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Abstract

We describe fully polynomial randomized approximation schemes for
the problems of determining the number of Hamilton paths and cycles
in an n-vertex graph with minimum degree (% + a)n, for any fixed
a > 0. We show that the exact counting problems are #P-complete.
We also describe fully polynomial randomized approximation schemes
for counting paths and cycles of all sizes in such graphs.

1 Introduction

Combinatorial counting problems have a long history, even from the compu-
tational viewpoint. For example, the classical matrix-tree theorem provides
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a good algorithm for determining the number of trees in a graph. However,
it seems that few interesting combinatorial structures possess good count-
ing algorithms. This intuition was made precise by Valiant [21] using the
class #P. He showed that many problems for which the decision counterpart
is easy were nevertheless complete for this class. Since it is unlikely that
#P = P, exact counting is apparently intractable for many natural prob-
lems. For example Valiant [20] showed that 0-1 permanent evaluation, and
counting the number of bases of a (suitably presented) matroid [21] were
#P-complete. Many other problems have since been added to this list, for
example volume computation for polyhedra [6], counting linear extensions of
a partial order [3] and counting Eulerian orientations of a graph [17].

The hardness of most counting problems has led to an interest in approrimate
counting. The most fruitful approach in this respect has been randomized
approrimation. This is based on the idea of a fully polynomial randomized
approximation scheme (fpras) due to Karp and Luby [15]. Thus if N is the
true value, we must determine an estimate N such that for given £, > 0

Pr(1/(1+¢) < N/N < (14¢))>1—4,

in time polynomial in the size of the input, e ! and log(6~!). Examples
of problems amenable to this type of approximation are dense 0-1 perma-
nent [4, 12}, matchings [12], volume computation [7], counting Eulerian orien-
tations [17], counting linear extensions of a partial order [16] and computing
the partition function for the ferromagnetic Ising model [13]. The algorithms
in the papers cited use a random walk to generate an almost uniform random
solution to the problem (e.g., a random matching), and then apply multi-
stage statistical sampling methods to obtain the desired estimate.

One obvious requirement for such approximate counting to be possible is that
the associated decision problem be easy. In fact, it appears from experience
that it must be “very easy” in order to have a realistic hope that a randomized
approximation scheme can be found.

In this paper, we add further entries to the small but growing list of randomly
approximable hard counting problems: that of counting the number of Hamil-
ton paths and cycles in “dense” graphs. Let G = (V, E) be a graph, where
V ={v1,v9,...,v,}. Denote the degree of vertex v; by d;, fori =1,2,...,n.
We will say that G is dense if min; d; > (% + a)n, where 0 < o < % is a fixed
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constant. Under these circumstances it is known [5] that G must contain a
Hamilton cycle. Moreover, the proof of this fact is easily modified to give
a simple polynomial-time algorithm for constructing such a Hamilton cycle.
This algorithm, which uses edges whose existence is guaranteed by the pi-
geonhole principle to “patch together” disjoint cycles, provides the required
easy decision procedure.

We consider here the natural but more difficult problems of counting the
number of Hamilton paths and cycles in such graphs. We show in Section 4
that these problems are in fact #P-complete, so exact counting is presumably
intractable. More positively, our main results in Sections 2 and 3 establish
the existence of fpras’s for these counting problems when o > 0. We may
observe that if the degree condition is relaxed to min; d; > (% — ap)n with
a, = Q(nF1) for any fixed k > 0, then the question of the existence of any
Hamilton path or cycle becomes NP-Complete,! and approximate counting
is NP-hard. Thus our results establish quite precisely the difficulty of the
counting problem except in the region where « is close to zero. Section 5
extends the positive results of the earlier sections to cover self-avoiding paths
and cycles of all lengths.

