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Abstract

We study the the following question in Random Graphs. We are given two disjoint sets L,R
with |L| = n and |R| = m. We construct a random graph G by allowing each x ∈ L to choose d
random neighbours in R. The question discussed is as to the size µ(G) of the largest matching
in G. When considered in the context of Cuckoo Hashing, one key question is as to when is
µ(G) = n whp? We answer this question exactly when d is at least three.

1 Introduction

For a graph G we let µ(G) denote the size of a maximum matching in G. This paper provides an
analysis of µ(G) in the following model of a random bipartite graph. We have two disjoint sets L,R
where L = [n], R = [m] where n = αm. Each v ∈ L independently chooses d random vertices of R
as neighbours. Our assumptions are that α > 0, d ≥ 3 are fixed and n → ∞. There is of course
the issue as to whether a vertex is allowed to make the same choice twice. We allow this in the
paper in order to keep the d choices independent. Keeping the choices distinct makes no essential
difference to the final result. One can for example couple the two modes of construction so that
the size of the maximum matching is always at least as large when no repetitions are allowed.

After some preliminary analysis we can reduce the question to the following: We have two disjoint
sets L1, R1 of sizes n1,m1 respectively. Asymptotic expressions for the values of m1, n1 that hold
whp are given. Each vertex of L1 chooses d ≥ 3 random neighbours in R1. The choices are
conditioned so that each vertex of R1 is of degree at least two. Let G1 denote the sub-graph of G
induced by L1, R1. We show that

µ(G1) = min {|L1|, |R1|} whp.

This amounts to proving the following theorem:
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Theorem 1 Let Γ be a bipartite graph chosen uniformly from the sets of graphs with bipartition
L,R, |L| = n, |R| = m such that each vertex of L has degree d ≥ 3 and each vertex of R has degree
at least two. Then whp

µ(Γ) = min {m,n} .

The proof of this comprises the main technical challenge of the paper. This result has a similar
flavour to some classical results. Walkup [30] considered the problem when |L| = |R| = n and each
vertex of L chooses d random neighbours in R and each vertex of R chooses d random neighbours in
L. He showed that a random bipartite graph constructed in this way has a perfect matching whp
iff d ≥ 2. Karonski and Pittel [18] considered a refinement where in the first round each vertex of
L ∪ R first chooses a single random neighbour. Then each vertex not chosen by another vertex in
first round gets another random choice. In this way the graph has minimum degree at least two.
They show that this graph has a perfect matching whp, thus improving on Walkup’s theorem.

Another motivation for this study comes from Cuckoo Hashing, see for example Mitzenmacher
[26]. Briefly each one of n items x ∈ L has d possible locations h1(x), h2(x), . . . , hd(x) ∈ R,
where d is typically a small constant and the hi are hash functions, typically assumed to be-
have as independent fully random hash functions. (See [25] for some justification of this assump-
tion.) We are thus led to consider the bipartite graph G which has vertex set L ∪ R and edge set
{(x, hj(x)) : x ∈ L, j = 1, 2, . . . , d}. Under the assumption that the hash functions are completely
random we see that G has the same distribution as the random graph defined in the previous
paragraph.

We assume each location can hold only one item. Items are inserted consecutively and when an
item x is inserted into the table, it can be placed immediately if one of its d locations is currently
empty. If not, one of the items in its d locations must be displaced and moved to another of its d
choices to make room for x. This item in turn may need to displace another item out of one of its d
locations. Inserting an item may require a sequence of moves, each maintaining the invariant that
each item remains in one of its d potential locations, until no further evictions are needed. Thus
having inserted k items, we have constructed a matching M of size k in G. Adding a (k + 1)-st
item is tantamount to constructing an augmenting path with respect to M . All n items will be
insertable in this way iff G contains a matching of size n.

The case of d = 2 choices is notably different from that for other values of d and the theory for the
case where there are d = 2 bucket choices for each item is well understood at this point [10, 23, 28].
We will therefore assume that d ≥ 3.

We note finally that Theorem 1 can be interpreted in the context of random d-uniform hypergraphs
for d ≥ 3. The 2-core of a hypergraph H is the largest set of vertices that induce a sub-graph of
minimum degree two. The density of a set of vertices S is the ratio of the number of edges contained
entirely in S to the size of S itself. If we interpret the neighbours of a vertex v ∈ L as an edge
of a random d-uniform hypergraph then the theorem implies the following: A random d-uniform
hypergraph contains a set of density at least one, only when the 2-core has density at least one,
whp. This is a consequence of Hall’s theorem for matchings and our result for the case where
n ≤ m. For results on the 2-core of a random hypergraph, see for example Cooper [8] and Molloy
[27].

We will now turn to the matchings question referred to in Theorem 1.
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2 Definitions and Results

This question was studied initially by Fotakis, Pagh, Sanders and Spirakis [15]. They show in the
course of their analysis of Cuckoo hashing that the following holds:

Lemma 2 Suppose that 0 < ε < 1 and d ≥ 2(1 + ε) log(e/ε). Suppose also that m = (1 + ε)n.
Then whp G contains a matching of size n i.e. a matching of L into R.

�

In particular, if d = 3 and m ≈ 1.57n then Lemma 2 shows that there is a matching of L into R
whp.

This lemma is not tight and recently Dietzfelbinger, Goerdt, Mitzenmacher, Montanari, Pagh and
Rink [11] observed a connection with a result of Dubois and Mandler on Random 3-XORSAT [13]
that enables one to essentially answer the question as to when µ(G) ≥ n for the case d = 3. The
final version of [11] extends the result of [13] to d ≥ 3. More recently, Fountoulakis and Panagiotou
[16] have also established thresholds for when there is a matching of L into R whp, for all d ≥ 3.
It should perhaps be noted that the result of this paper is stronger in the sense that it gives the
size of the largest matching when there is no matching of L into R.

We begin with a simple observation that is the basis of the Karp-Sipser Algorithm [19, 2]. If v is a
vertex of degree one in G and e is its unique incident edge, then there exists a maximum matching
of G that includes e. Karp and Sipser exploited this via a simple greedy algorithm:

Algorithm 1 Karp-Sipser Algorithm

1: procedure KSGreedy(G)
2: M ← ∅, Γ← G;
3: while Γ 6= ∅ do
4: if Γ has vertices of degree one then
5: Select a vertex ξ uniformly at random from the set of vertices of degree one
6: Let e = (ξ, η) be the edge incident to ξ
7: else
8: Select an edge e = (v, u) uniformly at random
9: end if

10: M ←M ∪ {e}
11: Γ← Γ \ {ξ, η}
12: end while
13: return M
14: end procedure

Phase 1 of the Karp-Sipser Algorithm ends and Phase 2 begins when the graph remaining has
minimum degree at least two. So if Γ1 denotes the graph Γ remaining at the end of Phase 1 and
τ1 is the number of iterations involved in Phase 1 then

µ(G) = τ1 + µ(Γ1). (1)

Our approach to estimating µ(G) is to (i) obtain an asymptotic expression for τ1 that holds whp
and then (ii) show that whp Γ1 has a (near) perfect matching and then apply (1).
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We summarise the known results pertaining to the Karp-Sipser algorithm. For proofs of Theorem 3
and parts (a), (b) of Theorem 4 see Luby, Mitzenmacher, Shokrollahi and Spielman [24] or Dembo
and Montanari [9] or even an earlier version of this paper [17]: Let z1 satisfy

z1 =
ez1 − 1

d− 1
(2)

and let
α∗ =

z1

d(1− e−z1)d−1
. (3)

Theorem 3 If α ≤ α∗ then whp µ(G) = τ1 = n.

Thus whp Phase 1 of the Karp-Sipser Algorithm finds a (near) maximum matching if α ≤ α∗. In
particular, if d = 3 then z1 ≈ 1.251 and α1 ≈ .818 and thus m ≈ 1.222n is enough for a matching
of L into R.

Now consider larger α. Let z∗ be the largest non-negative solution to( z

αd

) 1
d−1

+ e−z − 1 = 0.

Theorem 4 If α > α∗ then whp

(a) z∗ > 0.

(b) τ1 = n

(
1−

(
z∗

αd

) d
d−1

)
+ o(n).

(c) If d ≥ 3 then

µ(Γ1) = min {|L1|, |R1|} = min
{
n− τ1, (1− (1 + z∗)e−z

∗
)m+ o(m)

}
. (4)

Here L1 ⊆ L,R1 ⊆ R are the two sides of the bipartition of Γ1, after deleting any isolated
vertices from the R-side.

Only part (c) needs to be proved here. As already mentioned, parts (a), (b) have already been
proven in [9], [24]. It is not easy to extract the precise statements from these papers. An earlier
version of this paper was placed on the Arxiv [17]. The interested reader can find a complete proof
of (a) and (b) in the first six sections. Alterantively, one can consult Molloy [27] where the precise
result is given in terms of hypergraph cores.

The remainder of the paper constitutes a proof of part (c).

3 Proof of Theorem 1 (and Theorem 4(c))

Let us summarize what we have to prove. We have a bipartite graph Γ1 with partition L1, R1 and
|L1| = n1 = α1m1, |R1| = m1. Each vertex a ∈ L1 has degree dL1(a) = d and each vertex b ∈ R1

has degree dR1(b) at least 2. The graph Γ1 is chosen uniformly from the set of bipartite graphs
with these degree properties.
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At this point it is convenient to drop the suffix 1. So from now on, m,n, α,Γ etc. refer to the graph
left at the end of Phase 1.

