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Abstract

Let G, m i denote the space of simple graphs with n vertices, m edges and
minimum degree at least k, each graph G being equiprobable. Let G have property
Ay, if G contains [(k — 1)/2] edge disjoint Hamilton cycles, and, if k is even, a
further edge disjoint matching of size |n/2|. We prove that for k > 3, there is
a constant C}, such that if 2m > Cgn then Ay occurs in G, 4, x With probability
tending to 1 as n — oc.
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1 Introduction

Denote by G m x the space of simple graphs with vertex set [n] = {1,2,...,n}, m edges
and minimum degree at least k, each graph being equiprobable. We say a graph G has
property Ay, if it contains |(k — 1)/2| edge disjoint Hamilton cycles, and, if k is even,
a further edge disjoint matching of size |n/2|. We prove the following theorem.

Theorem 1 Let k > 3. There erists a constant Cy, < 2(k + 1)® such that if 2m =
cn, ¢ > Cy thenwhp ! G € Gnmx has property Ax.

In [BFF], Bollobés, Fenner and Frieze establish the following sharp threshold for a
stronger property A}, in the case where m/n — oco. A graph G has property A}, if G
contains |k/2]| edge disjoint Hamilton cycles, and, if k£ is odd, a further edge disjoint
matching of size |n/2].

Theorem 2 Let2m =n (1°g" + kloglogn + dn). If Ge Gymp , then

k41
0 if d, — —00, sufficiently slowly
Jim Pr(G e A;) ={ e %@ 4fd, —d,
1 if d, — 400,
were
o~ (k+1)d

9k(d) =

(& + D){(k — 1)I}F(k + 16D

The primary obstruction to property A} in G,k is the presence of k-spiders. A k-
spider is k + 1 vertices of degree k having a common neighbour. In [BFF] it was shown
that if m is as in Theorem 2 then

nh_)rrolo Pr(G € G, m has a k-spider ) =1 — e 0@
When 2m = cn, where c is constant, k-spiders occur whp in G € G, m i . Thus whp
the property Aj, does not occur, and property Ay is best possible.

The proof of Theorem 1 holds for ¢ > C}%, in the case where c is constant or tends slowly
to infinity, up to and including the value ¢ = logn/(k + 1) + kloglogn + d,, given in
Theorem 2, when the stronger property .4; applies.

For each proof in the paper, there is some proof specific constant cg, such that the proof
holds for ¢ > ¢. It can be shown that if we choose Cj, = 2(k +1)3, then Cy > ¢, always.

whp with high probability. With probability tending to 1 as n — oo.



The value selected for the constant Cj is clearly not optimal and could be improved
by further work. We would not, however, expect to reach the obvious lower bound of
Cy =k.

As ¢ — k then G, tends to the space of k-regular graphs with the uniform distribu-
tion. Robinson and Wormald [RW] have proved that almost all k-regular graphs (k > 3)
with an even number of vertices have a Complete Decomposition (a decomposition into a
Hamilton cycle and a set of perfect matchings). They also conjecture a property similar
to Aj.

2 Models for the space G, 1

For any graph G in G, ,,x there are m! ways to order, and 2™ ways to orient the edges,
to give 2™m/! sequences of vertex labels of length 2m. The set S(n,2m, k) of sequences
arising in this manner has the uniform measure induced by G, . . Let M(n,2m, k) be
the space of equiprobable sequences (a; : a; € [n],i = 1,...,2m) specifying which of n
labelled boxes contains each of 2m labelled balls; with the condition that the minimum
occupancy of any box is at least k. Each element of M defines a multigraph with vertex
set [n]. The set S, is the subset of M whose underlying graphs are simple.

