Vertex covers by edge disjoint cliques

Tom Bohman Alan Frieze* Miklós Ruszinkó † Lubos Thoma ‡

Department of Mathematical Sciences, Carnegie Mellon University.

June 6, 2000

Abstract

Let H be a simple graph having no isolated vertices. An (H, k)-vertex-cover of a simple graph G = (V, E) is a collection H_1, \ldots, H_r of subgraphs of G satisfying

- 1. $H_i \cong H$, for all $i = 1, \ldots, r$,
- **2.** $\cup_{i=1}^{r} V(H_i) = V$,
- **3.** $E(H_i) \cap E(H_j) = \emptyset$, for all $i \neq j$, and
- **4.** each $v \in V$ is in at most k of the H_i .

We consider the existence of such vertex covers when H is a complete graph, $K_t, t \geq 3$, in the context of extremal and random graphs.

1 Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this discussion we say that the simple graph G = (V, E) has property $\mathcal{C}_{H,k}$ if there is a collection H_1, \ldots, H_r of subgraphs of G satisfying

P1.
$$H_i \cong H$$
, for all $i = 1, \ldots, r$,

P2.
$$\bigcup_{i=1}^{r} V(H_i) = V$$
,

P3.
$$E(H_i) \cap E(H_j) = \emptyset$$
, for all $i \neq j$, and

P4. each $v \in V$ is in at most k of the H_i .

^{*}Supported in part by NSF grant CCR-9530974.

[†]Permanent Address: Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, P.O.Box 63, Hungary-1518.

Research was partially supported by OTKA Grants T 030059 and T 29074, FKFP 0607/1999 and by the Bolyai Foundation

[‡]Supported in part by NSF grant DMS-9970622.

We call the family $\{H_1, \ldots, H_r\}$ an (H, k)-vertex-cover of G. Thus when k = 1 we ask for the existence of a partition of V into vertex disjoint copies of H i.e. the existence of an H-factor. In this case we assume the necessary divisibility condition, i.e. that |V(H)| divides |V|. We study this property when G is a random graph and also when G is extremal w.r.t. minimum degree. In the main we will focus on the case where H is a complete graph K_t and denote our property by $\mathcal{C}_{t,k}$.

Random Graphs. The precise threshold for the occurrence of $C_{2,1}$ i.e. the existence of a perfect matching was found by Erdős and Rényi [7] as part of a series of papers which laid the foundations of the theory of random graphs. The precise threshold for the occurrence of $C_{3,1}$ i.e the existence of a vertex partition into triangles remains as one of the most challenging problems in this area (see, for example, the Appendix by Erdős to the monograph by Alon and Spencer [1]).

The thresholds for H-factors have been studied for example by Ruciński [15] and by Alon and Yuster [3]. For a graph H, let

$$m_1(H) = \max\Bigl(rac{|E(H')|}{|V(H')|-1}\Bigr)$$

where the maximum is taken over all subgraphs H' of the graph H with at least two vertices. In [15], Ruciński showed that the probability $p(n) = O(n^{-1/m_1(H)})$ is a sharp threshold for the property $\mathcal{C}_{H,1}$ for any graph H such that $m_1(H) > \delta(H)$ where $\delta(H)$ stands, as usual, for the minimum degree of the graph H. Note that, for example, H being a complete graph is excluded. Hence, the first interesting open case is $H = K_3$. In [11], Krivelevich showed that the probability $p(n) = O(n^{-3/5})$ is enough for the random graph to have a K_3 -factor \mathbf{whp}^1 and, in general, if $p(n) = O(n^{-2t/(t-1)(t+2)})$ then the random graph $G_{n,p}$ contains a K_t -factor \mathbf{whp} (provided t divides n).

An obvious necessary condition for the existence of a (K_t, k) -vertex-cover is that every vertex be incident with at least one copy of K_t .

Theorem 1. Let
$$m = {n \choose 2} ((t-1)! (\log n + c_n))^{1/{t \choose 2}} n^{-2/t}$$
. Then

$$\lim_{n\to\infty} \mathbf{Pr}(G_{n,m} \ contains \ a \ (K_t,2)\text{-}vertex\text{-}cover) = \left\{ \begin{array}{ll} 0 & c_n\to -\infty \\ e^{-e^{-c}} & c_n\to c \\ 1 & c_n\to \infty \end{array} \right.$$

(Here, $G_{n,m}$ stands for the probability space over the set of all graphs on n vertices and with m edges endowed with the uniform probability measure.) We will prove this as a consequence of the slightly stronger hitting time version. We consider the graph process $G_m = ([n], E_m), m = 0, 1, \ldots, \binom{n}{2}$, where $E_0 = \emptyset$ and G_m is obtained from G_{m-1} by choosing e_m randomly from $\binom{[n]}{2} \setminus E_{m-1}$ and putting

A sequence of events \mathcal{E}_n occurs with high probability, whp, if $\mathbf{Pr}(\mathcal{E}_n) = 1 - o(1)$.