The natural approach given previous successes in this area is to try to find a
rapidly mixing Markov chain with state space the set of Hamilton cycles of a
given dense graph, and possibly its Hamilton paths as well. Earlier attempts
with this approach have proved fruitless. Somewhat surprisingly, the key lies
in the fact that in dense graphs, Hamilton cycles form a substantial fraction
of the set of 2-factors, a 2-factor being defined as a set of vertex-disjoint
cycles which together contain all vertices of G. This is not obvious a priori
and the main technical difficulty in the approach lies in obtaining a good
upper bound on the ratio of 2-factors to Hamilton cycles in a dense graph. A
direct attack — relating the number of 2-factors with £ cycles to the number
with k£ + 1 cycles — appears unworkable. Instead, we introduce a weight
function on 2-factors that allows us to argue about the distribution of total

! This is true even if we insist on G being k-connected for any k = o(n). The construction
is from Bollobés [2]. Start with an arbitrary graph G and add a clique C of size m = n!/*
and an independent set I of size m — 1 and then join every vertex in C' to every other
vertex, to produce a graph I'. Then G has a Hamilton path if and only if I has a Hamilton
cycle. Also I' contains a Hamilton path if and only if G contains two vertex disjoint paths
that cover all its vertices.



weight as a function of the number of cycles. By a rather delicate analysis,
we are able to show that the Hamilton cycles carry sufficient weight for our
purpose. In summary we prove

Theorem 1.1 If G is dense then there are fpras’s for

(a) approzimating its number of Hamilton cycles,
(b) approxzimating its number of Hamilton paths,
(c) approzimating its number of cycles of all sizes,

(d) approzimating its number of paths of all sizes.

2 Qutline approach

Our approach to constructing an fpras for Hamilton cycles in a dense graph G
is via a randomized reduction to sampling and estimating 2-factors in G. An
almost uniform sampler for 2-factors in a graph is a randomized algorithm
that takes as input a graph G and § > 0 and outputs a 2-factor Z (a random
variable) such that

1/(1+6)N <Pr(Z=F)<(1+46)/N,

where F'is any 2-factor in G and N is the total number of 2-factors. The
sampler is said to be fully polynomial if it runs in time polynomial in the size
of G and logd~!. Using known techniques, 2-factors in a dense graph G' may
be efficiently sampled, and their number estimated.

Theorem 2.1 There exist both a fully polynomial randomized approrimation
scheme and a fully polynomial almost uniform sampler for the set of 2-factors
i a dense graph.

This result follows immediately from Corollary 4.2 of Jerrum and Sinclair [14],
as will become clear once the notation used there has been explained. For
convenience, the corollary in question is repeated below as Proposition 2.2.
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Proposition 2.2 There exists a fully polynomial almost uniform sampler
for G(d,X) and a fully polynomial randomized approrimation scheme for
|G(d, X)|, provided the pair (d, X) satisfies e(d) > dmax(dmax + Tmax — 1).

In Proposition 2.2, d = (di,...,d,) stands for a degree sequence on V =
{v1,v9,...,v,}, and X C V® for the edge set of an “excluded” graph on
vertex set V. The notation G(d, X) stands for the set of graphs on vertex
set V' that have degree sequence d and avoid all edges in X. Finally, e(d)
is the number of edges in any graph with d as degree sequence, d,., is the
largest component of d, and ., is the largest degree of any vertex in the
excluded graph (V, X).

Proof of Proposition 2.2 (Sketch) Our aim here is merely to indicate the
algorithmic techniques used to sample from, and estimate the size of G(d, X).
For a full proof, the reader is directed to [14].

Using a reduction due to Tutte [19], a graph I' is constructed whose per-
fect matchings are in (constant) many-one correspondence with elements
of G(d, X). An algorithm of Jerrum and Sinclair [12], based on the the sim-
ulation of a rapidly mixing Markov chain, is then used to sample or estimate
the number of perfect matchings in I', as required. For this algorithm to be
applicable, we require that I' satisfy a certain condition; it is this condition,
translated back through the reduction to the pair (d, X), that gives rise to
the condition e(d) > dmax(dmax + Tmax — 1)- ]

Proof of Theorem 2.1 The set of 2-factors in a graph G = (V, F) is equal
to G(d, X), where d = (2,2,...,2), and X = V — E is the complementary
edge set to E. The result now follows from Proposition 2.2, since, for a
dense G and n sufficiently large, dyax = 2, Tmax < %n — 1, and dpax(dmax +
Tmax — 1) < n = e(d). O

Given Theorem 2.1, the reduction from Hamilton cycles to perfect matchings
is easy to describe. We estimate first the number of 2-factors in G, and
then the number of Hamilton cycles by standard sampling methods as a
proportion of the number of 2-factors. Both counting and sampling phases
run in polynomial time, by Theorem 2.1, provided only that G is dense. For
the sampling phase to produce an accurate estimate, it is necessary that the
ratio of 2-factors to Hamilton cycles in G not be too large. This will be
established in Section 3.