Denote by O(n,2m, k) the space of sequences (b; : b; € [2m],j = 1,...,n), giving the
possible occupancies of the n boxes (the degrees of the vertices), arising from sequences
in M(n,2m, k) , with the derived probability measure. A useful method of obtaining
results about O(n,2m, k) is to consider a larger space P(n, A, k) in which each of the n
boxes has independent occupancy given by a truncated Poisson random variable X with
parameters A and k. The space O(n,2m, k) is obtained from P(n, A, k) by conditioning
on Y7 ; X; = 2m, as explained in [BFU]J. Let

MNooe
JtB(A k)

Pr(X = j) = je{kk+1,.}

where

BAE) =1—e*(1T+ A+ 431,

It is natural to choose A so as to maximize the probability of the conditioning event
{3>; X; = 2m}. This can be approximately achieved by making EX equal to c, the
average vertex degree. Explicitly, we choose

BOE—1)

aom © .

so that EX = ¢. The properties of (1) are given in Lemma A1 of the appendix.



For an event £ in Gy, m x which specifies the degree sequence d(S) of some subset S of
vertices, the set of multigraph sequences with d(S) in M(n,2m, k) is well defined and
corresponds to well defined events in O(n, 2m, k) and P(n, A\, k) . For such an occupancy
event, £, we can regard £ as being defined in each of the spaces under consideration,
rather than just in G, -

Lemma 3 Let k be a fized positive integer, and let m = cn/2, where ¢ > k. Let € be
an occupancy event in Gpmyi . Then for sufficiently large n,

(1)
Pr(&;0(n,2m,k) ) < (14 0(1)) vV2ren Pr(&E;P(n, A\ k) )
(ii)
Pr(&;Gnmp ) < %) Pr(&; O(n,2m, k) ).
We denote a generic expression of the form [O(\/E)eo(cz)] by A(c).

We will frequently use the model P(n, A, k) to estimate the probability of an event &, that
a set S of vertices of a graph G in G,, , . has degree sum T'. In the model P(n, A, k) , the
probability that a set S of s boxes (with occupancy ¢; : ¢ = 1, ..., s) has total occupancy
T is

Pr(t; +..+t, =T;P(n,\k)) = 3 (H A e )

t1+et+ts=T \j=1 t;! ! /8( k)
)\Tlif/\s
‘[(Ak)]TtH % o)
(As)T e
< T BORT 2

Lemma 4 Let k be a fixed positive integer, and let 2m = cn where ¢ > k. For sufficiently
large n,

(i)

Gnm —O(c? c\°¢ n
||G’ ’k|| 2 e ) [(Ae) ekﬂ(A’k)] |
kck 1

D)€ —(c—k) gk?/(e= k) then

(i) Let D =

Pr(6(G) > k;Gpm) > e 2.
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The proofs of Lemmas 3, 4 are provided in the appendix.

Although |G, s | is bounded below by an exponentially small multiple of |G, |, the
constant D in the exponent also is small. For example, when ¢ = ¢, k£ = 3, then
D = 1.4 x 1075, In particular, note that if ¢ > ¢, then

D < 78/, (3)

This allows us to prove results concerning G, x directly in G, ,, in Lemma 8 by using
the general estimate

Pr(&; Gum)
r(0(G) > k; Gum)

PE(E; Grmp) = Pr(E | 6(G) > ) < (4)

The following bound is also useful (where p = m/ (g)), and is given in (eg) [Bo].

Pr(&;Gnm) < O(Vn)Pr(€; Gnp) (5)

We will frequently use the following upper bound for the conditional probability that a
sequence in M(n, 2m, k) corresponds to a multigraph in which there are at least ¢ edges
between A and B given that the sets of vertices A, B have degree sums a, b respectively,

namely
m a b\? 5
- q (AvB)
(") () 9 ©)

where §(A,B) =0if A= B and 1 if A and B are disjoint.

Finally, we note that (’;‘) < (me/q)? and that the unconstrained maximum of (me/q)?
with respect to q occurs at ¢ = m.