 $E_m = E_{m-1} \cup \{e_m\}$. We define two hitting times:

 $au_1 = au_1(t) = \min\{m : \text{ Every } v \in [n] \text{ is contained in a copy of } K_t \text{ in } G_m\}$

 $au_2 = au_2(t) = \min\{m: G_m \text{ contains a } (K_t, 2)\text{-vertex-cover}\}.$

Theorem 2. For every fixed $t \geq 3$,

$$\lim_{n\to\infty}\mathbf{Pr}(\tau_1=\tau_2)=1.$$

Moreover, there exists whp a $(K_t, 2)$ -vertex-cover of G_{τ_2} containing $(1 + o(1))\frac{n}{t}$ copies of K_t .

Remark 1. In fact, our proof of Theorem 2 implies that G_{τ_2} possesses **whp** a $(K_t, 2)$ -vertex-cover containing at most $\left(\frac{1}{t} + \frac{1}{(\log n)^{1/t}}\right)n$ copies of K_t .

Remark 2. Theorem 2 lends weight to the common conjecture that the threshold for a K_t -factor is m of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2 in Section 3.

Extremal Graphs. For a graph G on n vertices what is the smallest minimum degree that insures G has $C_{t,k}$? For $t \geq 3$ and $k \geq 2$ let

$$f(n,t,k) = \max\{d: \exists G \text{ such that } \delta(G) = d, |V(G)| = n \text{ and } G \not\in \mathcal{C}_{t,k}\}.$$

We will assume that n is large with respect to t, but k can be arbitrarily large. The smallest minimum degree that guarantees a K_t -factor (this would be, up to divisibility considerations, f(n,t,1)+1) was established in the following deep theorem of Hajnal and Szemerédi [9].

Theorem 3 (Hajnal, Szemerédi). If |V(G)| = n and $\delta(G) \ge (1 - \frac{1}{t})n$ then G contains |n/t| vertex-disjoint copies of K_t .

Our central result in this section is the following:

Theorem 4. Let $t \geq 3$, $k \geq 2$, $n \geq 6t^2 - 4t$ and

$$n = q[(t-1)k+1] + r \text{ where } 1 \le r \le (t-1)k+1.$$

Then

$$\left| n - qk - \left\lceil rac{r}{t-1}
ight
ceil \leq f(n,t,k) \leq n - qk - - \left\lceil rac{r}{t-1}
ight
ceil + 1 \; .$$

Note that it follows from Theorem 4 that

$$f(n,t,k) = \left\lfloor \frac{[(t-2)k+1]n}{(t-1)k+1} \right\rfloor + c \tag{1}$$

where $c \in \{0,1,2\}$. It is tempting to believe that f(n,t,k) equals the lower bound given in Theorem 4. This is not the case in general.

Theorem 5. Let $n \ge 6$ and $k \ge (n-1)/2$.

$$f(n,3,k) = \left\lceil \frac{n}{2} \right\rceil.$$

Note that the value of f(n,3,k) given in Theorem 5 equals the lower bound in Theorem 4 for n even, but equals the upper bound for n odd. (Here q=0 and r=n).

For H a simple graph with no isolated vertices and G an arbitrary graph an (H,∞) -vertex-cover of G is a collection H_1,\ldots,H_r of subgraphs of G satisfying P1, P2 and P3. Thus, G has an (H, ∞) -vertex-cover if and only if there exists a k such that G has a (H,k)-vertex-cover. To motivate our results on (H,∞) vertex-covers, we recall the following well-known extension of Theorem 3. Given an arbitrary graph H, Komlós, Sárközy and Szemerédi [13] showed that there is a constant c (depending only on the graph H) such that if $\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n$ for a graph G on n vertices, then there is a union of vertex-disjoint copies of H covering all but at most c vertices of G. Weakening the condition on $\delta(G)$ we show in the following theorem the existence of (H, ∞) -vertex-covers for graphs H having the property that there is a vertex u of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1 \geq 3$.