The degrees of Γ satisfy dL(a) = d for a ∈ L. The degrees of vertices in R are distributed as the
box occupancies X1, X2, . . . , Xm in the following experiment. We throw dn balls randomly into
m boxes and condition that each box gets at least two balls. In these circumstance the Xj ’s are
independent truncated Poisson, subject to the condition that X1 +X2 + · · ·+Xm = dn, see Lemma
4 of [2]. Thus for any S = {b1, b2, . . . , bs} ⊆ R and any set of positive integers ki ≥ 2, i ∈ S we have

P(dR(bi) = ki, i ∈ S) ≤ O(n1/2)
∏
i∈S

zki

ki!f(z)
(5)

for k ≥ 2 where z satisfies
z(ez − 1)

f(z)
=
nd

m
(6)

and
f(z) = ez − 1− z.

The O(n1/2) term accounts for the conditioning
∑

b∈R dR(b) = dn.

We remark that
z > 2.

It follows from (5) that

P(∃b ∈ R : dR(b) ≥ L = log n) ≤ O(n3/2)
zL

L!f(z)
= O(n−K) (7)

for any positive constant K.

3.1 Outline of the proof of Theorem 4(c)

At the top level this involves showing that whp Hall’s condition holds. We will estimate the
probability of the existence of sets A,B where |A| = k and |B| ≤ k− 1 such that NΓ(A) ⊆ B. Here
NΓ(S) is the set of neighbours of S in Γ. We call such a pair of sets a witness to the non-existence of
a matching that covers the smaller of L,R. There are two possibilities to consider: (i) L-witnesses:
A ⊆ L and B ⊆ R or (ii) R-witnesses: A ⊆ R and B ⊆ L. We have to deal with both cases in
order to deal with the asymmetry between L and R. We say this because in the classic case of a
binomial random bipartite graph considered by Erdős and Rényi [14] we can get away with only
dealing with Case (i). We observe that if there exists a pair A,B then there exists a minimal pair
and in this case each b ∈ B has at least two neighbours in A. If v has a unique neighbour w in A
then A \ {w} , B \ {v} is also a witness.

We first consider L-witnesses A where |A| ≤ k0 where

k0 = max {m,n} /2.

We can restrict out attention to k ≤ k0 because if n ≤ m and we have an L-witness A ⊆ L, |A| =
k > k0 then B = R\NΓ(A) will be an R-witness and |B| ≤ k0. The same idea holds for R-witnesses
B ⊆ R.
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We begin by proving some lemmas involving the properties of functions that occur throughout the
proof. This is the content of Section 3.2. We start the verification of Hall’s condition in Section
3.3. In this section we assume that m and n are close, in particular |m − n| = o(n7/8). We begin
the analysis with L-witnesses in Section 3.3.1. When k = |A| is small i.e. at most n/ log4 n (Case
1.0) we can use a simple bipartite configuration model to prove the non-existence of a witness. This
is useful, because it then enables us to “ignore” factors of the order eO(|m−n|) in the main body of
the proof.

We then consider larger k. This involves a complicated expression (15) for the expected number of
L-witnesses. The proof continues by making various simplifications to this expression that are valid
within different ranges and for different values of d. This makes the calculations rather lengthy.

Having dealt with L-witnesses we turn to R-witnesses in Section 3.3.2. We first produce a complex
expression (43). When k is small, now less than n9/10 we can make some simplifications. This again
allows us to “ignore” factors of the order eO(|m−n|) in the main body of the proof. We are again
faced with estimating a rather complex expression which we do by breaking into various sub-cases.

Once we have dealt with |m − n| = o(n7/8) we tackle arbitrary m and n. We do this by relating
the probability of events for the cases m+ s, n and m,n+ s with the probability of events for the
case m,n, see (98) and (99). In this way we can reduce the case of arbitrary m,n to the case of
|m− n| = o(n7/8).

3.2 Useful Lemmas

Define the function ζ(x), x > 0 to be the unique solution to

u(eu − 1)

f(u)
= x. (8)

Let g be defined by
g(x) = (eζ(x) − 1)xf(ζ(x))1−x. (9)

Observe that on replacing u by ζ(x) in (8) we see that

f(ζ(x))

ζ(x)x
=
g(x)

xx
. (10)

Lemma 5 The function g(x) is log-concave as a function of x.

Proof: We will write ζ for ζ(x) and f for f(ζ) throughout this proof. Now ζ(eζ−1)
f = x from which

we get
dζ

dx
=

f2

(eζ − 1)2 − ζ2eζ
(11)

and note that dζ
dx > 0 for ζ > 0, see (13) below. Taking the derivative of log(g(x)) we get

d

dx
log(g(x)) =

d

dx

(
x log(eζ − 1) + (1− x) log(eζ − ζ − 1)

)
= log

(
eζ − 1

f

)
+
dζ

dx

(
x

eζ

eζ − 1
+ (1− x)

eζ − 1

f

)
.
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Now x = ζ(eζ−1)
f so

x
eζ

eζ − 1
+ (1− x)

eζ − 1

f
=
ζeζ

f
+
f − ζ(eζ − 1)

f

eζ − 1

f

=
ζeζ(eζ − ζ − 1) + (eζ − ζ − 1− ζeζ + ζ)(eζ − 1)

f2

=
(eζ − 1)2 − ζ2eζ

f2

=
dx

dζ
.

Thus we have
d

dx
log(g(x)) = log

(
eζ − 1

f

)
+ 1. (12)

Taking the second derivative we get

d2

dx2
log(g(x)) =

d

dx

(
log

(
eζ − 1

f

)
+ 1

)
=

f

eζ − 1

eζ(eζ − ζ − 1)− (eζ − 1)2

f2

dζ

dx

=
1

(eζ − 1)f

dζ

dx

(
−(ζ − 1)eζ − 1

)
.

Since −(ζ − 1)eζ − 1 is strictly negative for ζ > 0 we get that g(x) is log-concave �

Lemma 6 ζ(x) is concave as a function of x.

Proof: We begin with (11). We note that the denominator

(eζ − 1)2 − ζ2eζ =
∞∑
k=4

(2k − 2− k(k − 1))
ζk

k!
≥ 0. (13)

Then we have

d2ζ

dx2
=

2(1 + ζ) + eζ(−6− e2ζ(2 + ζ(ζ − 4)) + ζ2(5 + ζ(ζ + 2)) + eζ(6− 2ζ(2ζ + 3)))

((eζ − 1)2 − ζ2eζ)2

dζ

dx
.

Now let

φ(u) =

∞∑
n=0

φnu
n = 2(1 + u) + ψ(u)

where

ψ(u) =

∞∑
n=0

ψnu
n = eu(−6− e2u(2 + u(u− 4)) + u2(5 + u(u+ 2)) + eu(6− 2u(2u+ 3))).

We check that ψ0 = −2 and ψ1 = 0 which implies that φ0 = φ1 = 0. One can finish the argument
by checking that

ψn = −3n−2(n2 − 13n+ 18) + 2n(n2 + 2n− 6)− (n4 − 4n3 + 10n2 − 7n− 6)

n!
≤ 0
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for n ≥ 2. This is simply a matter of checking for small values until the 3n term dominates. �
Next let

H(u) = log f(u)− u− 2 log u = log

(
eu − u− 1

u2eu

)
Lemma 7 H(u) is convex as a function of u.

Proof:

d2

du2
H(u) =

d

du

(
eu − 1

f(u)
− 1− 2

u

)
=
eu(eu − 1− u)− (eu − 1)2

f(u)2
+

2

u2

=
eu − 1− ueu

f(u)2
+

2

u2

=
u2(eu − 1− ueu) + 2(eu − 1− u)2

u2f(u)2

=
2e2u + u2eu + u2 + 4u+ 2− u3eu − 4ueu − 4eu

u2f(u)2

Let

φ(u) = 2e2u + u2eu + u2 + 4u+ 2− u3eu − 4ueu − 4eu =

∞∑
n=0

φnu
n.

Direct computation gives φ0 = φ1 = φ2 = 0 and for n ≥ 3

φn =
1

n!
(2n+1 + n(n− 1)− n(n− 1)(n− 2)− 4n− 4).

One can then check that φ3 = φ4 = φ5 = 0 < φn for n ≥ 6. Thus d2

du2
H(u) ≥ 0 implying that H(u)

is convex. �

3.3 The case |n−m| = o(n7/8)

We will first prove Theorem 1 under the assumption that |n −m| = o(n7/8) and then in Sections
3.4 and 3.5 we will extend the result to arbitrary m. We deal first with the existence probability
for a minimal L-witness and leave R-witnesses until Section 3.3.2. We then combine these results
to finish the case |n−m| = o(n7/8) in Section 3.3.3.

3.3.1 Case 1: L-witnesses

For
k ≤ k0 and ` ≤ k − 1

define

πL(k, `,D) = Pr(∃A,B : |A| = k, |B| = `,NΓ(A) = B, d(B) = D ≥ dk, dA(b) ≥ 2,∀b ∈ B)

where d(B) =
∑

b∈B dA(b). This is the probability of the existence of a minimal L-witness A of
size of size k that has a neighbour set B of size ` of total degree D.

8



We observe that if we condition on the degrees db, b ∈ R then we will be able to use a bipartite
configuration model for the bipartite graph Γ. Let d = (d1, d2, . . . , dm) be a sequence of non-
negative integers with d1 + d2 + · · ·+ dm = M = nd. Let WL,WR be two disjoint copies of [M ] and
let Wi,R = [d1+· · ·+di−1+1, d1+· · ·+di], i ∈ [m], partition W into sets of size d1, d2, . . . , dm. Let φ
be a uniform random bijection between WL and WR. Given φ we define the bipartite (multi-)graph
Γφ as follows: If φ(x) = y then we add the edge (b(x− 1)/dc+ 1, i) where y ∈Wi,R. This bipartite
graph has the same distribution as Γ1 conditional on the degrees of the vertices in R.