We remark that it would be sufficient to be able to generate a random Hamil-
ton cycle. We could then proceed alternatively by adding one edge at a time,
giving a sequence of M = O(n?) graphs G = Gy, G1,...,Gy = K,,. We could
then estimate the ratio of the number of Hamilton cycles in G;_; to those in
G;fori=1,2,..., M. The degree conditions can be used to show that each
of these ratios is not too small and hence can be estimated efficiently. (This
is similar to an idea in [4].)

The method of using random 2-factors to generate random Hamilton cycles
was previously used by Frieze and Suen [9] in the context of random digraphs
and more recently by Frieze, Jerrum and Molloy [8] with regard to random
regular graphs. It is interesting that the same method should be successful
here also. It raises the intriguing possibility of using existing approaches
to other random graph problems to guide the design of new randomized
algorithms for restricted versions of the corresponding deterministic problem.

3 Many 2-factors are Hamiltonian

Let n be a natural number and 3 = 10/a?. Let k; = |SInn|, and for
1 < k < n, define g(k) = nPk!(BInn)~* and

f(k) = {g(ko), otherwise.

Lemma 3.1 Let f be the function defined above. Then
1. f is non-increasing and satisfies
min{f(k — 1), f(k —2)} = f(k — 1) > (Blnn)k™" f (k);
2. f(k) > 1, for all k.

Proof Observe that g is unimodal, and that kg is the value of £ minimizing
g(k); it follows that f is non-increasing. When k < kg, we have f(k — 1) =

g(k—1)= (Blnn)k~'g(k) = (BInn)k~" f(k); otherwise, f(k — 1) = g(k¢) =



f(k) > (BInn)k~L f(k). In either case, the inequality in part 1 of the lemma
holds.

Part 2 of the lemma follows from the chain of inequalities

ﬂlnn

1 < ! (ﬂlnn)ko < _ﬁz =n"Pexp(Blnn) = 1.

FR) = ko) = Pkl

|

Lemma 3.2 Suppose « is constant greater than 0. Let G = (V, E) be an
undirected graph of order n and minimum degree (% + a)n. Then the num-
ber of 2-factors in G exceeds the number of Hamilton cycles by at most a
polynomial (in n) factor, the degree of the polynomial depending only on «.

Proof For 1 <k < |n/3], let ®; be the set of all 2-factors in G containing
exactly k cycles, and let ® = U, P, be the set of all 2-factors. Define

U = {(FF):Fed,F €dp, k' <k,
and F@F’gCG},

where @ denotes symmetric difference, and Cg is the cycle on 6 vertices.
Observe that (®,¥) is an acyclic directed graph; let us agree to call its
component parts nodes and arcs to avoid confusion with the vertices and
edges of G. Observe also that if (F,F') € ¥ is an arc, then F’ can be
obtained from F' by deleting three edges and adding three others, and that
this operation can decrease the number of cycles by at most two. Thus every
arc (F, F') € U is directed from a node F' in some ®; to a node F’ in ®;_;
or (I>k_2.

Our proof strategy is to define a positive weight function on the arc set ¥
such that the total weight of arcs leaving each node (2-factor) F' € ® \ &, is
at least one greater than the total weight of arcs entering F'. This will imply
that the total weight of arcs entering ®; is an upper bound on the number
of non-Hamilton 2-factors in G, and that the maximum total weight of arcs
entering a single node in ®; is an upper bound on the ratio |® \ ®;|/|®|.