3 Relevant properties of G,

Given yo let P, = yoyi1...yn be a yo path (a longest path starting at yo) in G. A
Pésa rotation P, — P, , [Po],[Bo| gives the path P, , = yoy1...Ysi¥n¥Yh—1.--Yi+1 formed

from P,, by adding the edge y,y; and erasing the edge v;y;+1. We call yny;, yiyi+1 the
transformation edges and y;1y;,2 the adjacent edge of the rotation.

The Pésa rotations of a longest =y path P,, = zoPz;, with z, fixed, define a rotation
subgraph R = R(zg) of G, as follows. Initially R = z,_1xp, where z; is an active
endpoint. Perform all possible rotations based on z; due to edges xz;, adding the
transformation and adjacent edges of each rotation to R. Each z;,; is now an active
endpoint, whereas z;, is now passive. Let x be an active endpoint with P, = xg...yz...x
and where there is an edge xy in G. If z is a passive endpoint we add zy to R and
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consider this a transformation edge, else we add the transformation and adjacent edges
corresponding to the rotation P, — P,.

The final graph R* is not necessarily unique, as its structure may depend on the order
in which the endpoints are processed. It is however fully explored, in the sense that it
has no active endpoints.

At any stage, we define a subgraph 7 of R which includes only transformation edges,
where initially, T = x.

Let U be the set of endpoints of Py = zqPx}p, obtained while constructing R*(zq), and
let A be the vertices adjacent to vertices of U on Py. Now, N(U) = A\ U, for if
N{U) N ([n] = V(P)) # 0 the condition ‘longest path’ would be contradicted. Thus we
have the Pésa condition

IN(U)| < |A] = 2U] - 1.

Here, N(U) = Ng(U) is the set of neighbours of U in G that are not in U.

Lemma 5 If G is a non-Hamiltonian graph of minimum degree at least 3 and Py is a
longest path in G then the rotation subgraph R of Py contains at least two cycles.

Proof We consider a final graph R = R*, and the subgraph 7 of R. As T has
minimum degree at least 2, T is either a unique cycle or contains at least two cycles. If
T is a unique cycle C, then by the definition of 7, U C V(C) and every edge of C is
incident with a vertex of U. There are two cases to consider.

Case I. The vertices of U alternate with vertices of N(U) on C.

In this case the cycle C is of length 2|U|. Each vertex of U in C has at least one further
vertex v € N(U)\C attached as a pendant leaf of C. This follows as the minimum degree
in R of any vertex in U is at least 3, but there is only one cycle. Thus [UUN(U)| > 3|U|,
contradicting the Pésa condition that |[N(U)| < 2|U| — 1.

Case II. Two vertices of U are adjacent on C.

We claim that every vertex on the cycle is an endpoint. We proceed inductively.
Orient C, and let (u,v) € C, u,v € U. Consider P,. If P, = zg...vz...u, then z € U.
Hence (v,z) € C and v,z € U. If P, = zg...vu then P, = xg...a1b;...a2bs...vu where
there are edges {a1,u}, {as2,u} and paths ua;b;, uazb; in R. At best C = ...bjajuv...,
and there is a chordal path wasbs of C' as by € U. This contradicts the unicyclicity
assumption.

Suppose now that U = V(C). Consider the initial longest path Py = z¢z1...x,. Letb € U
be the first occurrence of an endpoint vertex in Py beyond zo. Thus either Py = xgb...zp
or Py = zoQab...z,. In either case there exists a sequence of transformations P, , ..., P,
where P, — P,.



In the first case zow and xyb are transformation edges of R. However zq € U so wxgb is
a chordal path of C' in R.

In the second case the transformation edges are wa, ab. As zoQa, the initial segment of
P, is never broken, the vertex a € U. We conclude that R is not unicyclic as wab is a
chordal path of C'. O

Lemma 6 There exists a constant c;, such that if c > ¢, then G € G satisfies the
following condition whp .

Let sp = n (3/c)®e™%+12) | No set of vertices S, of size |S| < so, induces at least 3|S|/2
edges.