Given this model, we can easily deal with small k.

Case 1.0: 2 ≤ k ≤ n/ log4 n.

We have

A14 =

n/ log4 n∑
`<k=2

k logn∑
D=dk

πL(k, `,D) ≤
k logn∑
D=dk

(
n

k

)(
m

`

)(
D

dn

)dk

≤
n/ log4 n∑
`<k=2

k logn∑
D=dk

(ne
k

)k (me
`

)`(k log n

n

)dk
≤

n/ log4 n∑
`<k=2

k logn∑
D=dk

(
e2+o(1)kd−2 logd n

nd−2

)k
= o(1). (14)

The notation
∑s

`<k=r is short for
∑s

k=r

∑k−1
`=1 . We use the notation A14 so that the reader can

easily refer back to the equation giving its definition. A14 is the first of several sums that together
show the unlikelihood of a witness. We will display them as they become available and use them
in Sections 3.3.3, 3.4 and 3.5.

We can restrict our attention to D ≤ k log n because of (7).

Case 1.1: n/ log4 n ≤ k ≤ k0.

We must work much harder when k is large. We now estimate, with z as defined in (6),

πL(k, `,D) ≤ O(n1/2)

(
n

k

)(
m

`

) ∑
2≤xb≤db,∀b∈[`]∑

b xb=kd∑
b∈[`] db=D,

∑
b/∈[`] db=dn−D

m∏
b=1

zdb

db!f(z)

∏̀
b=1

(
db
xb

)
(kd)!

dk−1∏
i=0

1

dn− i
.

(15)
Explanation of (15): Choose sets A,B in

(
n
k

)(
m
`

)
ways. Choose degrees db, b ∈ R with probability

O(n1/2)
∏m
b=1

zdb
db!f(z) such that

∑
b∈B db = D,

∑
b/∈B db = dn − D for some D ≥ 2`. Choose the

degrees xa, a ∈ A in the sub-graph induced by A ∪ B. Having fixed the degree sequence, we swap
to the configuration model

Choose the configuration points associated with the xa, a ∈ A in
∏
a∈A

(
d
xa

)
ways. Assign these D

choices of points associated with A in D! ways. Then multiply by the probability (kd)!
∏kd−1
i=0

1
dn−i

of a given pairing of points in A.

So, after writing db = xb + yb for b ∈ [`] we get,

πL(k, `,D) = O(n1/2)

(
n

k

)(
m

`

)
(d(n− k))!

(dn)!

(kd)!zdn

f(z)m
×

9



 ∑
2≤xb,∀b∈[`]∑

b xb=kd

∏̀
b=1

1

xb!


 ∑

2≤db,∀b/∈[`]∑
b db=dn−D

m∏
b=`+1

1

db!


 ∑

0≤yb,∀b∈[`]∑
b yb=D−kd

∏̀
b=1

1

yb!


(16)

= O(n1/2)

(
n

k

)(
m

`

)
(d(n− k))!

(dn)!

(kd)!zdn

f(z)m
×(

[ukd](eu − 1− u)`
)(

[udn−D](eu − 1− u)m−`
)(

[uD−kd]eu`
)

(17)

≤ O(n1/2)eO(|m−n|)
(
n

k

)(
m

k − 1

)
(d(n− k))!

(dn)!

(kd)!zdn

f(z)m
f(z)`

zkd
f(ζ1)m−`

ζdn−D1

`D−dk

(D − kd)!
.

Here we use the general notation that [xr]φ(x) is the coefficient of xr in the series expansion of φ
around zero. One sees that the expression in (16) can be written as in (17) simply by expanding
the various φ(u) as power series.

If A(x) =
∑∞

n=0 anx
n where an ≥ 0 for n ≥ 0 we have an ≤ A(ζ)/ζn for any positive ζ and A(ζ)/ζn

is minimised at ζ satisfying ζA′(ζ)/A(ζ) = n.

Here we take

ζ1 = ζ(y) where y =
dn−D
n− k

≥ 2−O
(
|m− n|

n

)
due to our minimum degree assumption for R. Indeed, our minimum degree assumption implies
that

dn−D ≥ 2(m− `) ≥ 2(m− k) = 2(n− k) + 2(m− n). (18)

We get an upper bound for any choice of ζ1, although if y0 = (dn − D)/(m − `) then ζ1(y0) (see
(8)) gives the smallest upper bound. It is convenient to use ζ1(y) instead of this. Later in the proof
we choose other values for ζ1 in this bound, but we will always choose 1 < ζ1 < 2 < z.

The term eO(|m−n|) accounts for replacing
(
m
`

)
by
(
m
k−1

)
for k exceeding m/2. So,

πL(k, `,D) ≤ O(n1/2eO(|m−n|))

(
n

k

)(
m

k − 1

)
(d(n− k))!

(dn)!

(kd)!zdn

f(z)m
f(z)`

zkd
f(ζ1)m−`

ζdn−D1

(k − 1)D−dk

(D − kd)!
. (19)

Observe next that

dn−D
n− k

− dn

m
=
dn(m− n) + (dk −D)n+D(n−m)

m(n− k)
≤ O

(
|m− n|

n

)
.

Hence

f(ζ1) ≤ f(z) +O

(
|m− n|

n

)
and therefore f(z)`f(ζ1)m−` ≤ eO(|n−m|)f(z)kf(ζ1)m−k. (20)

Continuing, we find that

πL(k, `,D) ≤ O

(
eO(|m−n|)

m1/2

) (
n
k

)(
m
k

)(
dn
dk

)
 zd

f(z)
m−k
n−k

f(ζ1)
m−k
n−k

ζ
dn−D
n−k

1

n−k (
ek

D − dk

)D−dk
. (21)

10



Putting k = an and m = βn and h(u) = uu(1 − u)1−u and x = d − y = D−dk
n−k where 0 ≤ x ≤

d− 2 +O(|n−m|/n we obtain, after substituting
(
n
k

)
= O

(
1

k1/2h(a)n

)
,
(
m
k

)
= O

(
1

k1/2h(a/β)n

)
and(

dn
dk

)
= O

(
1

k1/2h(a)dn

)
, (see (18)),

πL(k, `,D) ≤ O

(
eO(|m−n|)

n1/2

)(
h(a)d−1

h(a/β)β

)n(
zd

f(z)
β−a
1−a

f(ζ1)
β−a
1−a

ζd−x1

(
e a

1−a
x

)x)n−k
. (22)

Because β = 1 + o(n−1/8), we see that

(
h(a)

h(a/β)β

)n(f(ζ1)
β−1
1−a

f(z)
β−1
1−a

)n−k
(23)

=

(
βa
(

1 +
a(1− β)

β − a

)1−a( 1

1− a/β

)β−1
)n(

f(ζ1)

f(z)

)(β−1)n

(24)

= eo(n
7/8), (25)

after using (20).

Thus (22) becomes

πL(k, `,D) = O

(
1

n1/2

)
eo(n

7/8)h(a)(d−2)n

(
zd

f(z)

f(ζ1)

ζd−x1

(
e a

1−a
x

)x)n−k
. (26)

Case 1.1.1: d ≥ 5.

Observe (see (10)) that
zd

f(z)

f(ζ1)

ζd−x1

=
dd

g(d)

g(d− x)

(d− x)d−x
eo(n

7/8)

where g(x) is as defined in (9). The term eo(n
7/8) is derived as follows: In (10) z = ζ(dn/m) and so

zdn/m/f(z) = (dn/m)dn/m/g(dn/m) and eo(n
7/8) is the correction for replacing zd/f(z) by dd/g(d).

It follows from (12) that

− log

(
g(d− x)

g(d)

)
=

∫ d

d−x

d

dt
log(g(t))dt ≥

∫ d

d−x
1dt. (27)

Plugging this into the last parenthesis of (26) gives

πL(k, `,D) = O

(
1

n1/2

)
eo(n

7/8)

(
h(a)d−2

(
dd

(d− x)d−x

( a
1−a
x

)x)1−a)n
. (28)

We will use this to prove that

A29 =

n(1−2/d)∑
`<k=εLn

dk+n1/10∑
D=dk

πL(k, `,D) ≤
n(1−2/d)∑
`<k=εLn

dk+n1/10∑
D=dk

O

(
1

n1/2

)
h(a)(d−2)neo(n) = o(1). (29)

where εL is some small constant defined in (33) below.

11



The bound for A29 comes from (28), using the fact that h(a) is bounded away from 1 and x = o(1)
in this summation.

The main term h(a)d−2
(
dd 1

(d−x)d−x

( a
1−a
x

)x)1−a
in (28) is maximized when x = ad, provided

ad ≤ d− 2 or k ≤ n
(
1− 2

d

)
. This in turn gives

πL(k, `,D)

= O

(
1

n1/2

)
eo(n

7/8)

(
(1 + o(n−1/8))h(a)d−2

(
(1 + o(n−1/8))dd

1

(d− ad)d−ad
1

((1− a)d)ad

)1−a
)n

= O

(
1

n1/2

)
eo(n

7/8)

(
(1 + o(n−1/8))h(a)d−2

(
dd

dd−addad
(1− a)−d

)1−a)n
≤ O

(
1

n1/2

)
eo(n

7/8)
(
aa(d−2)(1− a)−2(1−a)

)n
. (30)

The function ρd(a) = aa(d−2)(1− a)−2(1−a) is at most 1 and is log-convex in a on [0, 1− 2
d ]. Indeed,

if L1(a) = log ρd(a) then

dL1

da
= d+ (d− 2) log a+ 2 log(1− a). (31)

d2L1

da2
=
d− 2− da
a(1− a)

. (32)

We have L1(0) = 0 and L′1(0) = −∞. It follows that for every K > 0 there exists a constant
εL(K, d) > 0 such that

ρd(a) ≤ e−Ka for a ≤ εL(K). (33)

We let εL = εL(1, d). This completes the proof of (29).