Theorem 6. Let H be a graph such that $\chi(H) \geq 4$ and such that there is a vertex u of H with the property that $\chi(H \setminus \{u\}) = \chi(H) - 1$. Then for every $\epsilon > 0$ and every graph G on n vertices, if $\delta(G) \geq \left(1 - \frac{1}{\chi(H) - 1} + \epsilon\right)n$, then G has an (H, ∞) -vertex-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

$\mathbf{2}$ Proof of Theorem 2

In this section we will use the following Chernoff bounds on the tails of the binomial random variable B(n, p). For $0 \le \epsilon \le 1$ and $\theta > 0$

$$\mathbf{Pr}(B(n,p) \le (1-\epsilon)np) \le e^{-\epsilon^2 np/2} \tag{2}$$

$$\mathbf{Pr}(B(n,p) \le (1-\epsilon)np) \le e^{-\epsilon^2 np/2}$$

$$\mathbf{Pr}(B(n,p) \ge (1+\epsilon)np) \le e^{-\epsilon^2 np/3}$$

$$\mathbf{Pr}(B(n,p) \ge \theta np) \le (e/\theta)^{\theta np}$$
(2)
(3)

$$\mathbf{Pr}(B(n,p) \ge \theta np) \le (e/\theta)^{\theta np} \tag{4}$$

All Lemmas introduced in this section will be proven in the subsections that follow.

Let $t \geq 3$ be fixed. We construct a $(K_t, 2)$ -vertex-cover in G_m by dividing our graph process into 3 phases and using edges from different phases for different purposes. Before describing the phases, we make some preliminary definitions and the observation that we may restrict our attention to G_m where m lies in a small interval. Let $\alpha, \beta > 0$ be constants such that

$$\beta^{\binom{t}{2}} > 19/20 \text{ and } \alpha + \beta < 1,$$

and let

$$m_a = lpha inom{n}{2} ((t-1)! \log n)^{1/\binom{t}{2}} n^{-2/t}, ext{ and }$$
 $m_b = eta inom{n}{2} ((t-1)! \log n)^{1/\binom{t}{2}} n^{-2/t}.$

Furthermore, for i = 0, 1 let

$$m_i = \binom{n}{2} ((t-1)! (\log n - (1-2i) \log \log n))^{1/\binom{t}{2}} n^{-2/t}.$$

Lemma 1.

$$\mathbf{Pr}(\tau_1 \notin [m_0, m_1]) = o(1)$$
.

We will use the term 'a collection of K_t 's' in the graph G, for a family $\mathcal{A} \subseteq \binom{V(G)}{t}$ such that G[S] is complete for all $S \in \mathcal{A}$. For such a collection \mathcal{A} we set

$$V(\mathcal{A}) = igcup_{S \in \mathcal{A}} S \quad ext{ and } \quad E(\mathcal{A}) = igcup_{S \in \mathcal{A}} igg(rac{S}{2}igg),$$

say \mathcal{A} 'covers' a vertex v if $v \in V(\mathcal{A})$, and say \mathcal{A} 'covers' a set of vertices T if $T \subseteq V(\mathcal{A})$.

We are now ready to describe the 3 phases. In the first phase we simply choose m_a edges uniformly at random, producing the graph $G^1 = ([n], E^1)$. Thus,

$$G^1 = G_{n.m_a}$$
.

In the second phase we form the graph $G^2 = ([n], E^2)$ by choosing m_b edges uniformly at random. This is done independently of phase 1 and without knowledge of which edges were placed in phase 1. Thus,

$$G^2 = G_{n,m_b},$$

and a particular edge may appear in both G^1 and G^2 . Let $F = E^1 \cup E^2$ and $m_{-1} = |F|$. The third phase is the graph process $H_i = ([n], F_i), i = m_{-1}, \ldots, m_1$ where $F_{m_{-1}} = F$ and F_{i+1} is the union of F_i and the set containing a single edge chosen uniformly at random from $\binom{n}{2} \setminus F_i$. In other words, in the third phase we start with the collection of edges generated in phases 1 and 2 and then add new edges one at time until m_1 edges have been placed. Note that for $m_a + m_b \leq i \leq m_1$ the graphs G_i and H_i are identically distributed.

We henceforth assume that

$$m_a + m_b \leq m \leq m_1$$

and that every vertex in $H_m = G_m$ lies in at least one copy of K_t . We will show that

whp
$$G_m$$
 has a $(K_t, 2)$ -vertex-cover. (5)

Theorem 2 follows from (5) and Lemma 1.

How do we construct the $(K_t, 2)$ -vertex-cover? We first use the phase one edges to greedily cover as many vertices as possible with vertex disjoint K_t 's. Let Ξ be an arbitrary maximal collection of vertex disjoint K_t 's in G^1 , $X \subseteq [n]$ be the set of vertices not covered by Ξ , and

$$r = \left\lceil \frac{n}{(\log n)^{1/t}} \right\rceil.$$

We can easily randomise this choice of K_t 's so that X is a random |X|-subset of [n]. This will be used in the proof of Lemma 4.

Lemma 2. Let $G = G_{n,m_a}$.

$$\mathbf{Pr}(\exists R \subset [n] \ \textit{such that} \ |R| = r \ \textit{and} \ G[R] \ \textit{contains no} \ K_t$$
's) = $o(1)$.