Proof Let |S| = s, fix the degree sum 7T of S. The expected number of vertex sets
S inducing at least 3s/2 edges is at most

266 = A6va(") S G i amre) (o)

T>ks

The right hand side of this expression follows from (2) and (6) and Lemma 3. Thus,
as A < ¢ from Lemma Al(i) we can apply Lemma A1l (iv) and (11) of Lemma A3 as
follows:

10 < 40V (5) o (sem) l x G

s 3scn Tk
1 ne\ s e 3s/2 .
< Aviga g (5) (Gam) ()
s 54+18/k+2k2/(c—k o2
< A(c)\/ﬁ (53_36( +18/k-+2k? /(c— ))) ’

where any constants have been absorbed into A(c). Provided k£ > 3 and ¢ > 2k,

= 0= )

4<s<sgp

O

Lemma 7 There exists a constant ci, such that if c > ¢, then G € G, satisfies the
following condition whp .

No set of vertices S, |S| = s, 1 < s < n satisfies
(i) the degree sum T of S satisfies ks < T < cs/4k,
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(1) IN(S)| < k[S],
(1ii) the subgraph F' consisting of the edges induced by S and by S x N(S), is connected

and contains at least two cycles.

Proof Let the pair (S, N(S)) satisfy the conditions (i),(ii) and (iii). Let ' = 2q+p
where there are g edges induced by S and p edges induced by S x N(S). Denote |N(5)|
by r. Let R be the degree sum of N(S), where R > max{p, kr}. Because F is connected
and contains at least two cycles we have that

p+qg>r+s+1,

and thus
T>qg+r+s+ 1.

For fixed p, g, r, s the expected number of pairs (S, N(S)) satisfying conditions (i),(ii), (iii)
is at most y(p, ¢, 7, s) where from (2), (6),

) = aova(]) (1) S gt (RZ R BT
(O EY E T &),
Thus, as ¢ — k < A < ¢ an upper bound on ’y(p, q,r,s) is given by

;From (11) of Lemma A3, and (i) of Lemma A1,

e~ (AT
ey 7l ~——RP < 2(cre)?,
R>p
which is monotone increasing in . The maximum of (se/(B(), k) r))" occurs at r = s/,
giving
Alc s ((k“)“/ﬂ)s ces kce
v(p,q,7,8) < (© (=) & T( ) ( )
BRI VR™ kK

Now, p=T —2q and 1 — z > exp{— :1:/(1 — )} so, p P < T~ T(eT)? and thus
T ces\? (kee’s < kee3s ™ e\’
2q P - T 2k2ce?s q
2 e
{ 2ce?s } hee ST)

8k3e? }(4k2 3)]

IN

[exp

8



Thus provided k > 3 and ¢ > max{k? + k,5(k + 5)} say, using Lemma A1 (iv)(b),

8

p7q7’r,s

2_3\c/4k
Z ’)’(p,q,T,s) < A( Z s (5k ) *C+(k+1)+ek2/(c—k)+%

<

\/ﬁ sz: 4 —cs/5

=1

Lemma 8 There exists a constant ci, such that if c > ¢, then G € G satisfies the
following condition whp .

Let sg = n(3/c)3 exp{—(2k + 12)}, and let s; = an, where o = m

There is no subset of vertices S, |S| = s, s0/(k+1) < s < s1, such thatT's = G[SUN(S)]
is connected and |[N(S)| < k|S|.

Proof Let £ denote the event that there exists a set S, such that |[N(S)| < k|S|.

