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Abstract

We give results on the strong connectivity for spaces of sparse random digraphs specified
by degree sequence. A full characterization is provided, in probability, of the fan-in and fan-
out of all vertices including the number of vertices with small (o(n)) and large (cn) fan-in
or fan-out. We also give the size of the giant strongly connected component, if any, and the
structure of the bowtie digraph induced by the vertices with large fan-in or fan-out. Our
results follow a direct analogy of the extinction probabilities of classical branching processes.

1 Introduction

One of the most important questions in the theory of random graphs concerns the
size of the largest component of such a graph. In their formative paper (8], Erdds
and Rényi proved a strong dichotomy for the size C; of the largest component of
the random graph G, ,, when m = cn/2, ¢ constant. ! Erdés and Rényi® showed
that, in G, if ¢ < 1 then whp C; = O(logn) and that if ¢ > 1 then C; ~ G(c)n
for some function G(c) > 0. A component of order n is called a giant component.
When ¢ = 1 the situation is more complicated and much effort has gone into
an analysis of this case. See e.g. Bollobés [4], Luczak [12], Luczak, Pittel and
Wierman [13], Janson, Knuth, Luczak and Pittel [9] and the books by Bollobés
[3] and by Janson, Luczak and Rucinski [10].

Molloy and Reed [14, 15] consider a model of random graphs with a fixed degree
sequence. In this model, the number of vertices of degree j is approximately
Ajn. More precisely, the limiting proportion A; of vertices of a given degree j
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is fixed, and defines a sequence of non-negative real numbers Ag, A1,..., A}, ...
where A\g + Ay + -+ + A +---=1.

Let @ = >.;5(j — 2)A;. Molloy and Reed prove that if @ < 0 then whp a
random graph G with the implied degree sequence has maximum component size
C1 = O(A%logn). However, if Q > 0 then whp G, has a unique giant component
of size C; ~ cyn for some constant ¢y > 0, and the second largest component, has
size C, = O(A%logn). This interesting result has recently proved to be useful in
the study of random graphs with degree sequences differing from those seen in the
classic theory; for example see Aiello, Chung and Lu [1] in the context of massive
graphs.

When we consider the connectivity of digraphs we find that much has less has
been done. The formative paper in this area, by Karp [11], considers the size of
the strongly connected components in the random digraph D,, ,. See also Uno and
Tbaraki [16].

1.1 Definitions, theorems and informal derivation of results

Let I = (l; 7, 4, > 0) be a set of non-negative integers satisfying >, ;l;; = n and
> iy =22 ;dli; Let D(I) be the space of simple digraphs D with vertex set
V = [n] and with the following property: The degree sequence of D is fixed and
there are [; ; vertices v with in-degree d~(v) = 7 and out-degree d*(v) = j. Let D
denote a digraph chosen uniformly at random (u.a.r) from the space D(1).

Let 6n be the number of arcs of D. We assume that § > 0. Then by counting the
total in-degree, and total out-degree respectively, we find

On = Zdl’] = Zjlld
Y]

1,

Let
pij = lij/n

i _ i j
Py = Zzﬁ and p; = Zgo—;
i J

Thus p* is the distribution of the out-degree of the terminal vertex of a randomly
chosen arc. Similarly p~ is the distribution of the in-degree of the initial vertex of
a randomly chosen arc. Let

d= ngn = ipf =i,
J J 7

and let
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be the average directed degree.

We will first give an intuitive description of the model and state the main re-
sults. Subsequent sections deal with the technical issues and make our description
precise.

We will use a sequence of absolute constansts Ay, A1,... whose exact values are
not always specified, but for which precise values can easily be computed.

Definition 1. Let Bt be the independent branching process with a single initial
node in which the probability distribution of the number of descendants of a node
is pt. Let nT be the probability that BT continues indefinitely.

Thus 1 — 5", the extinction probability of BT, is given by the smallest positive
solution of z = ) pjarj and satisfies

1-nt = pr(l —nt). (1)

If d < 1 then the smallest positive solution of (1) is at 1 —n™ = 1, whereas if d > 1
there is a unique solution with 1 —n* € (0,1).

For a fixed vertex v of D, the fan-out of v, R*(v) is the set of vertices w (including
v) reachable from v by a directed (v, w)-path. Similarly, the fan-in of v, R~ (v),
is the set of vertices u which can reach v by a directed (u,v)-path. We will say
that v has a small fan-out if |R*(v)| < AgA?logn and that v has a small fan-in if
|R™(v)| < ApA?logn. If the fan-out is not small then whp it will be of size A;n,
in which case we say it is large. Let Lt denote the set of vertices with a large
fan-out and L~ denote the set of vertices with a large fan-in.

If v has out-degree k then by doing a breadth first search from v we see that the
arcs of a small R*(v) will be (approximately) the union of k¥ independent copies
of the branching process B™. Thus a root vertex of out-degree k has probability
(1 — n™)* of a finite progeny. Let

1 —_ 7T+ = sz,k(l — 'I7+)k, (2)
i,k
then 1 — 7" is (approximately) the probability that a randomly chosen vertex v
will have a small fan-out. We should therefore expect that
|LF| ~ ntn.

