p. We assume that c = n1/ω

where ω →∞. Let ω1 = log1/3 n. For a fixed vertex v, its degree dG(v) satisfies

Pr(|dG(v)− c log n| ≥ ω1(c log n)1/2) ≤ 2e−ω
2
1/3.

This follows from Chernoff bounds on the tail of the binomial distribution. Denote by Nd,
vertices of Gn,p which have degrees in the range c log n ± ω1(c log n)1/2. By the Markov
inequality, we see that whp |¬(Nd)| = (ne−ω

2
1/4).

Let |R(t)| = N . Because Γ(t) has the distribution GN,p, we only need good estimates of
N . We can get these using Lemma 9. Fix a vertex v ∈ Nd. It is shown in [9] that whp

25



Rv = 1+O(1/ log n) for all v ∈ V . Let ε = 1/(log n)1/6), then for v ∈ Nd, πv = (1+O(ε))(1/n).
Thus pv = (1 +O(ε))(1/n).

For t ≥ log3 n, (22) implies that

Pr(v ∈ R(t)) = (1 +O(log n/n))e−(1+O(ε))t/n.

Recall that tθ = n(log log n+ (1 + θ) log c), and assume that t = tθ, where θ = O(1) then

E(|Nd ∩R(t)|) = (1 + o(1))
n

c1+θ log n
.

Regarding concentration, we can argue as in the proof (44) that if v, w ∈ Nd are at distance
at least ω1/2 in G then

Pr(Ev ∩ Ew) = (1 + o(1))Pr(Ev)Pr(Ew). (61)

where Ev = {v ∈ R(t)}.

Then if X = |R(t) ∩Nd| then

E(X(X − 1)) ≤
∑
v∈Nd

∑
w∈Nd

dist(v,w)≥ω1/2

Pr(Ev ∩ Ew) +
∑
v∈Nd

∑
w∈Nd

dist(v,w)≤ω1/2

Pr(Ev ∩ Ew)

≤ (1 + o(1))
∑
v∈Nd

∑
w∈Nd

dist(v,w)≥ω1/2

Pr(Ev)Pr(Ew) +
∑
v∈Nd

∑
w∈Nd

dist(v,w)≤ω1/2

Pr(Ev)

≤ (1 + o(1))E(X)2 +O((c log n)ω1/2)E(X)

which implies that Var(X) = o(E(X)2) and then the Chebyshev inequality implies that
X ∼ E(X) ∼ n

c1+θ logn
whp.

The vertices outside Nd only contribute o(N) whp and thus

N(tθ) = (1 + o(1))EN(tθ) = (1 + o(1))n/(c1+θ log n).

The threshold for the giant component in GN,p is at Np = 1, i.e. as θ → 0 from below.
Theorem 1 follows immediately from this.

We next consider Dn,p and prove Theorem 2. As the details are similar to those above,
our discussion will be brief. If np = c log n and (c− 1) log n→∞ then whp Dn,p is strongly
connected, so a random walk on Dn,p is ergodic. It was established in [10] that if (c−1) log n→
∞, then almost all vertices v have have stationary distribution πv = (1 + o(1))/n. By the

method of deferred decisions, ~Γ(t) is a random digraph DN(t),p on N(t) = |R(t)| vertices,
where N(t) is given as above. It was proved in [17] that the threshold for the emergence of a
giant strongly connected component in Dn,p is at np ∼ 1. Theorem 2 follows.
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