It follows from Lemma 2 that whp

$$|X| \le r. \tag{6}$$

In other words, after using only a small fraction of the edges in G_m , only o(n) vertices remain to be covered. We will use the phase 2 edges (as well as a handful of the phase 1 and phase 3 edges) to form a vertex disjoint collection of K_t 's that covers X but does not use any edge in $E(\Xi)$.

Before describing the vertex disjoint collection of K_t 's that covers X, we make further definitions and preliminary observations. Our first observation concerns the random graph process G_{m_1} alone. Let $\nu_3 = 4$, $\nu_4 = 3$ and $\nu_i = 2$ for $i = 5, 6, \ldots$. We define a *cluster* to be a collection $\mathcal{C} = \{S_1, \ldots, S_l\}$ of K_t 's in G_{m_1} such that $l \leq 2\nu_t$

$$egin{aligned} \kappa_i &\geq 1 & ext{for} & i=2,\ldots,l \ \kappa_i &= t &\Rightarrow & \kappa_{i-1} = 1 & \wedge & |S_i \cap S_{i-1}| \geq 2 \ & ext{and} & |\{i: \kappa_i
eq 1\}| =
u_t \end{aligned}$$

where

$$\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad ext{ for } \quad i = 2, \dots, l.$$

Roughly speaking, a cluster is a small collection of K_t 's that have many or large pairwise intersections.

Lemma 3.

$$\mathbf{Pr}(G_{m_1} \ contains \ a \ cluster) = o(1).$$

We now turn our attention to the graph G^2 . For $v \in [n]$ let Υ_v be the collection of K_t 's in G^2 that contain v; to be precise,

$$\Upsilon_v = \left\{ S \in {[n] \choose t} : v \in S \text{ and } {S \choose 2} \subseteq E^2 \right\}.$$

Since Υ_v depends only on the graph G^2 while X is small and depends only on the graph G^1 , it is usually the case that no $V(\Upsilon_v)$ contains many members of X. To make this statement precise, we let

$$q = \left\lceil \frac{\log n}{\log \log \log n} \right\rceil.$$

Lemma 4.

$$\mathbf{Pr}(\exists v \in [n] \ such \ that \ |V(\Upsilon_v) \cap X| > q) = o(1).$$

We say that

$$v \in [n]$$
 is $large$ if $|\Upsilon_v| \ge \frac{\log n}{20}$, and $v \in [n]$ is $small$ if $|\Upsilon_v| < \frac{\log n}{20}$.

With high probability the small vertices are, with respect to connections via K_t 's, far apart. To make this statement precise, we define a *chain* to be a pair u, v of distinct small vertices and a collection $S_1, S_2, S_3, S_4 \in {[n] \choose t}$ of (not necessarily distinct) sets such that $u \in S_1, v \in S_4$,

$$S_1 \cap S_2, S_2 \cap S_3, S_3 \cap S_4 \neq \emptyset, \quad \text{ and } \quad {S_i \choose 2} \subseteq E(G_{m_1}) \text{ for } i = 1, 2, 3, 4.$$

Lemma 5.

$$\mathbf{Pr}(G_{m_1} \ contains \ a \ chain) = o(1).$$

We also note that no K_t containing a small vertex intersects any other K_t in more than a single vertex. A link is a small vertex $u \in [n]$ and distinct $S_1, S_2 \in {[n] \choose t}$ such that $u \in S_1, |S_1 \cap S_2| \ge 2$, and ${S_1 \choose 2}, {S_2 \choose 2} \subseteq E(G_{m_1})$.

Lemma 6.

$$\mathbf{Pr}(G_{m_1} \ contains \ a \ link) = o(1).$$

Finally, let

$$X_1 = \{v \in X : v ext{ is small}\}, \ X_2 = \{v \in X : v ext{ is large}\}, ext{ and} \ \Phi = \left\{S \in {[n] \choose t} : {S \choose 2} \subseteq E(G_{m_1}) ext{ and } S \cap X_1 \neq \emptyset
ight\}.$$

We are now prepared to describe the remainder of the $(K_t, 2)$ -cover.

We henceforth assume (6),

$$G_{m_1}$$
 does not contain a cluster, (7)

$$\forall v \in [n] \quad |V(\Upsilon_v) \cap X| \le q,\tag{8}$$

$$G_{m_1}$$
 does not contain a chain, (9)

$$G_{m_1}$$
 does not contain a link, (10)

and that n is sufficiently large (in a sense that is made clear below). We will show that there exist collections Ξ_1 and Ξ_2 of vertex disjoint K_t 's in G_m such that $\Xi_1 \cup \Xi_2$ covers $X_1 \cup X_2$ and

$$V(\Xi_1) \cap V(\Xi_2) = \emptyset \text{ and } E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset.$$
 (11)

If follows from Lemmas 1, 2, 3, 4, 5 and 6 that (11) implies Theorem 2.