We work in G, ,, where p = ¢/n. There are (k + 1)s — 1 edges in a spanning tree of I'g
and suppose there are g other edges incident with S in I's. The expected number 7(q)
of such I'g is at most,

1(g) < (7:) (nk_s s) ((k+ 1)8)(k+1)s2<(§) ';]{382)

( c ) g+ (k+1)s—1 (1 c > s(n—(k+1)s)+[(;)+ks2 —(g+(k+1)s—1)]
X J— —_
n

n
A(c)ﬁ Flek (g + 1)k+lee\* (s2(k + 1)e' /e qe(c—2k)sz/(2n).
S 5 ik
s ng

Now, (ze/q)? < €, so

(;)—l—ksz Ck+1ek+l(k + 1)k+1 (k+1)cs) g

I e

< A(c)nexp {—c ((1 _ élog ckﬂekﬂgj + 1)'““) . M) } (7)

< A(c)ne 2P

Provided A < 1 the function f(s) = (1—\)s—(k+1)s?/n has an unconstrained maximum

at s = (21(;:)1? For the value A = 1log W

given in (7) above, this is in the



range (So, $1). The minimum of f(s) is at so. Thus (7) is maximized at so. The final
inequality follows from (3). Thus from Lemma 4, and (4), (5)

Pr(&;,Ghrmp ) < n2e~Pn

Lemma 9 Forc > ¢k, G € Gom . satisfies the following conditions whp.

(i) If S C [n], an < |S| < (1 — a)n then there are at least 4k|S| edges from S to
[n]_'Sy

(i) If L(3c) = {e € E(G) : e is incident with a vertex of degree at least 3c} then
|L(3c)| < ne—/6

(i) Let L(k) = {e € E(G) : e is incident with a vertex of degree k} then |L(k)| <
ne=</S,

Proof In all three cases we estimate the probability of failure in Gy, ,,, or Gpp,p =
c¢/n and show it is at most e~2"P. This estimate can then be inflated by O(n'/2e"") as
was done in Lemma 8.

(i) We assume without loss of generality that s = |S| < n/2. In G,, the number of
edges between S and [n] — S has binomial distribution B(s(n — s),p). This has mean
s(n — s)p and if 4ks = (1 — €)s(n — s)p then ¢ > 2/3 (using ¢ > 2(k + 1)% and s < n/2.)
Applying the Chernoff-Hoeffding bound

Pr(B(N,0) < (1 —€)N§) < e <No/3
we obtain

n/2
Pr((i) fails in G,p,) < Y (n) e e/

s=an \5
n/2

()

s=an S

n(ev/3(k + 1)e—20+1)%/9)/(Va(k+D)
—2nD

IN

IN A

e

(ii) The probability that an edge e € G, , is incident with a vertex of degree at least
3c is at most 37¢. Thus E(|L(3¢)|) < 3™°n in G, ,,. Changing one edge of G, ., changes
|L(3c)| by at most 12¢. Applying the Azuma-Hoeffding martingale tail inequality we get
Pr((ii) fails in G,,,,) < exp{—-n(e /®—3°)?/(144c%)}
< exp—2nD.
(iii) The probability that edge e € Gy, is incident with a vertex of degree k is at most
exp —2c¢/3. We proceed as in (ii). O
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4 The proof of Theorem 1

We will write k = 21+ 1 if k is odd, and k = 2] + 2 otherwise. The property A requires
the existence of [ edge disjoint Hamilton cycles H; : ¢ = 1,...,[, and, if k is even, a further
edge disjoint (near) perfect matching Hy.

We prove the whp existence of these structures in a sequential manner. Initially the
set of excluded edges Q(0) is empty. If k is even, we first prove whp the existence of
a Hamilton cycle by the methods described below, and use the edges of this cycle to
obtain a (near) perfect matching Hy. If k is odd, then E(Hp) = 0. The edges of the
matching H, are added to Q(7).

At the start of iteration ¢ = 1,...,1, the set Q(7) contains those edges to be excluded
from the cycle H;, by virtue of appearing in Hy, ..., H; 1.Thus

Q(i) = Ui B(Hj)-

To prove the existence of H;, we follow the method of Fenner and Frieze [FF|. A set T
of edges of G is said to be deletable if

D(a) 7 is not incident with any vertex of degree k or degree at least 3c,

D(b) T avoids a specified longest path Py = zoPzp, in G — Q(3),

D(c) T avoids the specified set Q(3),

D(d) T is a matching.