In truth we should put
ρd(a) ≤ max

{
e−Ka, ψ(d)

}
where

ψ(d) =

(
1− 2

d

)(d−2)2/d(2

d

)−4/d

.

For small a < εL(K, d), e−Ka > ψ(d) and so it suffices to use (33). Thus

A34 =

εLn∑
`<k=n/ log4 n

k logn∑
D=dk

πL(k, `,D) =

εLn∑
`<k=n/ log2 n

k logn∑
D=dk

O

(
1

n1/2

)
e−Kk+o(n7/8) = o(1). (34)

The bound for A34 comes from (30) and (33).

Now ψ(d) decreases in d and is < .9 for d ≥ 5. So if d ≥ 5 then for some constant 0 < ξ < 1 we
have

A35 =

k0∑
`<k=εLn

k logn∑
D=dk+n1/10

πL(k, `,D) =

k0∑
`<k=εLn

k logn∑
D=dk+n1/10

O

(
1

n1/2

)
eo(n

7/8)ξn = o(1). (35)

The bound for A35 comes from (30) and using the fact that ρd(a) ≤ e−a.

12



We have now completed the analysis for d ≥ 5 and witnesses A ⊆ L.

Case 1.1.2: d ∈ {3, 4}.

Now consider the cases d = 3, 4. Putting β3 = .15, β4 = .49 we note that ρd(βd) ≤ .995 for d = 3, 4
and so arguing as above we have

A36 =

βdn∑
`<k=εLn

k logn∑
D=dk+n1/10

πL(k, `,D) =

βdn∑
`<k=εLn

logn∑
D=dk+n1/10

O

(
log n

n1/2

)
eo(n

7/8)ξn = o(1). (36)

Because we can choose any value for ζ1 in the bound (26) we can simplify matters by choosing
ζ1 = η > 1 independent of x to get

πL(k,D) = O

(
1

n1/2

)
eo(n

7/8)h(a)(d−2)n

(
zd

f(z)

f(η)

ηd

(
eηa

x(1− a)

)x)n−k
. (37)

Now (
ηea

(1− a)x

)x
≤ exp

{
ηa

1− a

}
(38)

and so

πL(k,D) ≤ O
(

k

n1/2

)(
h(a)d−2eηaeo(n

−1/8)

(
zd

f(z)

f(η)

ηd

)1−a)n
. (39)

Now the function L2(a) = h(a)d−2eηa
(

zd

f(z)
f(η)
ηd

)1−a
is log-convex in a. Our initial choice of η will

be 1.5 and we note that with this choice, when d = 4, L2(.49), L2(.51) < .9 and so

A40 =

k0∑
`<k=β4n

k logn∑
D=4k

πL(k, `,D) ≤
k0∑

`<k=β4n

k logn∑
D=4k

O

(
log n

n1/2

)
eo(n

7/8)(.9)n = o(1). (40)

When d = 3, with the same choice for η, we have L2(.15), L2(2/5) < .98 and so

A41 =

2n/5∑
`<k=.15n

k logn∑
D=3k+n1/10

πL(k, `,D) ≤
2n/5∑

`<k=.15n

k logn∑
D=3k+n1/10

O

(
log n

n1/2

)
eo(n

7/8)(.98)n = o(1). (41)

We repeat this idea once more. Putting η = 1.1 we get L2(2/5), L2(.51) < .98 from which we
deduce that

A42 =

k0∑
`<k=2n/5

k logn∑
D=3k+n1/10

πL(k, `,D) ≤
k0∑

`<k=2n/5

k logn∑
D=3k+n1/10

O

(
log n

n1/2

)
eo(n

7/8)(.98)n = o(1). (42)

3.3.2 Case 2: R-witnesses

Now let us estimate the probability of a violation of Hall’s condition with A ⊆ R. We once again
begin with arbitrary m.

For
k ≤ k0 = max {m,n} /2 and ` ≤ k − 1

13



define

πR(k, `,D) =

P(∃A ⊆ R,B ⊆ L : |A| = k, |B| = `,NΓ(A) ⊆ B, dA(a) ≥ 2,∀a ∈ A, dR(A) = D) ≤

O(n1/2)

(
m

k

)(
n

`

) ∑
2≤da,∀a∈[m]

2≤xb≤d,∀b∈[`]∑
a∈[k] da=

∑
b∈[`] xb=D∑

a/∈[k] da=dn−D

m∏
a=1

zda

da!f(z)

∏̀
b=1

(
d

xb

)
D!

D−1∏
i=0

1

dn− i
. (43)

Explanation of (43): Choose sets A,B in
(
m
k

)(
n
`

)
ways. Choose degrees da, a ∈ R with probability

O(n1/2)
∏n
a=1

zda

da!f(z) such that
∑

a∈A da = D,
∑

a/∈A da = dn − D for some D ≥ 2k. Choose the
degrees xb, b ∈ B in the sub-graph induced by A∪B. Having fixed the degree sequence, swap to the
configuration model [5]. Choose the configuration points associated with the xb, b ∈ B in

∏
b∈B

(
d
xb

)
ways. Then multiply by the probability D!

∏D−1
i=0

1
dn−i of a given pairing of points in A.

So

πR(k, `,D) =

O(n1/2)

(
m

k

)(
n

`

)
zdnD!

f(z)m
(dn−D)!

(dn)!

×

 ∑
2≤da,∀a∈[k]∑

a da=D

k∏
a=1

1

da!


 ∑

2≤da,∀a/∈[k]∑
a da=dn−D

m∏
a=k+1

1

da!


 ∑

2≤xb≤d,∀b∈[`]∑
b xb=D

∏̀
b=1

(
d

xb

) =

O(n1/2)

(
m

k

)(
n

`

)
zdn

f(z)m
1(
dn
D

)
×
(

[uD](eu − 1− u)k
)(

[udn−D](eu − 1− u)m−k
)(

[uD]((1 + u)d − (1 + du))`
)
≤

O(n1/2)e2k|m−n|/n
(
m

k

)(
n

k − 1

)
zdn

f(z)m
1(
dn
D

)
×
(

[uD](eu − 1− u)k
)(

[udn−D](eu − 1− u)m−k
)(

[uD]((1 + u)d − (1 + du))k
)
≤ (44)

O(n1/2)e2k|m−n|/n
(
m

k

)(
n

k − 1

)
zdn

f(z)m
1(
dn
D

) f(ζ1)k

ζD1

f(ζ2)m−k

ζdn−D2

(
dk

D

)
. (45)

Our choice of ζ1, ζ2 will differ according to circumstances.

Case 2.0: k ≤ n9/10.

In this case we first use a crude bound in place of (44), (45):

πR(k, `,D = θk) ≤
(
m

k

)(
n

k − 1

)(
k

n

)θk
(46)

≤ 2k

n

((
k

n

)θ−2

e2+o(n−1/8)

)k
.
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To get (46) we choose sets A ⊆ R,B ⊆ L and then use (k/n)D as an upper bound on the probability
that NΓ(A) ⊆ B.

Thus if

θ0 = 2 +
100

log n

then

B47 =
n9/10∑
`<k=2

∑
D≥θ0k

πR(k, `,D) = o(1). (47)

Case 2.0.1: d ≥ 5.

When 2 ≤ θ ≤ θ0 we will use (44). In this case we take ζ1 = ε for small ε which implies that

f(ζ1) = ε2/2 +O(ε3) and ζ2 = z = ζ(d) + o(1). With
(
dn
D

)
=
(
den
2k

)k+o(k)
this gives

πR(k, `,D)

≤ O
(

k

n1/2

)(
(1 +O(ε))

n2e2

k2

(
2k

den

)2 ζ(d)2

2f(ζ(d))

)k
([uD]((1 + u)d − (1 + du))k)

= O

(
k

n1/2

)(
(1 +O(ε))

2

d2

ζ(d)2

f(ζ(d))

)k
([uD]((1 + u)d − (1 + du))k). (48)

If we use the bound

([uD]((1 + u)d − (1 + du))k) ≤
(
dk

D

)
≤
(
de

2

)(2+o(1))k

then (48) becomes

πR(k, `,D) ≤ O
(

k

n1/2

)(
(1 +O(ε))

ζ(d)2e2

2f(ζ(d))

)k
. (49)

Another calculation shows that if x ≥ 4.5 then x2e2/2f(x) ≤ .89 and then we have

d ≥ 5 implies ζ(d) ≥ 4.5 which implies πR(k, `,D) ≤ O
(

k

n1/2

)
(.9)k. (50)

So we are only left with d = 3 or 4 for the case of small k.

Case 2.0.2: d = 4

We use

[uD]((1 + u)4 − 1− 4u)k = [uD−2k](6 + 4u+ u2)k

= 6k[uD−2k]

(
1 +

4

6
u+

u2

6

)k
≤ 6k[uD−2k]

(
1 +

u

2

)2k

= 6k
(

2k
D−2k

)
2D−2k

. (51)
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Equation (48) now becomes

πR(k, `,D) ≤ O
(

k

n1/2

)(
(1 +O(ε))

12

16

ζ(4)2

f(ζ(4))

)k
= O

(
k

n1/22k

)
(52)

since 3.5 ≤ ζ(4) ≤ 3.6 and (3.6)2/f(3.5) ≤ 1/2.