We cover X_1 in a rather crude way. Let Ξ_1 be an arbitrary collection of K_t 's in G_m that covers X_1 . Note that the collection Ξ_1 uses edges from all 3 phases and that we make use of the fact that every vertex is contained in some K_t in G_m when forming Ξ_1 . By (9), Ξ_1 is vertex disjoint.

We cover

$$X_2' := X_2 \backslash V(\Xi_1)$$

in a more sophisticated way: we apply the Lovász Local Lemma. We first 'trim' the Υ_v 's. For $v \in X_2'$ let Υ_v' be the collection of sets in $S \in \Upsilon_v$ such that

$$S \cap X = \{v\}$$

$$T \in {[n] \choose t} \wedge {T \choose 2} \subseteq E(G_{m_1}) \Rightarrow |S \cap T| \le 1, \quad \text{and} \quad (12)$$

$$S \cap V(\Phi) \subseteq \{v\}.$$

In words, we get Υ'_v from Υ_v by throwing away those sets in Υ_v that contain an element of X other than v, intersect another K_t in more than one vertex, or contain a vertex of a K_t that contains a small vertex. By (8) there are at most q sets in Υ_v that contain an element of X other than v. We will show

there are
$$\leq {2\nu_t t \choose t}$$
 sets in Υ_v that intersect another K_t in ≥ 2 vertices. (13)

By (9) at most 1 set in Υ_v intersects $V(\Phi)$. Therefore, we may choose $\Theta_v \subseteq \Upsilon'_v$ such that

$$|\Theta_v| = \left\lceil \frac{\log n}{21} \right\rceil \quad \text{for all} \quad v \in X_2'.$$
 (14)

Proof of (13) Let $\hat{\Upsilon}_v$ denote the collection of K_t 's in Υ_v which intersect another K_t in more than one vertex. Let $B = V(\hat{\Upsilon}_v)$. We construct copies X_1, X_2, \ldots, X_l

of K_t in G_{m_1} as follows: Suppose we have constructed X_1, X_2, \ldots, X_k . Either (i) $B \subseteq V_k = V(X_1 \cup X_2 \cup \cdots \cup X_k)$ or (ii) $B \not\subseteq V_k$. In case (ii) choose $X_{k+1} \in \Upsilon_v$ which is not contained in V_k . If $|X_{k+1} \cap V_k| = 1$ then choose X_{k+2} where $|X_{k+2} \cap X_{k+1}| \geq 2$. If this process continues for ν_t iterations we will have produced a cluster. Thus $l \leq 2\nu_t$ and $|B| \leq 2t\nu_t$, which implies (13).

Now, consider the probability space in which each $v \in X_2'$ chooses $S_v \in \Theta_v$ uniformly at random and independently of the other vertices. For $u \neq v \in X_2'$, $S \in \Theta_u$ and $T \in \Theta_v$ such that $S \cap T \neq \emptyset$ let $A_{u,v,S,T}$ be the event that $S_u = S$ and $S_v = T$. These are the 'bad' events in our application of the Lovász Local Lemma. Clearly,

$$\mathbf{Pr}(A_{u,v,S,T}) = \frac{1}{|\Theta_v||\Theta_u|} \le \left(\frac{21}{\log n}\right)^2 =: p. \tag{15}$$

Events A_{u_1,u_2,S_1,S_2} and A_{v_1,v_2,T_1,T_2} are dependent if and only if

$$\{u_1,u_2\}\cap\{v_1,v_2\}\neq\emptyset.$$

Thus, the degree in the dependency graph is bounded above by

$$d := 2 \max_{u \in X_{2}'} \sum_{S \in \Theta_{u}} \sum_{v \in X_{2}'} |\{T \in \Theta_{v} : S \cap T \neq \emptyset\}|$$

$$\leq 2 \max_{u \in X_{2}'} \sum_{w \in V(\Theta_{u})} |\Upsilon_{w} \cap X|$$

$$\leq 2tq \left\lceil \frac{\log n}{21} \right\rceil \qquad \text{by (8)}$$

$$\leq \frac{t(\log n)^{2}}{10 \log \log \log n}.$$

$$(16)$$

It follows from (15) and (16) that

$$pd \le \frac{45}{\log\log\log n} = o(1).$$

Thus, for n sufficiently large, it follows from the Lovász Local Lemma that there exists a vertex disjoint collection Ξ_2 of K_t 's in G^2 that covers X_2' but covers no vertex in $V(\Xi_1)$.