Similarly, we expect that
|L™| ~ 77 n,



where
-7~ =Y pix(l—n)k, (3)
ik
and n~ be the smallest positive value satisfying
1-n =Y p(1-n). (4)

Thus 1 — ™ is the extinction probability of the branching process B~ where the
distribution of the number of progeny is given by p~.

If d <1then n* =7~ =0 and hence 77 = 7~ = 0. This suggests that

d < 1 implies LT = L™ = 0.

For the number of vertices in a large fan-out we argue as follows: If v has a large
fan-out and w has a large fan-in then it is very likely that there will be an arc
directed from the fan-out of v to the fan-in of w which of course implies that
w would be in the fan-out of v. Conversely, if w has a small fan-in then this is
unlikely. Thus we expect that

R*(v) is large = R*(v) D L™ and |[R"(v) \ L™| = o(n) and so |R" (v)| ~ W_T(LS)

By analogy, we expect

R~ (v)islarge = R (v) D L™ and |R™(v) \ LT| = o(n) and so |R™(v)| ~ 71'+7(?,é)

Assume now that pj,py > 0 and d > 1. Let us now consider the expected number
of arcs in a large fan-in or fan-out. We say that an arc (v,w) has a large fan-in
(resp. fan-out) if v has a large fan-in (resp. w has a large fan-out). By analogy
with the vertex case, we would expect that the number of arcs in the fan-out (resp.
fan-in) of a vertex with a large fan-out (resp. fan-in) would be close to the number
of arcs with a large fan-in (resp. fan-out). To estimate the number of arcs with a
large fan-in we need to consider the branching process with progeny distribution
p~—. Here we consider each node of the process to correspond to an arc of the fan-in
our initial root arc. Thus we expect the number of arcs in a large fan-out to be
approximately

+

£tn where % =n". (7)

Again, there are On arcs and each has probability ~ n~ of having a large fan-in.



Similarly, the number of arcs in a large fan-in is whp approximately

£ n where % =nt. (8)

Finally, we consider the size of the largest strongly connected component. It follows
from (5), (6) that whp L™ N L~ is contained in a strongly connected component
S of D. In fact L™ N L~ induces a maximal strongly connected whp. This is
because any vertex in K must have a large fan-in and a large fan-out. The size of
this strong component is approximately (7t + 7~ + 9 — 1)n, where

V=2 p - -nY, ©

The RHS of (9) is explained as follows: Choose a random vertex. It has probability
pi; of having in-degree i and out-degree j. The expression (1 — 7~ ) (1 —n*) is
an estimate of the probability that all of the ¢ + j associated branching processes
become extinct i.e. n )7, p;;(1—n")(1—n") is a good estimate of |[L+ N L~|.

The above giant strongly connected component will be unique. Every other strong
component will be of size < AygA?logn whp since every vertex not in S either
has a small fan-out or a small fan-in.

This concludes the intuitive description. Now comes the hard work of making the
above discussion precise.

1.2 Main results

The following theorems summarize what will be rigorously verified. Some notes on
the structure of the proof of these theorems are given in Section 1.4. The theorem

refers to proper degree sequences. The definition of proper is deferred until Section
1.3.

Theorem 1. Let the sequence (l; ;) be proper. If d < 1, then whp Lt = L™ = (.

Let the parameters n*, 7%, £T,n~, 77, £, be as defined in (1)-(9).

Theorem 2. Assume that (; ;) is proper, that py, pg > 0, and that d > 1. Then
whp

(1) |[LT| ~7tn and |L7| ~ 7 n.

(ii) Ifv € L* then |RT(v)| ~ 7w n. Ifv € L™ then |R™(v)| ~ 7" n.



(iii) If v € Lt then R*(v) contains ~ £tn arcs. If v € L™ then R~ (v) contains
~ £ n arcs.

(v) Ifve LT then Rt (v) D L, and if w € L™ then R~ (w) D L*.

(vi) There is a unique giant strongly connected component, with vertez set S =
LT N L™ of size |S| ~ (nt +7~ +¢ —1)n.

In fact, in Section 4, we prove rather more than this. In the notation of [6] there
is a bowtie digraph B = D[L" U L] of expected size (1 — ¢)n induced by the
union of the vertices with large fan-out or fan-in. This digraph B consists of a
maximal strongly connected component S with vertex set L™ N L~ and wings K
with vertex set L* N L~ and K~ with vertex set L~ N L*. The wing K has
arcs directed towards S and the wing K~ has arcs directed away from S. The
size of any branching in the wings is < AgA2logn. The wings are of expected size
asymptotic to (1 — 7" —¢)n and (1 — 7~ — ¢)n respectively.