The weight function w : ¥ — R™ we employ is defined as follows. For any arc
(F, F') with F' € ®: if the 2-factor F” is obtained from F' by coalescing two

7



cycles of lengths [; and [y into a single cycle of length I; + o, then w(F, F') =
(I 4151 £ (k); if F' results from coalescing three cycles of length I, I, and I3
into a single one of length I, + Iy + I5, then w(F, F') = (I7* + 151 + 131 f (k).

Let F € ®&; be a 2-factor with £ > 1 cycles v1,72,...,7, of lengths ny,
No,...,NnE. We proceed to bound from below the total weight of arcs leav-
ing F'. For this purpose imagine that the cycles 7,79, ..., are oriented in
some way, so that we can speak of each oriented edge (u,u') in some cycle 7;
as being “forward” or “backward”. Since we are interested in obtaining a
lower bound, it is enough to consider only arcs (F, F*) from F of a cer-
tain kind: namely, those for which the 6-cycle v = F & F'* is of the form
v=(z,2',y,y, z,2"), where (x,2') € F is a forward cycle edge, (y,y') € F is
a forward edge in a cycle distinct from the first, and (z, 2') € F' is a backward
cycle edge. The edge (z, 2') may be in the same cycle as either (z, z') or (y, y'),
or in a third cycle. Observe that (z',y), (v/,2) and (2/, ) must necessarily
be edges of F'*. It is routine to check that any cycle v = (z,2',y,v, 2, 2')
satisfying the above constraints does correspond to a valid arc from F. The
fact that (z,2') is oriented in the opposite sense to (z,z') and (y,y') plays
a crucial role in ensuring that the number of cycles decreases in the passage
to F'* when only two cycles involved.

First, we estimate the number of cycles 7 for which (z,2') is contained in a
particular cycle ~; of F. We might say that v is rooted at 7;. Assume, for a
moment, that the vertices z, 2, y, ' have already been chosen. There are at
least (3 + &)n — 5 ways to extend the path (z,2’,y,9’), first to z and then
to z', which are consistent with the rules given above; let Z' be the set of
all vertices 2’ so reachable. Denote by G(z) the set of vertices adjacent to .
The number of ways of completing the path (z,z',y,%') to a valid 6-cycle is
at least

Gz)NZ'| > |G(z)|[+]2']—n
> 3+an+[t+an—5—n
= 2an -5
> an,

for n sufficiently large. A lower bound on the number of 6-cycles v rooted at ;
now follows easily: there are n; choices for (z,2'); then at least (3 +a)n—n;
choices for (y,y'); and finally — as we have just argued — at least an ways
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to complete the cycle. Thus the total number of 6-cycles rooted at ~; is at
least ann;[(3 + a)n — ny).

We are now poised to bound the total weight of arcs leaving F. Each arc
(F, F*) defined by a cycle v rooted at -y; has weight at least n; ' min{f(k —
1), f(k—2)}, which, by Lemma 3.1, is bounded below by (31nn)(kn;)~" f (k).
Thus the total weight of arcs leaving F' is bounded as follows:

> w(FFT) > Zannz[ + ) n—nz]w (1)
FH(F,FH)cw i

o*B f(k)n*Inn
10f(k)n? Inn, (2)

v v

where we have used the fact that £ > 2. Note that the presence of a unique
backward edge, namely (z, z'), ensures that each cycle +y has a distinguishable
root, and hence that the arcs (F, F'") were not overcounted in summation (1).

We now turn to the corresponding upper bound on the total weight of arcs
(F~,F) € ¥ entering F. Tt is straightforward to verify that the cycle v =
(z,2',y,9y',2,2") = F~ @ F must contain three edges — (x,2'), (y,y’) and
(z,2') — from a single cycle 7; of F', the remaining edges coming from F~.
The labeling of vertices in v can be made canonical in the following way:
assume an ordering on vertices in V', and assign label x to the smallest vertex.
The condition (x,z') € F uniquely identifies vertex z/, and the labeling of
the other vertices in the cycle v follows.