It remains to show that

$$E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset.$$

This is an immediate consequence of (10) and (12). We have established (11) and completed the proof.

2.1 Proof of Lemma 1

Let
$$p_i = m_i / \binom{n}{2}$$
 for $i = 0, 1$.

We first apply Janson's inequality to show that **whp** every vertex in G_{n,p_1} is contained in a copy of K_t (we follow the notation of [1, pages 95 and 96]). Let v be a fixed vertex and let and Z denote the number of copies of K_t in G which are incident with v. Next let $S_1, S_2, \ldots, S_{\binom{n-1}{t-1}}$ be an enumeration of the copies of K_t in K_n which contain v. Letting B_j be the event $\binom{S_j}{2} \subseteq E(G_{n,p_i})$, we have

$$\mu = \sum_{j=1}^{\binom{n-1}{t-1}} \mathbf{Pr}(B_j) = \binom{n-1}{t-1} p_1^{\binom{t}{2}} = (\log n + \log \log n)(1 + O(1/n))$$
(17)

and

$$\Delta = \sum_{|S_{j} \cap S_{k}| \geq 2} \mathbf{Pr}(B_{j} \cap B_{k})$$

$$= \binom{n-1}{t-1} \sum_{r=2}^{t-1} \binom{t-1}{r-1} \binom{n-t}{t-r} p_{i}^{2\binom{t}{2} - \binom{r}{2}}$$

$$= O\left(\sum_{r=2}^{t-1} n^{2t-r-1-\frac{2}{t}(2\binom{t}{2} - \binom{r}{2}) + o(1)}\right)$$

$$= O(n^{2t^{-1}-1+o(1)}).$$
(18)

Then, by Janson's inequality, we have

$$\mathbf{Pr}(Z=0) \le \exp\left\{-\mu + \frac{1}{1-\epsilon} \frac{\Delta}{2}\right\} \\
= \frac{1}{n \log n} \exp\left\{O(n^{-1+o(1)}) + O(n^{2t^{-1}-1+o(1)})\right\} \\
= o(1/n). \tag{19}$$

It follows that

$$\mathbf{Pr}(\exists u \in [n]: u \text{ is not contained in a copy of } K_t \text{ in } G_{n,p_1}) = o(1).$$
 (20)

The event $\{\exists u \in [n] : u \text{ is not contained in a copy of } K_t\}$ is monotone decreasing and so (20) implies that **whp** every vertex in [n] is contained in a copy of K_t in G_{n,m_1} . In other words, $\tau_1 \leq m_1$ **whp**.

We now turn to the random graph G_{n,p_0} in order to establish our almost sure lower bound on τ_1 . For $v \in [n]$ let Z_v be the number of K_t 's in G_{n,p_0} that contain v, and let Y denote the number of vertices v such that $Z_v = 0$. Since

$$M = (1 - p_0)^{\binom{n-1}{t-1}} = (1 + o(1)) \frac{\log n}{n}$$
 (21)

is a lower bound on $\mathbf{Pr}(Z_v = 0)$ for each $v \in [n]$, we have

$$\mathbf{E}(Y) \ge (1 + o(1)) \log n. \tag{22}$$

We now show that Var(Y) is small. Indeed,

$$\mathbf{Pr}(Z_1 = Z_2 = 0) \le \mathbf{Pr}(\mathcal{E}_1) + \mathbf{Pr}(\bar{\mathcal{E}}_2\bar{\mathcal{E}}_3 \mid \bar{\mathcal{E}}_1)$$
 (23)

where, if N_i is the set of neighbors of i in G_{n,p_0} ,

Applying (2)–(4) we get,

$$\mathbf{Pr}(\mathcal{E}_1) \le 5 \exp\left\{-n^{1-\frac{5}{2t}+o(1)}\right\}.$$

Note that

$$\mathbf{Pr}(\overline{\mathcal{E}_2} \wedge \overline{\mathcal{E}_3}|N_1,N_2) = \mathbf{Pr}(\overline{\mathcal{E}_2}|N_1,N_2)\mathbf{Pr}(\overline{\mathcal{E}_3}|N_1,N_2)$$

because, conditioning on N_1 and N_2 , these events depend on disjoint sets of edges. Let W_1 and W_2 be fixed sets that satisfy

$$\left(1-rac{1}{n^{rac{1}{4t}}}
ight)np_0 \leq |W_1| \leq 2np_0 \,\, ext{and}\,\,\left(1-rac{2}{n^{rac{1}{4t}}}
ight) \leq |W_2\setminus W_1| \leq 2np_0.$$