Case 2.0.3: d = 3

We use

[uD]((1 + u)3 − 1− 3u)k = [uD−2k](3 + u)k

= 33k−D
(

k

D − 2k

)
. (53)

In this case (48) becomes

πR(k, `,D) ≤ O
(

k

n1/2

)(
(1 +O(ε))

6

9

ζ(3)2

f(ζ(3))

)k
= O

(
k3k

n1/24k

)
(54)

since 2.1 ≤ ζ(3) ≤ 2.2 and (2.2)2/f(2.1) < 1.

It follows from (50), (52) and (53) that

B55 =
n9/10∑
`<k=2

∑
2k≤D≤θ0k

πR(k, `,D) = o(1). (55)

Case 2.1: k ≥ n9/10.

Going back to (44) we initially take ζ1 = ζ(D/k) and ζ2 = ζ
(
dn−D
n−k

)
. It is convenient to use this

definition of ζ2 in place of the more natural ζ
(
dn−D
m−k

)
.

So

πR(k, `,D)

= O(n1/2)e2k|m−n|/n
(
m

k

)(
n

k

)(dk
D

)(
dn
D

) (f(ζ1)

f(z)

)k (f(ζ2)

f(z)

)m−k ( z

ζ1

)D ( z

ζ2

)dn−D
(56)

= O

(
1

n1/2

)
e2a|m−n|

(
h(θa/d)d

h(a)h(a/β)βh(θ/d)ad

(
f(ζ1)

f(z)

)a(f(ζ2)

f(z)

)β−a( z

ζ1

)θa( z

ζ2

)d−θa)n
(57)

= O

(
1

n1/2

)
e2a|m−n|

(
h(θa/d)d

h(a)h(a/β)βh(θ/d)ad
zd

f(z)β
f(ζ1)a

ζθa1

f(ζ2)β−a

ζd−θa2

)n
, (58)

where a = k/n, m = βn and D = θk ≤ dk.

We argue as in (25) that
h(a)

h(a/β)β
f(ζ2)β−1

f(z)β−1
= eo(n

−1/8).

Thus, (58) becomes

πR(k, `,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8) h(θa/d)d

h(a)2h(θ/d)ad
zd

f(z)

f(ζ1)a

ζθa1

f(ζ2)1−a

ζd−θa2

)n
. (59)

16



It follows from Lemma 5 that we can upper bound

zd

f(z)

(
f(ζ1)

ζθ1

)a f(ζ2)

ζ
d−aθ
1−a

2

1−a

=
dd

g(d)

g(θ)ag
(
d−aθ
1−a

)1−a

θaθ
(
d−aθ
1−a

)d−aθ
≤
g(aθ + (1− a)d−aθ1−a )

g(d)

dd

θaθ
(
d−aθ
1−a

)d−aθ
=

aaθ(1− a)d−aθ((
aθ
d

)aθ
d (1− aθ

d )1−aθ
d

)d
=
aaθ(1− a)d−aθ

h
(
aθ
d

)d .

Plugging this into (59) gives

πR(k, `,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8)aaθ(1− a)d−aθ

h(a)2h
(
θ
d

)ad
)n

. (60)

Now let R1(θ) = log

(
aaθ(1−a)d−aθ

h(a)2h( θd)
ad

)
. Then

R′1(θ) = a log a− a log(1− a)− a log θ + a log(d− θ),

R′′1(θ) = − ad

θ(d− θ)
< 0.

Thus R1(θ) is concave and is maximized when θ = ad. Because θ ≥ 2 we can only use this for
a ≥ 2/d.

Case 2.1.1: k ≥ 2n/d and d ≥ 5.

πR(k, `,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8)aa
2d(1− a)d−a

2d

h(a)2+ad

)n
= O

(
1

n1/2

)(
eo(n

−1/8)aa
2d−a(2+ad)(1− a)d−a

2d−(1−a)(2+ad)
)n

= O

(
1

n1/2

)(
eo(n

−1/8)a−2a(1− a)(d−2)(1−a)
)n

= O

(
1

n1/2

)
eo(n

7/8)ρd(1− a)n (61)

where the function ρd is defined following (30).

We find that

ρd(1− 2/d) =

(
d4

16

(
1− 2

d

)(d−2)2
)1/d

≤ .9 for d ≥ 5. (62)
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Now ρd(1− 2/d) < 9/10 and ρd(.5) < .8 for d ≥ 5. So, with the aid of (33),

B63 =

k0∑
`<k=2n/d

k logn∑
D=2k

πR(k, `,D) ≤
k0∑

`<k=2n/d

k logn∑
D=2k

O

(
1

n1/2

)
eo(n

7/8)(.8)n for d ≥ 5. (63)

We will treat d = 4 under Case 2.2. In this case we will change the upper bound on the range from
n/2 to 0.51n.

Case 2.2: n9/10 ≤ k ≤ 2n/d.

Case 2.2.1: d ≥ 6.

In this case the expression in (60) (ignoring error terms) is maximized at θ = 2. Then

πR(k,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8)a2a(1− a)d−2a

h(a)2h
(

2
d

)ad
)n

= O

(
1

n1/2

)(
eo(n

−1/8)(1− a)d−2a−2(1−a)

h
(

2
d

)ad
)n

= O

(
1

n1/2

)(
eo(n

−1/8)(1− a)d−2

h
(

2
d

)ad
)n

.

Let R2(a) = log

(
(1−a)d−2

h( 2
d)
ad

)
. Then

R′2(a) = −d− 2

1− a
− d log h(2/d) < 0 for d ≥ 6,

R′′2(a) = − d− 2

(1− a)2
< 0.

Thus R2(a) is strict concave and its maximum is taken at a = 0 and R2(a) ≤ R2(0)a for all
a ∈ [0, 2

d ]. Furthermore, R2(0) < −3/10 for d ≥ 6. It follows that if d ≥ 6 then

B64 =

2n/d∑
`<k=n9/10

dk∑
D=2k

πR(k, `,D) ≤
2n/d∑

`<k=n9/10

dk∑
D=2k

O

(
1

n1/2

)
e−(3k/10−o(n7/8)) = o(1). (64)

For d = 3, 4, 5 we use a better bound on [uD]((1 + u)d − 1− du)k in (44).

Case 2.2.2: d = 5.

We use

[uD]((1 + u)5 − 1− 5u)k = [uD](10u2 + 10u2 + 5u4 + u5)k)

= [uD−2k](10 + 10u+ 5u2 + u3)k

= 10k[uD−2k]

(
1 + u+

u2

2
+
u3

10

)k
≤ 10k[uD−2k]

(
1 +

u

2

)3k

= 10k
(

3k
D−2k

)
2D−2k

.
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Replacing the 1

h( θd)
ad factor in (60) which comes from

(
dk
D

)
gives, for d = 5,

πR(k,D) ≤ O
(

k

n1/2

)(
eo(n

−1/8)aaθ(1− a)5−aθ

h(a)2

)n(
10

2θ−2h
(
θ−2

3

)3
)k

= O

(
k

n1/2

)eo(n−1/8)10aaa(θ−2)(1− a)5−2−a(θ−2)(
2θ−2h

(
θ−2

3

)3)a
n

= O

(
k

n1/2

)eo(n−1/8)10a(1− a)3


(

a
1−a

) θ−2
3

2
θ−2
3 h

(
θ−2

3

)


3a
n

. (65)

Let p(x) = qx

h(x) for any x ∈ [0, 1], note that if P (x) = log p(x) then

P ′(x) = log q − log x+ log(1− x).

P ′′(x) = −1

x
− 1

1− x
< 0.

So p(x) is maximized when log q = log
(

x
1−x

)
or x = q

1+q and the maximum value is 1 + q

Thus from (65) we get

πR(k, `,D) ≤ O
(

k

n1/2

)(
eo(n

−1/8)10a(1− a)3

(
1 +

a

2(1− a)

)3a
)n

.

Let R3(a) = log

(
10a(1− a)3

(
1 + a

2(1−a)

)3a
)

. Then

R′3(a) = log 10− 6

2− a
+ 3 log

(
2− a
2− 2a

)
,

R′′3(a) =
3a

(2− a)2(1− a)
> 0.

SoR3(a) is convex on [0, 2
5 ]. We haveR3(0) = 0 andR′3(0) = log 10−3 ≤ −3/4 andR3(2/5) < −1/4.

It follows that

B66 =

2n/5∑
`<k=n9/10

5k∑
D=2k

πR(k, `,D) ≤
2n/5∑

`<k=n9/10

5k∑
D=2k

O

(
1

n1/2

)
e−(3k/4−o(n7/8)) = o(1). (66)

Case 2.2.3: d = 4.
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Using (51) we get

πR(k, `,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8)aaθ(1− a)4−aθ

h(a)2

)n(
6

2θ−2h
(
θ−2

2

)2
)k

= O

(
1

n1/2

)eo(n−1/8)6aaa(θ−2)(1− a)2−a(θ−2)

(
1

2
θ−2
2 h

(
θ−2

2

)
)2a

n

= O

(
1

n1/2

)eo(n−1/8)6a(1− a)2


(

a
1−a

) θ−2
2

2
θ−2
2 h

(
θ−2

2

)


2a
n

≤ O
(

1

n1/2

)(
eo(n

−1/8)6a(1− a)2

(
1 +

a

2(1− a)

)2a
)n

.