Removing the three edges (z,z'), (y,9') and (z,2’) from ~; leaves a triple of
simple paths of lengths (say) a — 1, b— 1 and ¢ — 1: these lengths correspond
(respectively) to the segment containing z, the segment containing «’, and the
remaining segment. Going round the cycle ~;, starting at 2’ and ending at x,
the vertices x,z',y,v’, z, 2/ may appear in one of eight possible sequences:

x y? 7ZI7Z7‘T;
x,z, yy’x
l‘ ZZ y y,

A TR T
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x” y,’ yi Z’ Z” "L.;
x” y, y,’ Z” Z’ '/L‘;
o, 2,2,y y, x;
oy, 2 2, .

For a given triple of lengths (a, b, ¢), each of the above sequences corresponds
to at most n; possible choices for the edges (z,2'), (y,v') and (z, 2'), yielding
a maximum of 8n; in total. To see this, observe that the edge (x,z') may be
chosen in n; ways (minimality of x fixes the orientation of the edge), and that
the choice of (z,2") combined with the information provided by the sequence
completely determines the triple of edges.

The eight sequences divide into five possible cases, as the first four sequences
lead to equivalent outcomes (covered by case 1 below). Taken in order, the
five cases are:

1. For at most 4n; of the choices for the edges (z,2'), (y,%') and (z, 2'),
v; @ v is a single cycle;

2. for at most n; choices, v; @ 7 is a pair of cycles of lengths a and b+ c;
3. for at most n; choices, v; @ v is a pair of cycles of lengths b and a + ¢;
4. for at most n; choices, v; @ v is a pair of cycles of lengths ¢ and a + b;

5. for at most n; choices, ; @ 7 is a triple of cycles of lengths a, b and c.

The first case does not yield an arc (F~, F'), since the number of cycles does
not decrease when passing from F'~ = F' @ v to F, but the other four cases
do have to be reckoned with.

The total weight of arcs entering F' can be bounded above as follows:

1 1 1
> K— + -+ —) +
a,b,c>1 a b ¢
a+b+c=n;

1 1 1 1 1 1
a b+c b a+c c a+b

10

> wF,F) < ;nzf(k)

F—:(F—,F)ev




= Y X [
a i—1 Z ape>1 L0 b+c
a—|—b+c_:n,-
k niZlre 3
< ) e
= Zzzlnzf(k)nagl a+ni_a
< 9f(k)n*H, (3)

where H, =" ;i ! <Inn+1 is the nth harmonic number [10, eq. (6.60)].
Combining inequalities (2) and (3), we have

oo wFEFY) - Y wFE,F) > 10f(k)n’Inn—9f(k)n*H,
F+:(F,F+)ev F~—:(F~,F)e¥
> f(k)n*(Inn —9)
> n*(Inn —9),

where the final inequality is by Lemma 3.1. Thus the total weight of arcs
leaving F' exceeds the total weight of arcs entering by at least 1, provided n is
sufficiently large. The number of non-Hamilton 2-factors |® \ ®;| is bounded
above by the total weight of arcs entering ®,, which in turn is bounded —
see inequality (3) — by |®1] x 9f(1)n?H,, = |®;| x O(n**#). This establishes
the lemma. O

4 Exact counting is #P-complete

Let #HC (resp. #HP) be the problem of counting the number of Hamilton
cycles (resp. paths) in an undirected graph. It is known [21, 18] that #HC
is #P-complete, and it follows, by an easy reduction, that #HP is also #P-
complete.

Theorem 4.1 Both #HC and #HP are #P-complete when restricted to
graphs G of minimum degree at least (1 — a)n, where n is the number of
vertices in G, and a > 0.

Proof We first present a Turing reduction from #HP to #HP such that all
the target instances of #HP satisfy the required minimum degree condition.
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Let G = (V, E) be a undirected graph of order n with vertex set V' and edge
set F/, considered as an instance of #HP. A typical target instance of #HP
is a graph G; constructed from G by forming the disjoint union of G' with
the complete graph K; on ¢ > n vertices, and connecting every vertex in G
with every vertex in Kj.