Finally we consider digraphs where there are no vertices of in-degree zero or out-
degree zero. The only significant obstruction to the digraph being strongly con-
nected is the existence of small directed cycles consisting entirely of vertices of
out-degree 1, or entirely of vertices of in-degree 1.

Theorem 3. Let (I;;) be proper, and let > l;g = > lp; = 0, then whp the
structure of D 1is as follows:

(1) There is a unique giant strongly connected component S in D, of size n —

O(Ay/nlogn).

(ii) There is a collection C of vertex disjoint directed cycles. The wvertices of
any such cycle are all of out-degree 1 or all of in-degree 1. The subset of

C, consisting of those cycles of in-degree 1 and out-degree 1, has vertexr set
LtNL-.

(iii) Each cycle in C is connected to S by zero or more directed induced paths, all
such paths having the same direction with respect to the given cycle.

(iv) Any directed path between two cycles in C goes through S.

(v) The expected number of vertices on cycles in C' is  where,

1
=1
I} og1

1
1 — (0 + 7).
= Flog < Py +p1)

(vi) lim,_,o Pr(D is strongly connected ) = e=P.



1.3 Proper Degree Sequences
Definition 2. We say the sequence l = (l; ;, i,j > 0) is proper if:

P1: 6 = (1+0(1))0 and d = (1 + o(1))dy where either dy <1 —€ or1+e <dy
for absolute constants g, dy, €.

P2: Zi,j i2pi,j’ Ei,j j2pi,j < A;.

P3: Let p = max <Z LS > jzili”'). If A — oo with n then p = o(A).

ij On on

P4: A < n'12/logn.

1.4 Structure of the proof

In Section 2 we establish Theorem 2 (iii) from a gap theorem for the number of
arcs in R*(v) (resp. R~ (v)) which establishes (7) (resp. (8)).

In Section 3 we prove Theorem 2 (i). We show that if a vertex of out-degree k
has a small fan-out, the number of arcs in this fan-out is well approximated by
the number of nodes of k independent copies of BT. This establishes (1), (2). A
similar analysis of small fan-in establishes (4), (3).

In Section 4, we prove Theorem 2 (iv)(b), (v), (vi). We show that whp L™ N L~
forms the vertex set S of a maximal strongly connected component.

In Section 5, we give an outline proof of Theorem 3.

2 A gap theorem for the number of arcs of the fan-out

R*(v)

Theorem 4. With probability 1 — O(1/n?), for all v € V, the number of arcs of
RT(v) is either < AgA%logn or equal to né™n (1 + O(A+/(log n)/n))

2.1 Configuration model

We use the configuration model of Bollobds [5]. In this model a vertex v € V' is rep-
resented by two sets of configuration points W7, W.~ where |W,F| = d*(v), W, | =



d (v). Let W+ =, W, and W~ = |J,W, . If a € W,/ then the underlying
vertex of point a is u, and we write ¢ (a) = u as a shorthand for this. Similarly,
if b e W, we write ¢~ (b) = v.

A configuration F' is a random matching of W with W~. Let F be written as
F={(a,b):ac W beW}.

Let F denote the space of bipartite matchings of W+ with W~ with the uniform
measure.

Associated with F' is an underlying multi-digraph D € M (l) with vertex set V
and arc set

Ap ={(u,v): (a,b) € F, u=¢"(a), v=19 (b}

The uniform measure on F' induces a probability measure Pr(Dp) on multi-
digraphs Dp. To justify working with configurations in this paper, we need to
argue (i) that if I is proper then

Pr(Drp is simple) > x > 0, (10)

where ¥ is a constant independent of n, and (ii) if D, Dy are two simple digraphs
with vertex set V' and the same degree sequence d~,d", then Pr(D;) = Pr(Dy)

Now it is easily seen that
1 n n B
Pr(Dp = D) = Pr(Dp = D) = @ [Td Id (11)
Ti=1 i=1

Let A(F') denote the number of loops in Dp. Let (z,y) € F be redundant if there
exists (a/,b') € F such that ¢(a') = ¢(a), (b)) = ¢(b) and o' < a. Let m(F)
denote the number of redundant pairs. The expected number of loops A(F) is d,
and the expected number of redundant arcs is bounded above by

= % <Z i2pz’,j) (Zf@',j) .
5] ]

We argue next that we can find x in (10) satisfying

e*(d-i-Z,u)
> 12
X_8(d+,u+1)2 (12)
Let A =2(d+ p). Then
1
Pr(\(F) +m(F) 2 4) < 5. (13)



Next let M be the set of all possible configurations F' and let M,, = {F € M :
AMF) = a,u(F) =b}. We show that for a +b < A,

Ma1p] a

At = (- o)] a>0 (14)
|Mop 1] _ b | Mo 1
Mo = W 0 T S 1o

To prove (14) we consider the set of pairs (F, F') € M,_1, X M, such that F' is
obtained from F' by replacing 2 pairs (z,y), (z,2') by (z,2'),(2z,y), where (z,z')
is a loop. Observe that each F' € M,_;4 is in at most dfn such pairs and that
each F' € M, is in at least a(0n — o(n)) such pairs and (14) follows.