Now if R4(a) = log

(
6a(1− a)2

(
1 + a

2(1−a)

)2a
)

then

R′4(a) = log 6− 4

2− a
+ 2 log

(
2− a
2− 2a

)
,

R′′4(a) =
2a

(2− a)2(1− a)
> 0.

Thus R4 is convex on [0, .51]. We have R4(0) = 1 and R′4(0) = log 6 − 2 ≤ −1/5 and R4(.51) <
−1/20. It follows from this and (33) that

B67 =

k0∑
`<k=n9/10

4k∑
D=2k

πR(k, `,D) ≤ +

k0∑
`<k=n9/10

4k∑
D=2k

O

(
1

n1/2

)
e−(k/5−o(n7/8)) = o(1). (67)

Case 2.2.4: d = 3.

Using (54) we get

πR(k, `,D) ≤ O
(

1

n1/2

)(
eo(n

−1/8)aaθ(1− a)3−aθ

h(a)2

)n(
33−θ

h (θ − 2)

)k
= O

(
1

n1/2

)(
eo(n

−1/8)aa(θ−2)(1− a)1−a(θ−2)

(
33−θ

h(θ − 2)

)a)n

= O

(
1

n1/2

)eo(n−1/8)3a(1− a)


(

a
3(1−a)

)θ−2

h(θ − 2)


a

n

≤ O
(

1

n1/2

)(
eo(n

−1/8)3a(1− a)

(
1 +

a

3(1− a)

)a)n
.

Now if R5(a) = log
(

3a(1− a)
(

1 + a
3(1−a)

)a)
then

R′5(a) = − 3

3− 2a
+ log

(
3− 2a

1− a

)
,

R′′5(a) =
4a− 3

(3− 2a)2(1− a)
.
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Case 2.2.4.1: θ ≥ 2.0005 and 0 ≤ a ≤ a0 = k0/n.

We go back to (59) and make the choice ζ1 = ζ2 = z and replace h(θ/d)−ad by
(

33−θ

h(θ−2)

)a
and

consider the function

F1(θ, a) =
h(θa/3)33(3−θ)a

h(a)2h(θ − 2)a

so that πR(k, `,D) ≤ O
(

1
n1/2

)
F1(θ, a)n. Let G1(θ, a) = log(F1(θ, a)). Then

∂G1

∂a
= log

(
27(1− a)2(θ − 2)θ−2(aθ)θ

3θa2(3− θ)3−θ(3− aθ)θ

)
, (68)

∂G1

∂θ
= a

(
log

(
3− θ

9

)
− log(θ − 2) + log(aθ)− log

(
1− aθ

3

))
, (69)

∂2G1

∂a2
=

(3− a)θ − 6

a(1− a)(3− aθ)
, (70)

∂2G1

∂θ2
=

((3− a)θ2 − 12θ + 18)a

θ(3− aθ)(θ − 3)(θ − 2)
. (71)

It follows from (70) that

G1(θ, a) is a convex function of a for 0 ≤ a ≤ aθ =
3θ − 6

θ
, for θ fixed, 2 ≤ θ ≤ 3 (72)

and
G1(θ, a) is a concave function of a for aθ ≤ a ≤ 1, for θ fixed, 2 ≤ θ ≤ 3. (73)

It follows from (71) that

G1(θ, a) is a concave function of θ on [2, 3] for a fixed, 0 ≤ a ≤ 1. (74)

A calculation shows that if g1(θ) = G1(θ, aθ) then

g′1(θ) =
3

θ2
log

(
144

3θ2(3− θ)2

)
, (75)

g′′1(θ) = − 6

θ3(3− θ)

(
−θ + 2(3− θ) log

(
12

3− θ

))
. (76)

Furthermore, if g2(θ) = ∂G1
∂a |a=aθ then

g2(θ) = log

(
12

3θ(3− θ)

)
. (77)

Case 2.2.4.2: 2.0005 ≤ θ ≤ 3 and 0 ≤ a ≤ e−10000.

For a ≤ e−10000 we have ∂G1
∂a ≤ log 10− (θ − 2) log 1/a ≤ −2. So,

F1(θ, a) ≤ e−2a for 0 ≤ a ≤ e−10000, 2.0005 ≤ θ ≤ 3. (78)

Case 2.2.4.3: 2.46 ≤ θ ≤ 3 and e−10000 ≤ a ≤ a0.

Now aθ > a0 for θ ≥ 2.46 and so (72) implies that G1(θ, a) ≤ max
{
G1(θ, e−10000), G1(θ, a0)

}
for

2.46 ≤ θ ≤ 3 and e−10000 ≤ a ≤ a0. Now (78) implies that G1(2.46, e−10000) < −2e−10000 and
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(69) implies that ∂G1
∂θ |θ=2.46,a=e−10000< 0 and so (74) implies that G1(θ, e−10000) ≤ −2e−10000 for

2.46 ≤ θ ≤ 3. Also, by direct calculation, we have G1(2.46, a0) < −.002 and ∂G1
∂θ |θ=2.46,a=a0< 0

and so G1(θ, a0) ≤ −.002 for 2.46 ≤ θ ≤ 3. Thus,

F1(θ, a) ≤ e−2e−10000
for e−10000 ≤ a ≤ a0 and 2.46 ≤ θ ≤ 3.

Case 2.2.4.4: 2.0005 ≤ θ ≤ 2.25 and e−1000 ≤ a ≤ a0.

We take ζ1 = .6 and ζ2 = 2.1 in (59) and let

F2(θ, a) = F1(θ, a)
z3

f(z)

f(ζ1)a

ζθa1

f(ζ2)1−a

ζ3−θa
2

= F1(θ, a)eρ2+σ2a+τ2aθ

where

eρ2 =
z3f(ζ2)

f(z)ζ3
2

, eσ2 =
f(ζ1)

f(ζ2)
, eτ2 =

ζ2

ζ1
.

Let G2(θ, a) = log(F2(θ, a)). ∂2G2
∂a2

= ∂2G1
∂a2

and ∂2G2
∂θ2

= ∂2G1
∂θ2

and so (72),(73) and (74) hold with G1

replaced by G2. Putting γ2(θ) = G2(θ, aθ) we see that γ′′2 (θ) = g′′1(θ)− 12σ2
θ3

> 0, using (76) (σ2 <
−3.127). Thus γ2 is convex on 2.0005 ≤ θ ≤ 2.25. Furthermore γ2(2.0005), γ2(2.25) < −.00003 and
so γ2(θ) < −.00003 for θ ∈ [2.0005, 2.25] and therefore G2(θ, a) ≤ −.00003a/aθ < −.00003a when
0 ≤ a ≤ aθ and θ ∈ [2.0005, 2.25]. Next let φ2(θ) = ∂G2

∂a |a=aθ . We have φ2(θ) = g2(θ) + σ2 + τ2θ <
−.05 for 2.0005 ≤ θ ≤ 2.25, using (77) (τ2 < 1.253). So, G2(θ, a) ≤ φ2(θ)− .05(a− aθ) for a ≥ aθ
when θ ∈ [2.0005, 2.25]. Thus

F2(θ, a) < e−.00003a for e−1000 ≤ a ≤ a0 and 2.0005 ≤ θ ≤ 2.25.

Now suppose that we repeat the idea of the previous paragraph, but this time we take ζ1 =
1.4 and ζ2 = 3 in (59) and use the same notation. Putting γ2(θ) = G2(θ, aθ) we see that
γ′′2 (θ) = g′′1(θ) − 12σ2

θ3
> 0, using (76) (σ2 < −2.27). Thus γ2 is convex on 2.25 ≤ θ ≤ 2.46.

Furthermore γ2(2.25), γ2(2.46) < −.05 and so γ2(θ) < −.05 for θ ∈ [2.25, 2.46] and therefore
G2(θ, a) ≤ −.05a/aθ < −.05a when 0 ≤ a ≤ aθ and θ ∈ [2.25, 2.46]. Next let φ2(θ) = ∂G2

∂a |a=aθ .
We have φ2(θ) = g2(θ) + σ2 + τ2θ < −.2 for 2.25 ≤ θ ≤ 2.46, using (77) (τ2 < .763). So,
G2(θ, a) ≤ φ2(θ)− .2(a− aθ) for a ≥ aθ when θ ∈ [2.25, 2.46]. Thus

F2(θ, a) < e−.05a for e−1000 ≤ a ≤ a0 and 2.25 ≤ θ ≤ 2.46.

Case 2.2.4.5: 2 ≤ θ ≤ 2.0005 and e−1000 ≤ a ≤ a0.

For this we simplify our estimate of πR(k, `,D) by removing some terms involving β from (58).

πR(k, `,D) ≤ P(∃A ⊆ R,B ⊆ L : |A| = k, |B| = k − 1, NΓ(A) ⊆ B, dA(a) ≥ 2, a ∈ A) ≤

O(n1/2)

(
m

k

)(
n

k − 1

) ∑
2≤da,a∈[m]

2≤xb≤d,b∈[k−1]∑
a∈[k] da=

∑
b∈[k−1] xb=D

k∏
a=1

zda

da!f(z)

k−1∏
b=1

(
d

xb

)
D!

D−1∏
i=0

1

dn− i
=

O

(
k

m1/2

)(
n

k

)(
m

k

)
zDD!

f(z)k
(dn−D)!

(dn)!

 ∑
2≤da,a∈[k]∑

a da=D

k∏
a=1

1

da!