It follows from another application of Janson's inequality that

$$\begin{split} \mathbf{Pr}(\overline{\mathcal{E}_2}|N_1 = W_1, N_2 \setminus N_1 = W_2), \mathbf{Pr}(\overline{\mathcal{E}_3}|N_1 = W_1, N_2 \setminus N_1 = W_2) \\ \leq \exp\left\{-\log n + \log\log n + O(n^{-\frac{1}{4t} + o(1)}) + O(n^{-1 + \frac{2}{t} + o(1)})\right\}. \end{split}$$

Therefore,

$$\mathbf{Pr}(Z_1=Z_2=0)=rac{\log^2 n}{n^2}(1+o(1)),$$

and it follows from (21) that

$$\mathbf{Var}(Y) = o(\log^2 n).$$

It then follows from Chebyshev's inequality that

$$\mathbf{Pr}(Y=0) = o(1). \tag{24}$$

Since the event $\{Y = 0\}$ is monotone increasing, it follows from (24) that

 $\mathbf{Pr}(\text{every vertex in } G_{n,m_0} \text{ is contained in a copy of } K_t) = o(1).$

In other words, we have shown that **whp** $\tau_1 > m_0$.

2.2 Proof of Lemma 2

Let $p_a = m_a/\binom{n}{2}$ and consider the random graph $G = G_{n,p_a}$. For $S \in \binom{[n]}{t}$ let B_S be the event that the induced graph G[S] is complete. For R a fixed subset of [n] such that

$$|R| = r = \left\lceil rac{n}{(\log n)^{1/t}}
ight
ceil$$

let the random variable X_R be the number of copies of K_t contained in R. We clearly have

$$egin{aligned} \mu &:= \mathbf{E}[X_R] \ &= \sum_{S \in {R \choose t}} \mathbf{Pr}(B_S) \ &= {r \choose t} p_a^{{t \choose 2}} \ &= {r \choose t} rac{lpha^{{t \choose 2}}(t-1)! \log n}{n^{t-1}} \ &= rac{r^t}{t!} \left(1 + O(1/r)\right) rac{lpha^{{t \choose 2}}(t-1)!}{n^{t-1}} \log n \ &= \Omega(n) \end{aligned}$$

We apply Janson's inequality (again, we follow the notation of [1]) to show that $\mathbf{Pr}(X_R = 0)$ is small. In order to do so, we must bound the parameter Δ .

$$egin{aligned} \Delta &= \sum_{S,T \in inom{R}{t}: 2 \leq |S \cap T| \leq t-1} \mathbf{Pr}(B_S \wedge B_T) \ &= inom{r}{t} \sum_{i=2}^{t-1} inom{t}{i} inom{r-t}{t-i} p_a^{2inom{t}{2}-inom{i}{2}} - inom{i}{2} \ &= \sum_{i=2}^{t-1} O\left(n^{2t-i-rac{2}{t}inom{2}{t}-inom{i}{2$$

Thus, Janson's inequality gives

$$\mathbf{Pr}(X_R = 0) \le e^{-c_1 n}$$

where c_1 is a positive constant. Applying the first moment method, we have

$$\mathbf{Pr}\left(\bigvee_{R\in\binom{[n]}{r}}\{X_R=0\}\right) \le \binom{n}{r}e^{-c_1n}$$

$$\le \left(\frac{ne}{r}\right)^r e^{-c_1n}$$

$$= \exp\left\{r\left(1 + \frac{\log\log n}{t}\right) - c_1n\right\}$$

$$= o(1)$$

Since this event is monotone, the same holds for G_{n,m_a} .

2.3 Proof of Lemma 3

Let $\mathcal{C} = \{S_1, \dots, S_l\}$ be a fixed collection of K_t 's in K_n such that $l \leq 2\nu_t$

$$\kappa_{i} \geq 1 \quad \text{for} \quad i = 2, \dots, l
\kappa_{i} = t \quad \Rightarrow \quad \kappa_{i-1} = 1 \quad \land \quad |S_{i} \cap S_{i-1}| \geq 2
\quad \text{and} \quad |\{i : \kappa_{i} \neq 1\}| = \nu_{t}$$
(25)

where

$$\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad ext{ for } \quad i = 2, \dots, l.$$

Let $a = |V(\mathcal{C})|$ and $b = |E(\mathcal{C})|$.