To prove (15) we consider the set of pairs I, = (F, F') € Mop—1 X Moy such that
F' is obtained from F' by replacing 2 pairs (z',w), (z,9’) by (2',9'), (z,w), where
(z,y) is an existing edge. Observe that each F' € Mg is in at most

T(F)= > d"(¢(z))d (4(y))
(z,y)eF

such pairs. Now if F' is chosen uniformly from M then ET'(F') = 2ufn. Changing
(z,v),(z',y') € F to (z,9'), (z',y) only changes I" by at most 2A2, and we see by
the Azuma-Hoeffding martingale inequality that

Pr(I0(F) ~ BN(P)| 2 1) < exp (s )

[Mo,pl
M|

that for almost all F' € Mgy have I'(F') < 2ufn + o(n). Now let X/l\o,b denote
such matchings and let M\O,b_l be those members F' of Mg, which occur with
a member F' of M\o,b in a pair (F, F') € II,. Then I'(F) < 2ufn + o(n) + 2A? =
2p0n + o(n). Now each F' € My, is in at least b(6n — o(n)) pairs and we deuce
that [Mos_1|/|Mos| > (1 — 0(1))b/(2) and (15) follows.

> +5. Then putting t = n/logn into the above we see

Suppose then that

It follows from (13) that we can choose ag + by < A such that

|Ma0,b0| > 1
M| T 2A+1)%

Applying (14) we see that

|M0,bo| > e_d
M| T 2A4+1)%

Applying (15) we obtain
|M0 0 ef(d+2.“)
M| — 2(A+1)%
This completes the proof of (12) and justifies our use of the configuration model.
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2.2 The process C"(v)

The process C*(v) exposes matching pairs of F', and hence arcs of Dp, one at a
time. We use s to count the number of exposed arcs.

We fix a vertex v and generate F', starting with those pairs in F' which are the
edges used in the construction of R (v) when fanning out from v.

Let M(0) = 0, and let M(s) = {(a;,b;), ¢ = 1,...,s} be the partial matching
generated by the end of step s. Let UT(0) = U~(0) = 0, and let U™ (s) = {a; :
i=1,..,s}, U (s)={bi:i=1,..., s}

Let A(0) = {v} and let A(s) = {z € V: ¢ (b)) =z, 1 < i < s} be the set of
vertices acquired by the process up to this point. Thus A(s) C R (v).

Let I*(s) C W™ be the out-points of those vertices acquired by the process. Thus
IT(0) = W} and I (s) = Uyecas)W,5. The elements of I7(s) are considered to
be ordered with respect to the step in which they are acquired. The ordering of
elements acquired in the same step is arbitrary. In terms of the digraph Dp each
step will either add a new vertex v, reachable from v or add an arc to a vertex
already reached. Let Dg(v,s) denote the subgraph of Dp induced by the arcs

{67 (as), o™ (bs)}-

At step s+ 1, an element a, 1 of I7(s)\ U™ (s) is chosen and matched with a point
bst1 chosen u.a.r from W~ \ U~ (s). Then

M(s+1) = M(s)U{(@st1,bs11)}
UHs+1) = U*(s)Ufapn)
U (s+1) = U (s)U{bss1},
and if v, = ¢ (bs11) then
A(s+1) = A(s)U{vsi1}
It(s+1) = If(s)UW,

Vs41°

We note that, of course, v,,; may already be an element of A(s).
Define X (s) = [I*(s)| — s and let
o =min{s: X(s) = 0}. (16)

At time o we have will have computed the fan-out of v, R*(v) = A(c) and R*(v)
induces o arcs in Dp.

The configuration F' can then be completed by randomly pairing up the the ele-
ments of W* \ I™(¢) with W~ \ I (o).
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2.3 Branching process lemma

This lemma summarizes some standard results about probability generating func-
tions.

Lemma 1. Let f(z) = Y piz’ be a probability generating function with expected
value d.

(1) f(z) is monotone increasing and convez in [0, 1].

(ii) If p1 # 1, the equation f(z) = x has one solution at x = 1 and at most one
other solution (3 in [0,1).

(iii) If d > 1 there are exactly two solutions to f(x) = x in [0,1]. If po = 0 then
0, 1 are the solutions. If po > 0 there is a solution 8 € (0,1).

(iv) Let d > 1 and p(0) > 0. Let 8 be the solution in (0,1) of z = f(z), then
f'(z) <1 forall x €0, 3].

Proof

(iv) If d > 1 there are two solutions, § and 1, to x = f~(z) in [0,1]. As f~(0) =
po > 0 we have that f(z) >z for0 <z < B and f (z) < z for 8 < z < 1. Thus,
at © = f3, the slope of y = f (z) at x = (8 is less than the slope of y = z. Thus
f'(B) < 1. Moreover f'(z) is an increasing function of x. O

2.4 Approximations for the expected value of X(s)

Let the vertex set V = [n] be partitioned into fixed sets V;; = {v : d”(v) =
i, d*(v) = 5} and where [;; = |V .