 ∑

2≤xb≤d,b∈[k−1]∑
b xb=D

k−1∏
b=1

(
d

xb

) =
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O

(
k

m1/2

)(
n

k

)(
m

k

)
zD

f(z)k
1(
dn
D

) ([uD](eu − 1− u)k
)(

[uD]((1 + u)d − (1 + du))k
)
≤

O

(
k

m1/2

)(
n

k

)(
m

k

)
zD

f(z)k
1(
dn
D

) f(ζ1)k

ζD1

(
dk

D

)
=

O

(
k

m1/2

)(
n

k

)(
m

k

)(dk
D

)(
dn
D

) (f(ζ1)

f(z)

)k ( z

ζ1

)D
= O

(
1

m1/2

)(
h(θa/d)d

h(a)h(a/β)βh(θ/d)ad

(
f(ζ1)

ζθ1

zθ

f(z)

)a)n
(79)

= O

(
1

m1/2

)(
eo(n

−1/8a) h(θa/d)d

h(a)2h(θ/d)ad

(
f(ζ1)

ζθ1

zθ

f(z)

)a)n
. (80)

Now let

F3(θ, a) =
h(θa/3)33(3−θ)a

h(a)2h(θ − 2)a

(
f(ζ1)

ζθ1

zθ

f(z)

)a
.

We take ζ1 = .0001 and then
f(ζ1)

ζθ1

zθ

f(z)
< .e−.86

for 2 ≤ θ ≤ 2.0005. Keeping some slack, we define

F4(θ, a) =
h(θa/3)33(3−θ)ae−.85a

h(a)2h(θ − 2)a

and G4(θ, a) = log(F (θ, a)). Now let γ4(θ) = G4(θ, aθ). We have γ′4(θ) = g′1(θ) − 5.1
θ2

and γ′′4 (θ) =
g′′1(θ) + 10.2

θ3
and we find from (76) that γ4 is concave on 2 ≤ θ ≤ 2.0005. Furthermore γ4(2) = 0

and using (75) we see that γ′4(2) < −.8 and so g1(θ) < −.8(θ− 2) for θ ∈ [2, 2.0005]. So G4(θ, a) ≤
−.8a(θ − 2)/aθ ≤ −.8a(θ − 2) for 0 ≤ a ≤ aθ. Next let φ4(θ) = ∂G4

∂a |a=aθ= g2(θ) − .85. We see
from (77) that g2(θ) < −.5 for 2 ≤ θ ≤ 2.0005 and thus G4(θ, a) ≤ −.5(a−aθ) for a ≥ aθ when θ ∈
[2, 2.0005]. Replacing e−.85 by e−.86 in the definition of F4(θ, a) we get F4(θ, a) < e−(4(θ−2)a/5+a/100)

for 0 ≤ a ≤ a0 when 2 ≤ θ ≤ 2.0005. So, for some small constant c > 0,

B81 =

k0∑
`<k=2

3k∑
D=2k

πR(k, `,D) ≤
k0∑

`<k=2

3k∑
D=2k

e−ck = o(1). (81)

3.3.3 Finishing the case |n−m| = o(n7/8)

We repeat our observation that the maximum degree ∆ in Γ is o(log n) whp. Therefore

P(µ(Γ) < min {m,n}) ≤ o(1) +


A14 +A29 +A34 +A35 +B47 +B55 +B63 +B64 d ≥ 6

A14 +A29 +A34 +A35 +B47 +B55 +B63 +B66 d = 5

A14 +A29 +A34 +A36 +A40 +B47 +B55 +B67 d = 4

A14 +A29 +A34 +A36 +A41 +A42 +B47 +B55 +B81 d = 3

where the o(1) term accounts for P(∆(Γ) > log n). We use A14 +A29 +A34 +A35 etc. to account
for witnesses A ⊆ L,B with |A| ≤ k0 and B47 + B55 + B63 + B64 etc. to account for witnesses
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A ⊆ L,B with |A| > k0. This is because if A′ = R \ B and B′ = L \ A then |A′| = m − k + 1
and |B′| = n − k and NΓ(A′) ⊆ B′ and there will be a minimal witness A′′, B′′ with A′′ ⊆ A′.
Similarly, we use B47 +B55 +B63 +B64 etc. to account for witnesses A ⊆ R,B with |A| ≤ k0 and
A14 +A29 +A34 +A35 etc. to account for witnesses A ⊆ R,B with |A| > k0.

We point out for use in the next section that our computations allow us to claim that we have

n−n9/10∑
k=n9/10

`≤min{k−1,m/2}

k logn∑
D=dk

πL(k, `,D) = O(e−Ω(n9/10)). (82)

One can see this by noting that all of the upper bounds in question are of order eO(|m−n|)ξk where
0 < ξ < 1 is some absolute constant and k ≥ n9/10.

The same argument allows us to claim that

n−n9/10∑
k=n9/10

`≤min{k−1,n/2}

dk∑
D=2k

πR(k, `,D) = O(e−Ω(n9/10)). (83)

3.4 The case n + n4/5 ≤ m ≤ dn/2

Let G(n,m) denote the set of bipartite graphs with |L| = n, |R| = m that are d-regular on L and
degree at least 2 on R. The upper bound on m is due to the fact that there are precisely dn edges
and the minimum degree in R is at least two. Suppose that G(n,m) is chosen uniformly at random
from G(n,m).

If there is no matching from L to R, then let a minimal witness A,B be small if |A| ≤ n3/4 and
large if |A| ≥ n− n3/4 and medium otherwise.

3.4.1 Small Witnesses

The RHS of (14) remains o(1) for all C1n ≤ m ≤ C2n, for any constants 0 < C1 < C2.

3.4.2 Large Witnesses

To deal with k ≥ n − n9/10 we treat this as k ≤ n9/10 in Section 3.3.2. Indeed, if there is such a
witness A,B, let A′ = R \B and B′ = L \A. Then NΓ(A′) ⊆ B′ and |B′| < min{|A′|, n3/4} and so
we can find a witness A′′, B′′ with A′′ ⊆ A′, B′′ ⊆ B′ and |A′′| ≤ n9/10.
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We use (79) for this calculation. Now

h(θa/d)d

h(a)h(a/β)βh(θ/d)ad
=

(
θa
d

)θa (
1− θa

d

)d−θa
aa(1− a)1−a

(
a
β

)a (
1− a

β

)β−a (
θ
d

)θa (
1− θ

d

)da−θa =

a(θ−2)a exp

{
−(d− θa)

∞∑
k=1

θkak

kdk
+ a−

∞∑
k=2

ak

k(k − 1)
+
a

β
−
∞∑
k=2

ak

βk−1k(k − 1)
+ (da− θa)

∞∑
k=1

θk

kdk

}

= a(θ−2)a exp

{
a

(
1 +

1

β
− (d− θ) log(1− θ/d)− θ

)
+O(a2)

}
. (84)

So from (79) we can write

πR(k, `,D) ≤

O

(
1

m1/2

)((
az

ζ1

)θ−2

exp

{
1 +

1

β
− (d− θ) log(1− θ/d)− θ +O(a)

}
f(ζ1)

ζ2
1

z2

f(z)

)an
. (85)

Now we claim that

ζθ−2
1 ≥ 1

2
and that f(x)x−2 is monotone increasing in x. (86)

First notice that f(x)x−2 =
∑∞

i=2
xi−2

i! which is clearly monotone increasing. Second note that

ζ1 = ζ(θ) and since dζ(x)
dx > 0 we have

lim
x→∞

dζ(x)

dx
= lim

x→∞

f(ζ(x))2

(eζ(x) − 1)2 − ζ(x)2eζ(x)

= lim
ζ→∞

f(ζ)2

(eζ − 1)2 − ζ2eζ
= 1

and since ζ(x) is concave we have dζ(x)
dx ≥ 1. This, along with limx→2− ζ(x) = 0, implies that

ζ(x) ≥ x− 2. We can then lower bound

ζθ−2
1 = ζ(θ)θ−2 ≥ (θ − 2)θ−2 ≥ e−e−1 ≥ 0.69

Using this we see from (85) that if

θ ≥ θ0 = 2 +
4

log(1/az)

then

πR(k, `,D) ≤ O
(

1

m1/2

)
e−k.

In which case we have

n9/10∑
`<k=2

∑
θ≥θ0

πR(k, `,D) ≤ O
(

1

m1/2

)∑
k≥1

e−k = o(1). (87)
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When θ < θ0 we have θ = 2 + o(1), f(ζ1)/ζ2
1 = 1/2 + o(1). Therefore

πR(k, `,D) ≤ O
(

1

m1/2

)(
z2e−(d−2) log(1−2/d)+o(1)

2f(z)

)k
. (88)

Now for d ≥ 4 we have
z2e−(d−2) log(1−2/d)+o(1)

2f(z)
≤ 9

10
(89)

and so
n9/10∑
k=1

∑
θ≤θ0

πR(k, `,D) ≤ O
(

1

m1/2

)(
9

10

)k
= o(1). (90)

When d = 3, the expression on the LHS of (89) is at most 1.26. So in this case we go back to (80)

and replace 1
h(θ/d)ad

by
(

3θ−2

h(θ−2)

)a
= eo(a). After this (84) is replaced by

a(θ−2)a exp

{
a

(
1 +

1

β
+ θ log(θ/d)− θ

)
+ o(a)

}
.

And then (88) is replaced by

πR(k, `,D) ≤ O
(

1

m1/2

)(
z2e−2 log(3/2)+o(1)

2f(z)

)k
≤ O

(
1

m1/2

)
1

2k

and so
n9/10∑
k=1

∑
θ≤θ0

πR(k, `,D) ≤ O
(

1

m1/2

)
1

2k
= o(1). (91)

3.4.3 Medium Witnesses

Let di(n,m) denote the number of R-vertices of degree i ≥ 2 in G(n,m) and let Di(n,m) =
E(di(n,m)).