Let N (G) be the set of edges of G which 7 must avoid in order to satisfy the conditions
D(a),(b),(c) above and let H = G — T — Q(i). Let EN D(z¢; H) be a rotation endpoint

set of the fixed longest path zoPxp in the subgraph H, and R(z¢; H) the associated
final rotation subgraph.

Lemma 10 Let B be the subset of graphs in G, m i which satisfy the conditions of
Lemma’s 6, 7, 8 and 9, then

(i) 1B] = (1 = o(1))|Gnmp |,
(i1) If G € B then |END(z¢; H)| > an,

(11i) G € B implies H is connected.

11



Proof (i) This is a consequence of Lemmas 6-9.

(ii) Let END(zo; H) = S. We assume |S| < an. R(zg, H) is a connected subgraph
induced by S U N(S).

At the start of iteration ¢ = 0, Q(0) = (0. At the start of iteration ¢ = 1, ..., the degree
in Q(i) of any vertex v € [n] is 2(4 — 1) + l{z=niy2)- We note that |Ng(S)| < k|S|, for
if INg(S)| > k|S| then |[Ng_g(#)(S)| > 3|S|. We delete at most a matching from S in
G — Q, so this implies that |[Nz(S)| > 2|S| in contradiction of the Pésa condition. By
Lemma 8, |S| < so/(k + 1).

As R(zo) is a connected graph it satisfies condition (iii) of Lemma 7. Furthermore,
|IN(S)| < ks satisfies condition (ii) of the same lemma. Thus we conclude that 7', the
degree of S, satisfies T' > cs/4k. Let |[N(S)| = 6s < ks. By Lemma 6, the total number
of edges in S U N(S) satisfies

3
p+q§ 5(1+0)5a
and the total number of edges in S satisfies

3
—S.
1>75

A simple optimization shows that 7' = 2¢g + p is maximized at (p,q) = (36s/2,3s/2).
Thus T < 3s+30s so that T < 3(k+2)s. However, as T > £, this implies ¢ < 6k(k+2),
and contradicts the assumption that ¢ > c.

(iii) Starting with any vertex v, we see that both R(v) and P,, are connected subgraphs
of H, containing at least an vertices by (ii). The connectivity of H follows from Lemma

9 (i). O

Let £ be the subset of G, ,, x Which does not have property A;. We will apply the edge
colouring argument of Fenner and Frieze [FF] in an inductive manner to the set £ N B
to prove that Pr(€) — 0

Let T be a deletable set of edges of G of size t = [logn| avoiding the set N'(G) of size
s, and let an be a lower bound on |[END(zy)|. By transforming Py in H using Pédsa
rotations there are at least (an)?/2 longest paths aPb in H with distinct endpoint sets
{a,b}. Thus if G € £ at least (an)?/2 non-edges must be avoided when replacing a
subgraph 77, to form a graph G' = G—T +T', G' € £. We will call such a replacement
subgraph addable.

Let 1 be a lower bound on the number of ways of selecting a deletable 7 from G. Then,
because of D(a),



1, t(s + 6ct)
—m'expy —————— ¢,
m — (s + 6¢t)

where, from Lemma 9,
1
s = IN(G) < <§(k _1)+ Zec/6> n.

Let u be an upper bound on the number of ways of choosing an addable edge set T,
then ( ) ( ) .
2 —=1%) — (m—1t) 1(n 2
< (o)~ (%) ~(m < (1) e
ws (I =40
The edge colouring argument of [FF|, applied to Gy, ;m x shows that

NlGn,mft,k

Pr(ENB) < (1+o(1) £ 2t

Now

(,gg_)t) Pr(6 > kin Gpm-+t)
Grmrl ((51)) Pr(6 >k in G, )

(1+0(1)) (%)

since the probability Pr(é > k in G, ,_+) is non-decreasing as ¢t — 0.