The set V' \ A(s), is the set of vertices of Dp not acquired by the process after
step s. Let d;;(s) = |V;; \ A(s)| be the number of un-acquired vertices of indegree
¢ and outdegree 5. Thus

X(s)=60n—s— Zjai,j(s). (17)

Let u be a vertex of indegree i. The probability that no point in W, has
been matched by the process after step s is (0";’)/ (0:). This follows because

the sequence S~ = (by, ..., bs) has been selected u.a.r without replacement, from
W-\WwW,_.
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We see that X(s) is a function only of the initial vertex vy and the sequence S~.
Thus, for 0 < s < 6n,

EX(s)=6n—s— Zj (li,j - 1voeVm)
,J

where 1,,cy; ; is an indicator variable for the event that vy € V; ;.
We now give some approximations for EX (s).
Lemma 2. (i) If sA = o(n) then

EX(s) = ((d—1)s+d"(vp)) (1 + o(1)).
(ii) If s > A then

S

EX(s) :9n—s—0ani_ (1 - %>i+O(A).

(iii) Suppose d > 1, py >0 and let

s _ 5 \?
g(s) =6n (1—%—;@ (1—%> )
Let f(xz) =Y. p; 2%, and let 3 =1 —n~ be the solution in [0,1) to z = f(z).

(a) 1-f'(B) > 0.
(b) If€¢t is as in (7) then g(§7n) = 0 and provided h = o(n)

g(§'n+h) = —h (1= f'(B) +o(1)).
(c) The function g(s) has a uniqgue mazimum s* in (0,n) at s* = cn, ¢ > 0.

(iv) If d*(vo) > 0 and d > 1, then the unique solution sy to EX(s) = 0 in
0 < s < 0On satisfies sg = ETn + O(A).

Proof (i) Provided sA = o(n)

] G R e I

s—1 .
1 1 1 s3¢3
- 1—3 .2 ° v
ZZGn—j+Z ZOn—jOn—k+O<n3>
7=0 i<k
st s%?
= 1—-—— —_— 1
9n+0 (92n2> (19)

= 1-—o0(1).
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Thus, using (19),
EX(s) = 6n—s+d"(v)(1—o(1 Zjl” Gn—z
2
= (d—1)s+d*(v)(1—0o(1))+ O <02 )

= ((d=1)s+d"(vo))(1 = o(1)),

as l is proper.

(ii) If s > A,
(On—1), ﬁ@n—s—j
(On), Py On —j
B 5\¢ s i(i—1) .
- )exp< P (1+0())>
This follows because
n—s—j On—s {— sj 1
on—j On (6n)2 (1 —s/6n)(1—j/6n))"

Thus
EX ()—Hn—s—Ganl (1—%> +O< >+O( )-

As 1 is proper, if A — 0o, p = 0o(A) the result follows.

(iii)

(a) See Lemma 1.

(b) Certainly g(¢*n) = 0, by definition of 8. Thus, for some § € [0, 1]

2

o€ +h) = g€ n) +hd/(€n) + g (€5 n + oh)
(R )02
~ h (1—f’(5)+0(};p>),

where f'(8) = > ip; 1. As 0 < f'(8) < 1 (by Lemma 1), the Taylor expansion
above is of order h for any 8 € [0,1) and h = o(n).

13



dg(s) i i1
95 _H;”ﬁ(l_%)

S

- —1+f’<1—0—).

n

Now f'(0) =0, f/(1) = d and and f'(1 — s/60n) is strictly monotone decreasing in
s, so provided d > 1, g(s) has a unique maximum at s* = cn, ¢ > 0.

(iv) Let s = £€Tn + h, where h = o(n) then
X(En -+ h) = —h(1 — £(8) + o(1)) + O(A).

2.5 Results on the stopping time o of C*(v)

Theorem 5. Let F € F. For v € V let o(v) be the stopping time of of C*(v)
defined in (16). With probability 1 — O (L), for allv € V,

(i) If d < 1 then o(v) < 6ﬁlogn.
(ii) Ifd > 1 then

(a) Either o(v) < 6(d 1)2

4AnTogn aA/nTogn
(b) §+’I’L— 1_ f,(ﬁg) < 0'( ) < §+7’L+ ﬁ,(ﬂg)

logn, or

Proof (i) If sA = o(n) we see from Lemma 2(i) that

EX(s) = (d*(vo) + (d —1)s) (1 + 0(1)),
and so if d < 1, EX(s) < 0 when s > d*(vp)/(1 — d).