We define three events:

A1(n,m− 1) =
{
G ∈ G(n,m− 1) : ∃i : |di(n,m− 1)−Di(n,m− 1)| > n3/5/i3, 2 ≤ i ≤ log2 n

}
(92)

A2(n,m) =
{
G ∈ G(n,m) : ∃i : di(n,m) 6= 0, i > log2 n

}
(93)

B(n,m) =
{
G ∈ G(n,m) : |d2(n,m)−D2(n,m)| > 2n3/5

}
(94)

We argue next that if A(n,m) = A1(n,m− 1) ∪ A2(n,m) then

P(A(n,m) ∪ B(n,m)) = e−Ω(log2 n). (95)

For any t > 0 we have

P(|di(n,m− 1)−Di(n,m− 1)| > t) ≤ O(n1/2)P(Bin(m, qi) > t)

26



where qi = zi

i!f(z) .

We will now use the following bounds (see for example [1])

P(|Bin(N, p)−Np| ≥ t) ≤ 2e−t
2/N , (96)

P(Bin(N, p) ≥ αNp) ≤ (e/α)αNp. (97)

If i ≤ log2 n then we can use (96) with t = n3/5/i3 to deal with A1(n,m) and also with B(n,m). If

i ≥ log2 n then nqi ≤ e−Ω(log2 n). We can therefore use (97) with α = 1/nqi to deal with A2(n,m).
This concludes the proof of (95).

Now consider a set of pairs X ⊆ G(n,m− 1)×G(n,m). We place (G1, G2) into X if G2 is obtained
from G1 in the following manner: Choose a vertex x ∈ R of degree at least four in G1. Suppose that
its neighbours are yi, i = 1, 2, . . . , k in any order. To create G2 we (i) replace x by two vertices x
and m and then (ii) let the neighbours of x in G2 be y1, y2 and let the neighbours of m be y3, . . . , yk.

For G ∈ G(n,m− 1) let
π1(G) = | {G2 : (G,G2) ∈ X} |

and for G ∈ G(n,m) let
π2(G) = | {G1 : (G1, G) ∈ X} |.

We note that if

Σ1 =
∑
i≥4

(
i

2

)
Di(n,m− 1)

then

• G /∈ A(n,m− 1) implies that |π1(G)− Σ1| ≤ O(n3/5).

• π1(G) ≤
(
m−1

2

)
for all G ∈ G(n,m− 1).

• G /∈ B(n,m) implies that |π2(G)−D2(n,m)| ≤ n3/5.

• π2(G) ≤ m for all G ∈ G(n,m).

We then note that

(Σ1 −O(n3/5))|G(n,m− 1)| ≤ |X| ≤ (D2(n,m) + n3/5 +me−Ω(log2 n))|G(n,m)|.

Now let P,Q be properties such that if (G1, G2) ∈ X and G2 ∈ Q then G1 ∈ P. Let (G1, G2) be
chosen uniformly from X and let PX denote probabilities computed w.r.t. this choice. Then

PX(G2 ∈ Q) ≤ PX(G1 ∈ P) ≤ |P|(Σ1 +O(n3/5)) +m|A(n,m− 1)|
|X|

and

PX(G2 ∈ Q) ≥ (|Q| − |B(n,m)|)(D2(n,m)− n3/5)

|X|
.

So,
(|Q| − |B(n,m)|)(D2(n,m)− n3/5)

|G(n,m)|(D2(n,m) + n3/5 +me−Ω(log2 n))
≤ |P|(Σ1 +O(n3/5)) +m|A(n,m− 1)|

|G(n,m− 1)|(Σ1 −O(n3/5))
.
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So,
|Q|

|G(n,m)|
≤ (1 +O(n−2/5))

|P|
|G(n,m− 1)|

.

So, if Pj is a property of G(n, j) for j = n, n+ 1, . . . ,m,

|Pm|
|G(n,m)|

≤ (1 +O(n−2/5))m−n
|Pn+n4/5 |

G(n, n+ n4/5)
. (98)

We use (98) in the following way: First let Bj , n+ n4/5 ≤ j ≤ m be the property that G ∈ G(n, j)
contains a minimal witness A,B with A ⊆ L, n9/10 ≤ |A| ≤ n/2. If (G1, G2) ∈ X and G2 ∈ Bm
then G1 ∈ Bm−1. Indeed A,B ∩ [m − 1] is a minimal witness in G1. Applying (98) and (82) we
see that whp Bm fails to occur. Now let B′j be the property that G ∈ G(n, j) contains a minimal

witness A,B with A ⊆ R,n9/10 ≤ |A|, |B| < min{|A| − (j−n), n/2}. If (G1, G2) ∈ X and G2 has a
witness A,B with A ⊆ L and n/2 < |A| ≤ n− n9/10 then G2 ∈ B′m. Indeed A′ = R \B,B′ = L \A
is also a witness in G2. Now if G2 ∈ B′m with a witness A′, B′ then A′ ∩ [m− 1], B′ is a witness in
G1 and so contains a minimal witness A′′, B′′ where |A′′| > |B′′|+m− n > n9/10 i.e. G1 ∈ B′m−1.
Applying (98) and (83) we see that whp B′m fails to occur. This deals with medium witnesses.

3.5 The case m ≤ n− n4/5

We once again consider medium witnesses separately from small or large witnesses.

3.5.1 Small Witnesses

We first observe that the RHS of (47) remains o(1) for all m ≤ n. Then to finish, we can argue as
in cases 2.0.1 to 2.0.3 with m ≤ n making the calculations easier.

3.5.2 Large Witnesses

For k ≥ n− n9/10 we deal with πL(k, `,D) for k ≤ n9/10. As in Section 3.4.1, we use the fact that
the RHS of (14) remains o(1) for all C1n ≤ m ≤ C2n, for any constants 0 < C1 < C2.

3.5.3 Medium Witnesses

Now consider a set of pairs Y ⊆ G(n,m)×G(n+ 1,m). We place (G1, G2) into Y if G2 is obtained
from G1 in the following manner: Choose 0 ≤ k ≤ n. Replace edges (`, y) by (`+ 1, y) for all ` > k
and all y. Add vertex k + 1 and d edges (k + 1, yj), j = 1, 2, . . . , d.

Note that if (G1, G2) ∈ Y and G1 has a matching of R into L then so does G2.

For G ∈ G(n,m) let now
π1(G) = | {G2 : (G,G2) ∈ Y } |

and for G ∈ G(n+ 1,m) let
π2(G) = | {G1 : (G1, G) ∈ Y } |.
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Let

Σ2 = (n+ 1)

(
1− z2

2f(z)

)d
and for G ∈ G(n+ 1,m) let

L3(G) = |{v ∈ L : all neighbours of v have degree at least 3}| .

Let
C(n+ 1,m) =

{
G ∈ G(n+ 1,m) : |L3(G)− Σ2| ≤ n3/5

}
.

We note that

• G ∈ G(n,m) implies that π1(G) = (n+ 1)
(
m
d

)
.

• G /∈ C(n,m+ 1) implies that |π2(G)− Σ2| ≤ n3/5.

• π2(G) ≤ n+ 1 for all G ∈ G(n+ 1,m).

We then note that

|Y |
|G(n,m)|

= (n+ 1)

(
m

d

)
.

Σ2 − n3/5 ≤ |Y |
|G(n+ 1,m)|

≤ Σ2 + n3/5 + (n+ 1)e−Ω(log2 n).

Now let P,Q be properties such that if (G1, G2) ∈ Y and G2 ∈ Q then G1 ∈ P. Let (G1, G2)
be chosen uniformly from Y and let PY denote probabilities computed with respect to this choice.
Then

PY (G2 ∈ Q) ≤ PY (G1 ∈ P) =
|P|(n+ 1)

(
m
d

)
|Y |

and

PY (G2 ∈ Q) ≥ (|Q| − |C(n+ 1,m)|)(Σ2 − n3/5)

|Y |
.

Arguing as in Section 3.4 we see that if Pj is a property of G(j,m) for j = m,m+ 1, . . . , n,

|Pm|
G(n,m)

≤ (1 +O(n−2/5))n−m
|Pm+n4/5 |

G(m+ n4/5,m)
. (99)

First let Bj ,m + n4/5 ≤ j ≤ n be the property that G ∈ G(j,m) contains a minimal witness
A,B with A ⊆ R,n9/10 ≤ |A| ≤ m/2. If (G1, G2) ∈ X and G2 ∈ Bn+1 then G1 ∈ Bn. Indeed
A,B ∩ [n] is a witness in G1. Applying (99) and (83) we see that whp Bn fails to occur. Now
let B′j be the property that G ∈ G(j,m) contains a minimal witness A,B with A ⊆ R,n9/10 ≤
|A|, |B| ≤ min{|A| − (j −m),m/2}. If (G1, G2) ∈ X and G2 has a witness A,B with A ⊆ R and
m/2 < |A| ≤ m−n9/10 then G2 ∈ B′m. Indeed A′ = L \B,B′ = R \A is also a witness in G2. Now
if G2 ∈ B′m with a witness A′, B′ then A′ ∩ [n], B′ is a witness in G1 and so contains a minimal
witness A′′, B′′ where |A′′| > |B′′|+ n−m > n9/10 i.e. G1 ∈ B′m−1. Applying (99) and (82) we see
that whp B′m fails to occur. This deals with medium witnesses.
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