Assume t > 3. For 1 < k < n, denote by P, the set of all covers of GG
by k vertex-disjoint oriented paths, where paths of length 0 are allowed.
Each oriented Hamilton path P in G; induces an element of U,P, by re-
striction to G. Conversely, each element of P, may be extended in precisely
t!(t’;l)k! = (t+ 1)!(kf1) (k — 1)! ways to an oriented Hamilton path in Gy:

the vertices in K; may be visited in ¢! orders; there are (‘H;) ways to choose

k positions in that order during which excursions to G' can be made, includ-
ing the two positions prior to and following the order, and k! ways to match
those positions to the k oriented paths covering G. Thus the number p; of
oriented Hamilton paths in GG; can be expressed as the sum

n

pe=Y(t+ 1)!<k f 1) (k — 1)!|Py].

k=1

Note that p; may be evaluated by one call to an oracle for #HP, since the
number of oriented Hamilton paths is twice the number of unoriented paths.
Using n such calls we may evaluate p; for t = to + j and 7 = 1,2,...,n,
where t; = [@~'n] is chosen sufficiently large that every graph G; with ¢ > £,
satisfies the minimum degree constraint. Recovering the values {(k—1)!|P| :
1 <k < n} from {pyy4;/(to+75+ 1) : 1 <j <n} amounts to inverting the

matrix
y :
A= (Aj) = <<£jf) =1§j,kén>,

which may be expressed as the product A = LU of a lower triangular matrix
L = (Ljp) and upper triangular matrix U = (Uy;) defined as follows:

j—1 to+1
Ljh:(h—l) and Uhk:(k—h)'
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The equality A = LU is a direct consequence of the “Vandermonde convolu-
tion” formula [10, eq. (5.22)]

S () = (1)

Both L and U have unit diagonals and are hence non-singular: indeed their
inverses have the following simple explicit forms, as can be verified by di-
rect multiplication using standard identities involving sums of products of
binomial coefficients [10, eqs (5.24), (5.25)]:

N
and

_ nftoth—17
U, = (=1)th )
W = (0
Since A= = U~'L™!, the values {| ;| : 1 < k < n} may be computed in poly-
nomial time using two matrix multiplications involving integers of O(n logn)
bits. Observe that £|Py| gives the number of (unoriented) Hamilton paths

in G.

The hardness of #HC is now simple to verify. Given a graph G = (V, E) with
the minimum degree condition we add a new vertex x and edges (z,v) for
all v € V to create G'. Note the G' satisfies the minimum degree condition
as well. Removing z from a Hamilton cycle in G’ creates a Hamilton path in
G. This defines a bijection from the set of Hamilton cycles in G’ to the set
of Hamilton paths in G. O

5 Counting the number of cycles of all sizes

We will first consider approximating the total number of cycles in graphs
with minimum degree (5 + a)n.

We first note that if we add a loop to each vertex and extend the definition
of 2-factor to include loops as cycles of length one, then the argument of [14]
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may be extended to this case (note that we still forbid cycles of length two
i.e. double edges). Thus there exists both a fully polynomial randomized
approximation scheme and a fully polynomial almost uniform sampler for
the set of partial 2-factors in a dense graph. Let a partial 2-factor be cyclic if
it consists of a single cycle of length at least three and a collection of loops.
Clearly the number of cyclic partial 2-factors is the same as the number of
cycles.

The procedure for approximating the number of cycles of all sizes is as follows:
we estimate first the number of partial 2-factors in GG, and then the number of
cyclic partial 2-factors by standard sampling methods as a proportion of the
number of partial 2-factors. To produce an accurate estimate in polynomial
time it is only necessary to show that the ratio of partial 2-factors to cyclic
partial 2-factors is not too large. Let

Fi = {partial 2-factors with £ loops}, and f, = |F|.

For a given F' € F; let L = {loops of F'}, which we will now identify with
the corresponding set of vertices. For v € L let d, denote the number of
neighbours of v in L and D =} ¢ d,.

If v € L then there are at least 2an — 2d, ways of adding v to a cycle C of
F by deleting an edge (a,b) of C' and adding edges (a,v), (v,b). Indeed we
go round each cycle C of F'; if the successor b of a vertex a neighbouring v is
also a neighbour of v, then it forms an (a, b, v) triangle. The number of such
triangles is at least 2an — 2d,,.