Now, X(s) depends only on the sample S~ = (by,...,b,) of length s, which is
obtained by independent sampling without replacement from the set W~. Chang-
ing the point b, selected, can only change X(s) by at most A. Applying the
Azuma-Hoeffding martingale inequality, we get

Pr(X(s) >0) < Pr(IEX(S) X(s)| = [EX(s)])
= 2eXp< 23A2 )
< 2exp< (d_l >

14



.o 2 nlogn Tosn
(ii) Let s = {6((16—1)2 logn], sy =&"n — % and syy = §n + 74?%.

We prove that, if X (s) > 0 for all s < sz, then with probability 1—o(n~3) X (s) > 0
for s;, < s < sy and X(spyy) < 0.

For As = o(n)

Pr(X(s) = 0) < Pr((BX(s) - X(5) > BX(s) < 20 (- 1S%),

and so the proposition holds for s, < s = o(n/A). As g(s) = EX(s) — O(4A) is
increasing from s = 0 up to s* = cn, we need only consider s* < s < sy. However,
using the Azuma-Hoeffding martingale inequality once again we see that

Pr (|EX(s) — X(s)| > 3Am) < 2exp <—Z—Z log n> . (20)

Ifen < s < {tn—20VRioEn an,zzg)" the Lemma 2(iiib) implies EX (s) > (4—0(1))Ay/nlogn

and so (20) implies o(v) is unlikely to be smaller than claimed. A similar argument

using the fact that f(§Tn) = 0 shows that with high enough probability, X (s) < 0

for s =¢tn + 4?_— V;L,z‘;g)". O

3 The number of vertices with a large fan-in or fan-out.

We make a detailed analysis of the process C*(v).

For s < AgA?logn, let
g (s+1)=Pr(I"(s+1)| - [I"(s)|=j) forj=>0.

Then
+ _ ditliy—>1Vi NA(s — 1) > 1 21
q+(s) _ Ziili,o + Zi,jZI i|Vi,j NA(s—1)]—(s— 1). (22)
0 n—(s—1)
We see immediately that we can simplify this to
sA
g (s)=pf +0 (7> . (23)

We note that, once a vertex has branched for the first time, it is assigned an out-
degree of zero in subsequent branchings. The value of g¢ (s) is updated to account
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for its unused configuration in-points. This covers the case where the fan-out of
the vertex is not an arborescence.

Recall that Lt (resp. L™) is the set of vertices of D with large (> A;n) fan-out
(resp. fan-in).

Theorem 6. The following results hold whp

(i) Ifd <1 then L™, L= = 0.
(ii) Ifd> 1 then E|LT| = (1 4+ o(1))nn and E|L~| = (1 4+ o(1))r n.

Proof (i) This follows from Theorem 5(i).

(ii) Let B*(k) denote k = d*(v) independent copies of BT rooted at v. We
compare the process C*(v) with B (k). We consider both processes to grow in a
breadth first manner. As there is a minor problem associated with indices j for
which pj is too small, we consider a modified process in which these probabilities

become zero. Let { = Ay/logn/n, let J = {j: p; <(}andlet x =Y. ;p; =
O(CA). We then define

. fo jed
”f“{p;/a—m) i€ 75<A 2

Remark 1. The probability that either C*(v) or Bt (k) add a node with out-degree
j € J during the first s steps is at most ks.

So for small s we can “safely” restrict our attention to processes C*(v), B (k)
which are free from small positive pj+. In particular, §+(k) is the branching
process with root node v of degree k and progeny distribution p*. Similarly c+ (v)
is C*(v) conditional on [I*(s+1)| —|I*(s)| ¢ J for s > 0. Using ; (s) to denote
the conditional equivalent of g; (s) we see from (23) and (24) that

i =rf (1+0 (2 +ac)). (25)

In the case where the branching process has reached extinction after s steps, it
forms a tree T' with s edges, rooted at v, in which v has out-degree k. The out-
degrees of the leaves are zero, and in general the out-degrees of the nodes of T’
are k = ko, k1,..., ks, where nodes are labelled in their order of addition to the
branching process. We compare the probabilities of the two processes in terms of
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these trees. From (25),

8

Pr(B*(k)=T) = [[pi(1+0(AQ),

=1

Pr(C*(v)=T) = if[lp;:j (1+O(%+AC>).

Thus

Pr(Bt(k)=T) = Pr(C*(v) = T) (1 +0 (i—? + sAC)) : (26)

Let |BT (k)| denote the number of edges in the tree generated by B* (k). Let pj;(v)
denote the number of edges in the fan-out of v in the digraph D. Remark 1 and
(26) imply that

Pr(pj(v) =s) = O(ks)+ (1 —O(xs)) Pr(|C*(v)| = s)

s2A
= Pr(|Bt(k)|=s)+0 <n—C + sAC) : (27)
Next let 7 = 6A2logn/(d — 1)2. We will show (below) that
Pr(r < [B*(k)| < 00) = O(n™"). (28)
Clearly,
Pr(|B*(k)| < 00) = (1 —n")". (29)

It follows from (27), (28) and (29) that

Pr(|R*(v)| <7+1) = ) Pr(pf(v) =)

s<t
3A
= Pr(|Bt(k)|<71)+0 (Tn—c + T2A{>
= (1=7)"+o0(1).
Part (ii) now follows from Theorem 4 and (2). O

Proof of (28)

We consider a regenerative branching process rooted at vertex v, which permits
positive or negative levels of spare nodes. Specifically,

Z0) = k
Z(s+1) = Z(s)+P(s+1)—1,

17



where P(s+ 1), the progeny at step s+ 1 is an independent random variable with
distribution p*. Thus EZ(s) = (d — 1)s + k and,

Pr(Z(s)<0) < Pr(|Z(s)—(d—1)s| > (d—1)s)

_1)\2
< 2exp <—%> .