We now find that

|Gn,mft,k

IN

Pr(€) < O(1) exp {—O (t <a2 R ))} .

m—S

For Pr(€) — 0, this requires that

1 (k—1)+ 4e—</6
V2 +1) ~ \e= ((k—1) + de—</5)’

which is satisfied when ¢ > ¢ = 2(k + 1)3. The value of « is the same as in Lemma 8.
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6 Appendix

Numerical calculations show that even for moderate values of ¢, the value of A rapidly
converges to ¢ provided k is small. Similarly B(\, k) tends rapidly to 1. For example,
1—1071° < 3(30,3) < 1. Thus we can effectively treat A and c as equal, and ignore
B(\, k). The properties of 3(\, k) are given in the following lemma.

Lemma A1 Let A = A\(c) be defined by

)\ﬁ()‘ak — 1) =, (8)

B\ k)
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where

B(A,0) = 1,
BN\ k) = 1—67'\(1+,\+..._+_

k—1

k—1!

), k>1.

(o) For ¢ > k the function \(c) is well defined,
(i) c—k<X<c,

(i) (a) ﬂg&f;)l) 1s a monotone decreasing function of X\, tending to 1 as A — oo,

(b) ﬂg&f;)l) is a monotone increasing function of k,

(iii) (&)eMe>1,
(iv) (a) B(\ k) is a monotone increasing function of A tending to 1 as A — oo.
. 2
() som S e

(C) /B(A, k) Z e_D where D — (kkcfl)l!e_(c—k)ekz/(c—k)'

Proof (o) We give a proof restricted to A > 2k. This is adequate here, as A > c—k
by (i), and ¢ > Cy = 2(k + 1)3.

Let f(z) = :vﬂg(ﬁ;)l), let v = e*B(z, k) = X5k ?—f and let ¢(j) = (fck__;), Then (eventu-
ally)

SO A O S A o
T k=D \k " k(k+1) k@) k(1)
> z4(1).
Because x > 2k, each of the k terms in the sum (above) is at least 1/k. Thus f(z) is

monotone increasing on [2k, 00).

(i),(ii) We note that

Bk —1) k 1
AL 14 - ; : (9)
B(X k) M+t emEm ot o )
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(iii) For simplicity denote G(A, ) by G;, and 2:1, e~ by £ then 81 = B + £ and

(L) = (e<ﬁfz 1)@)
(=) 1+ 5)
- (sl ()

(iv)(b) This comes from (9) by iterating
BAG—1) < (14 )80 5).
(iv)(c) This follows by applying (iv)(b) to the right hand side of

(L+ A+ + ggye *}

B()"k) ZeXp{_ ﬁ()‘ k)

Proof of Lemma 3

Let X = X, be a truncated Poisson random variable with parameters A, k giving the
occupancy of cell ¢, then EX = ¢ where cn = 2m. Conditioning on } 7 ; X; = 2m in
P(n, A, k:) we obtain O(n,2m, k) . Specifically, if x € P(n, A, k) , x = (X1, ..., X,,) and
>, X; =2m so that x € (Q(n 2m, k) , then

Pr(x; O(n,2m,k) ) = Pr([x | D X; = 2m]; P(n, \, k) ).

This is a generalization of the result that a multinomial random variable may be obtained
from independent Poisson random variables by conditioning on their sum; and the details
are described in, for example, [BFU]. Thus

Pr(E;P(n, ANE))

Pr(&;0(n,2m,k) ) < Pr(X", Xi = 2m; P(n, A\ k) )’

By the Local Limit Theorem, (see [BFU] and [Du]) Pr(X" ; X; = 2m) is asymptotic to
1/4/2wo?n, where 02 = Var(X) is given by

LBOVE —2)
=800k

and by (8) and Lemma A1(ii)(b) we see that o2 < c.