So in total there are at least

> (2an—2d,) = 2lan—2D (4)
veL

> 2Uan—(L—-1)) (5)

such augmentations.

Suppose first that £ < ¢; = [an/2]|. Then (5) gives at least fan augmenta-
tions of F' € Fy to an F' € Fy_,. Each F' € F,_; arises in at most n ways
and so



Putting ¢y = [2/a| we see that

o+ fo—1+ -+ foor1 < foo < foo + foo-1+ -+ fo (6)

Suppose next that £ > ¢;. Note first that since a graph with r vertices and
s edges contains at least r — s + 1 distinct cycles, we see that L contains at
least

D
5 —f+1 (7)

distinct cycles.

Adding a cycle C contained in L to F' and removing |C| loops gives us a
2-factor in Fy where ¢ < £. From (4) and (7) we see that there are at least?

(=) G0 = (5) e
> %ﬂ (9)

augmentations of either sort from F. Each F' € F_, arises in at most n +n
ways (accounting for both ways of reducing L) and so

fo < %(feq-i-fe—z-i-----l-fo)
< O(fee1+ fo—2+ -+ fo),

where 6 = 12/(a?n), assuming £ > ¢;.

Thus ot fort iy
) -1+ 0
<1446
foo1+ fe—o+---+ fo
and so
fo+foor+---4+ fo < (14—9)@_6121, (10)

where X1 = fo, + fo,—1 + -+ fo- We weaken (10) to

fh-l—k S
< ey (11)

2zt = max{0,z}
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It follows from (6) and (11) that

fo+ ittt
fo+ fit+- 4 fo

Now take an F' € F; where ¢ < {, and fix its set of loops L. The number of
partial 2-factors with this same L is at most a polynomial factor, p(n) say, of
the number of cycles of size n — £ through V' \ L, by the results of Section 3.
(It is clear that because ¢ is small here, the required degree conditions are
satisfied.) Thus, by (12), the ratio of partial 2-factors to cyclic partial 2-
factors is O(np(n)) and we have proved the existence of an fpras for the
number of cycles.

< 2+ 2ne!? . (12)

6 Paths and Hamilton Paths

We obtain an fpras for counting the number of Hamilton paths in the fol-
lowing way. We add a vertex vy and join it by an edge to every vertex of G.
Call this new graph G*. The number of Hamilton cycles in G* is equal to
the number of Hamilton paths in GG. Since G* is dense we can approximate
the latter quantity by approximating the former.

Similarly, to estimate the number of paths of all lengths, we compute an
estimate ¢* for the number of cycles in G* and an estimate p* for the propor-
tion p of cycles which contain vy. Since the number of cycles containing v,
is the number of paths in G, this provides an estimate p*c* for the number
of paths. Also, this will give us an fpras provided p is not too small. But
clearly p > 3/4 and we are done.

7 Concluding remarks

We remark that it is not difficult to adapt the above methods to the cor-
responding directed case. Here we will have both minimum indegree and
outdegree at each vertex guaranteed to be at least (3 + a)n. Also we may
similarly count the number of connected k-factors in G for any k£ = o(n).
(Hamilton cycles are, of course, connected 2-factors.)
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We leave open the following questions. First, is it possible to count ap-
proximately as & — 0 in any fashion? Secondly, is there a random walk on
Hamilton cycles and (in some sense) “near-Hamilton-cycles” which is rapidly
mixing? In other words, can we avoid the Tutte construction and the need
for 2-factors with many cycles?

Finally, are there other interesting counting problems which are tractable on
such dense graphs? Note that Annan [1] has recently found an fpras for the
number of spanning forests in a dense graph. This can easily be modified to
approximate the total number of (not necessarily spanning) trees in a dense
graph. On the other hand Jerrum [11] has recently shown that the problem
of computing this number for a general graph is #P-Complete.

Acknowledgement We thank Alistair Sinclair for his comments on an ear-
lier draft.
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