Pr(3s > 7: Z(s) < 0) = O(n™?)

Hence
and (28) follows. O

4 Structure of the giant component

If d < 1 then whp any strongly connected component is of size O(A?logn).
We prove below that if d > 1 then whp D contains a giant strongly connected
component.

The condition given in [14], for the existence (whp) of a giant component in a
graph G with degree sequence (Axn), is that @ > 0 where Q = >, k(k —2)A¢. In
our notation,

Q = ) k(k—2) > %ﬂ

it+i=k

l;
= 40(d—1)+ ) (i— j)2#,
6, J

after some re-arrangement.

Thus if d > 1 then @ > 0, and the underlying graph G of the digraph D has a
giant component whp. We note that the converse is untrue. For example, let
Vo,al =n/2, |Vaol =n/2. Then @ = A(A —2) > 0, so for A > 2 whp there is
a giant component in G. However, there can never be a giant strongly connected
component in D.

Lemma 3. Letv € V and let u ¢ R*(v), then

(i) Pr(R (v) is small | R (v) is small ) = Pr(R (v) is small ) + O (M)

n

(ii) Pr(R"(u) is small | R*(v) is small ) = Pr(R*(u) is small ) + O <M>.

n
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Proof We give a proof of part (i), the proof of part (ii) is similar. Let R*(v)
be small, so that ¢ = O(A?logn). Given the matching M (o) determined by step
o, the remaining configuration F = F \ M (o) is random. We now start a process
C (v) with W= wt \U*(c) and W = W~ \ U~ (o). Let 7 be the step at
which the construction of R~ (v) halts. The results of the previous sections still
hold, provided that at no step ¢ < 7 we hit a vertex with a configuration point in

U~(0). Let U (7) be the points of W used in the construction of R~ (v) and let
S = Ugert(v)W, be the points we wish to avoid. Thus

~ O(A?logn x A)
B on

Pr(SNU () #0) O(A%logn).
Corollary 7. (i) E(|JLT* NL~|) ~ ¢n,

(ii) E(LTNL7) ~ (L—7" —4¢)n,

(iif) E(ILT NL7|) ~ (1—7ty)n,

(iv) E(ILTNL )~ (nt+7~ +¢ — 1)n.

(v) |L*|, |L*|, |L™|, |L~| and the quantities in (i)-(iv) above, are concentrated
within \/nA%?(logn)? of their expected value, with probability 1—O(1/log®n).

Proof We note that Corollary 7 (v) follows from Lemma 3 and the Chebychev
inequality. O

Lemma 4. whp the following conditions hold simultaneously for all u,v € V.
(i) [R* ()], |R*(v)] > Aoi2pys logn implies R* (u) N R*(v) # 0.
(i) [R*(w)], |[R™(v)| > o255z logn implies R* (u) N R™(v) # 0.

Proof Let R*(u) be large, and let J~(s) be the unpaired “in-points” of A(s)
immediately after step s of C™(u). Thus

J_(S) = (UzeA(s)WZ_) \U_(S).
The expected value of J ™ (s) is

On—i

( o )> — s.
(%)

EJi(S) = ZZlZ’J (1 —
Let ¢ =), 4 As R*(u) is large, and so whp o ~ £*n then, from Lemma

2
j On
2(ii) we can write

B §+ B £+ i
EJ (o) = 0n(1 + o(1)) (1—7—2% (1—7>>.

%

19



We now prove that EJ~ (o) ~ ¢n for some ¢ > 0.

We note that 0 < ¢; < 1and > ,q; = > .pj =1. Thus (g;) is a probability
distribution with expected value d > 1. As g, = 0 the only positive solutions
of £ = Y ,¢; «* are 0 and 1. Moreover ), ¢; z* is convex, so z > Y., g; «* for
z € (0,1).

Given M (o) determined by halting C*(u) after step o, we can start 5+(v) on the
configuration F' with Wo=w \U* (o) and W =w- \ U (0), and consider
R (v).

Possibly R (v) is completed in s = O(A?logn) steps. This implies either i (v) =
R*(v) is small or R (u) N (R*(v) \ R (v)) is nonempty.