—+e, (10)
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An element d = (d; : ¢ = 1,...n) of O(n,2m, k) , induces a set of configuration multi-
graphs M(d) C M(n,2m,k) . The expected number of loops and multiple edges in a
configuration multigraph arising from an element of O(n,2m,k), is a function of the
degree sequence d. The maximum occupancy of any box in O(n,2m, k) is o(logn) with
probability of the complementary event n~°(°¢!g")  Conditioning on maximum degree
o(logn) and using the methods given in [Bo|, the probability there are no loops or
multiple edges in such a configuration multigraph is asymptotic to exp{—(/2 — (?/4},

where
1 n

In P(n, A, k) , the random variable ( is the sum of independent random variables and is
sharply concentrated with expected value

ﬂ(’\a k— 2)
ﬁ(’\’ k— 1) .
Fix € > 0, small. Then with probability 1—e~%€*") we have (1—e)E¢ < ¢ < (1+€)E( in

P(n, A, k) and O(n,2m, k). If S is the subset of M(n,2m, k) corresponding to G m ,
then

E¢ = )\

Pr(S; M(n,2m,k)) = o(1)+ ;(1 +0(1)) exp{—(¢(d)/2 + ¢((d)?/4)Pr(M(d); M(n, 2m, k) )}
= (14 0(e)) exp{—(E¢/2 + (EQ)*/4)}.

Now
Pr(£NS; M(n,2m,k) ) < Pr(&;0(n,2m,k) )

Pr(&;Gumr ) = Pr(S; M(n,2m,k)) ~ Pr(S;M(n,2m,k))’

O

The following lemma, and its proof are due to B. Pittel [Pi], who uses this approach in,
for example, [PW] and [Pil]. The proof technique uses the Local Limit Theorem (see
[Gn], [Du]) to avoid a direct application of the saddle point method. The origins of this
technique can be traced back to A. I. Kinchin [Ki]. The use of the Local Limit Theorem
in conjunction with generating functions for problems of this type was championed by
V. F. Kolchin (see [Ko] for a wide ranging discussion).

Lemma A 2 (Pi)

T =+ () o]
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Proof Let f(z) = Ejzk% so that f(z) = e*6(z,k), and let [2']g(z) denote the
coefficient of z* in the power series of g(z).

[M(n,2m, k) |

2m 1\2m
M(n,2m)| Z (bl---bn> (5)

.....

= a4y

wﬂuwwzgﬁﬁk%(ﬁﬁgf

1.2m

Let z > 0, so that

Let Y (z) be a random variable chosen so that

EZY — f(zx)’
f(z)
where, such a Y exists as fze) = 1. Let Y3, ..., Y, be independent copies of Y. Then
@ |,_,
my [ fz2)\" m
oy (FE)) — e
= Pr(Y1+---+Y, =2m).
Row d / k-1
EyszZY :xf ($) :x/B(xﬂ B )’
dz z=1 f(x) Ig(x’ k)

so that, if we choose z = A, then EY = c. Similarly, Var(Y) = o2 is given by (10). By
the Local Limit Theorem,

1
Pr(Yi+---+Y,=2m) ~ }
(¥ ) \V2mo?n
Hence
|IM(n,2m,k) | 1+ o0(1) (2m)! (f(A))"
|IM(n,2m)| V2oroln n2m \2m
and the result follows. O

Proof of Lemma 4
(i) We have for j = 0 and k that
|Gy2m,|2™m! = (1 + 0(1))e~%/20%/4| M(n, 2m, )|,
where 6y = ¢, and 6, = A\3(\, k — 2)/B(\, k — 1) was shown in the proof of Lemma 3.
(ii) Apply Lemma A1 (i),(iii) and (iv). O
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Lemma A 3 Lett,b be integer, wheret > b > 0, and let a > 0, then

3y Tb— < 2¢%(ae’t).

T>t

Proof Suppose T' > t > b, then

T TT —b)! AN b2
= ( )§2<1—T> eb§2exp{T}.

(T)s T!

Thus

b
>

T>t T>t

A
g
N

%
~
N
—
~
3
o
=l
~——
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