Suppose now that R (v) is large. At any step there are at most fn — o available

~

in-points. Thus the probability, that at step s, there is a matching arc (a;, b;) with

b, € J ~ (o) stochastically dominates the corresponding probability for a binomial
B(s,c¢/6) random variable. Thus when s = (20/c)logn

Pr(U (s)NJ (0)=0) < (1 — g)s =0 (n?).

Let D[X] denote the sub-digraph of D induced by the vertex set X.
Corollary 8. (i) Let S = Lt N L, then whp |S| ~ (zt + 7 + ¢ — 1)n.
(ii) D[S] is a mazimal strongly connected component.

(iii) (a) Ifu,v € S then R™(u) = R (v).

(b) Let R™(S) be the fan-out of (any vertex of) S.
Let K*(v) = R*(v) \ RT(S).
whp for allve LT\ L™, |K*(v)] = O(A2%logn).

(iv) whp for allve LT, R*(v) D L.
Proof (i) follows from Corollary 7.
(ii) For all u,v € S, we have R*(u) N R~ (v) # 0 by Lemma 4(ii). Hence there is
a directed (u,v)-path, and it follows that S is strongly connected. Let w € V and

suppose there is a directed path from S to w, and from w to S. Thus R*(w) and
R~ (w) are large, sow € S.

(i) K*(v) is B (v) in the proof of Lemma 4.
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(iv) This follows from Lemma 4(ii). O

In the notation of [6] there is a bowtie digraph B = D[L" U L~] induced by the
union of the vertices with large fan-out or fan-in. This digraph B consists of a
maximal strongly connected component S with vertex set L+ N L~ and wings K
with vertex set LT NL~ and K~ with vertex set L~ NLT. The wing K consists of
directed paths from Lt N L~ terminating at vertices of S. Similarly the wing K~
consists of paths directed away from S and passing through vertices of L~ N L+.

Each vertex v of K has a small out-branching K (v) of which the sub-branching
K*(v)N K" points from v towards S. Similarly, each vertex v of K has a small
in-branching K~ (v) of which the sub-branching K~ (v) N K points away from S
towards v. The maximum size of the branchings K (v), K (v) is O(A%logn).

For a vertexv € LT, R*(v) = KT (v)USUK ™. Very possibly K*(v)\ K" # (. In
fact these vertices comprise a substantial part of V/(C1) —V(B) = M, the vertices
of the giant component C; which do not lie within the bow-tie B.

For sequences satisfying the conditions of [14], we can estimate the size of M. Let
Ik = > i j— li,j, and let 7 be the smallest non-negative solution of

_ Kle rs
=) YA
k>1

From [14], the size of the giant component C; is asymptotic to an where

a=1-— Z ;’y .

k>1

Thus we have the following corollary.
Corollary 9. For sequences (ly) satisfying [14], whp the size of M is (1 +
o(1)) (e — 1+ 9Y)n.

More information on the k-cores of the giant is given in [7].

5 The case where p; = p{ = 0: Proof of Theorem 3

We first prove a lemma which shows that whp small fan-outs (resp. fan-ins) are
at most unicyclic.

Lemma 5. Whp for all v € V, the number of edges induced by R*(v) during
the first O(A%log®n) steps of CT(v) is at most |R*(v)|.
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Proof Let A(s) be the vertices of R (v) acquired by the end of step s of the
process C*(v). Consider the matching edge (a,y1,b,11) selected at step s+ 1. Let
J(s) = (Uueas)W ™ (u)) — U~ (s) be the set of unused configuration points of A(s)
in W~. The probability that an element of J(s) is chosen as by, is O(As/6n).

The probability that there exists a vertex v such that this event occurs twice
during the first O(A%log® n) steps of Ct(v) is at most

%) (n(A2 log? n)? (Ag%?fz"”‘y) = o(1).

O

Because the minimum in-degree and out-degree of the digraph is at least 1, at
least one of the following is true for every vertex v. The vertex v is either on a
directed cycle C, or on a directed path P which originates in a directed cycle Cj,
and leads to a directed cycle Cs.

If v € LT N L~ then v must be on an isolated directed cycle C. For, if not, the
edge density of the fan-out of a vertex of C'; contradicts Lemma 5.

Let v € Lt N L, so that v € K . Suppose first that v lies on a cycle C. If
there is an edge incident with and directed away from C, this leads to a cycle C’
contradicting Lemma 5. Next, let v be on a path P originating at a vertex w € S.
P terminates in a cycle C. If any vertex of P, except w, has out-degree at least
2, we obtain a contradiction to Lemma 5.

We now consider the expected number m™ (k) of subsets of vertices of out-degree
1, forming directed cycles of length k& > 2.

mt(k) = (k—1)! Ul <li,1>i :

> fi=k (0n)k fl
_ ! k 1 .
- kaz':k fla ,fza )(en)kzl:[ll (lzl)fZ
_ E2\\ 1 1 Y
- (1+0(%)) P (. f (3

Theorem 3 (i),(ii) follow from standard techniques. Theorem 3 (iii) follows by
applying the methods of [2]
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