Claim 7.

$$a - \frac{2b}{t} < -\frac{1}{t}$$

Proof. We observe this difference as we 'build' the collection \mathcal{C} one K_t at a time. For $j=1,\ldots,l$ let $\mathcal{C}_j=\{S_1,\ldots,S_j\},\ a_j=|V(\mathcal{C}_j)|,\ b_j=|E(\mathcal{C}_j)|$ and $d_j=a_j-2b_j/t$. Note that

$$d_1 = 1,$$

and

$$d_{i+1} - d_i \le (t - \kappa_{i+1}) - \frac{2}{t} \left(\binom{t}{2} - \binom{\kappa_{i+1}}{2} \right) = (\kappa_{i+1} - 1) \left(\frac{\kappa_{i+1}}{t} - 1 \right). \tag{27}$$

Thus

$$\kappa_{i+1} = 1 \quad \Rightarrow \quad d_{i+1} - d_i = 0$$
and
$$2 \le \kappa_{i+1} \le t - 1 \quad \Rightarrow \quad d_{i+1} - d_i \le \frac{2}{t} - 1.$$
 (28)

Furthermore, it follows from (25) that

$$\kappa_{i+1} = t \quad \Rightarrow \quad b_{i+1} \ge b_i + t - 2 \quad \Rightarrow \quad d_{i+1} - d_i \le -\frac{2(t-2)}{t}.$$
(29)

Since (by (28) and (29)) the difference $a_i - 2b_i/t$ decreases by at least 1 - 2/t whenever $\kappa_{i+1} \neq 1$, it follows from (26) that $a - 2b/t = d_l < -1/t$.

Let \mathcal{E}_i be the event that there exists a cluster in G_{m_1} with a vertex set of cardinality i, and let b_i be the minimum number of edges in a cluster on i vertices. With $p_{m_1} = m_1/\binom{n}{2}$ we have

$$\mathbf{Pr}(\mathcal{E}_i) \le \binom{n}{i} 2^{\binom{i}{t}} p_{m_1}^{b_i}$$

$$= O\left(n^{i - \frac{2b_i}{t} + o(1)}\right)$$

$$= O(n^{-\frac{1}{t} + o(1)}).$$

The lemma then follows from the fact that the cardinality of the vertex set of a cluster is at most $2\nu_t t$, a constant depending only on t.

2.4 Proof of Lemma 4

We first argue that \mathbf{whp}

$$|\Upsilon_v| \le 4 \log n \quad \text{for all } v \in [n].$$
 (30)

We can calculate in G_{n,p_b} where $p_b = m_b/N$, $N = \binom{n}{2}$ and then use monotonicity to translate the result to G^2 . It follows from Lemma 3 and (13) that **whp** after removing O(1) K_t 's from Υ_v we have a collection $\tilde{\Upsilon}_v$ of K_t 's which are disjoint except for there containing v. So in G_{n,p_b}

$$\mathbf{Pr}(|\tilde{\Upsilon}_v| \ge \kappa = 3.9 \log n) \le \frac{\binom{n-1}{t-1}^{\kappa}}{\kappa!} p_b^{\kappa \binom{t}{2}} \le \frac{(\log n)^{\kappa}}{\kappa!} \le (e/3.9)^{3.9 \log n} = o(n^{-3/2}).$$

This verifies (30).

Now fix a vertex v. Then $|V(\Upsilon_v)| < 4t \log n$ and $|X| \le r$. Also, X and $V(\Upsilon_v)$ are chosen independently. It follows that

$$\begin{aligned} \mathbf{Pr}(|V(\Upsilon_v) \cap X| \geq q) &\leq \frac{\binom{4t \log n}{q} \binom{n-q}{r-q}}{\binom{n}{r}} \\ &\leq \left(\frac{4ter \log n}{qn}\right)^q \\ &\leq \left(\frac{4te \log \log \log n \log n}{(\log n)^{(t+1)/t}}\right)^{\log n/\log \log n \log n} \\ &= O(n^{-A}) \end{aligned}$$

for any constant A > 0.

There are n choices for v and the lemma follows.

2.5 Proof of Lemmas 5 and 6

Let

$$p = ((t-1)! \log n)^{1/\binom{t}{2}} n^{-2/t}$$
 and $p_{m_1} = \frac{m_1}{\binom{n}{2}}$.

The main work of this section is the following claim.

Claim 8. Let H = (A, B) be a fixed graph whose vertex set A is a subset of [n], and let $x, y \in A$ be distinct fixed vertices. If b := |B| and $a := |A| \le 4t$ then

1.
$$\mathbf{Pr}((x \ is \ small \) \land (H \subseteq G_{m_1})) = O(p_{m_1}^b n^{-3/4})$$

2.
$$\mathbf{Pr}\left((x \ and \ y \ are \ small\right) \wedge (H \subseteq G_{m_1})\right) = O(p_{m_1}^b n^{-3/2})$$

Proof. We only prove 2; the proof of 1 is both similar and easier. Let \mathcal{R}_x be the event that x is small, \mathcal{R}_y be the event that y is small, and let \mathcal{R}_H be the event $B \subseteq E(G_{m_1})$. Furthermore, let

$$N_x = \{v \in [n] : x \sim_{G^2} v\} \setminus A$$
 and $N_y = \{v \in [n] : y \sim_{G^2} v\} \setminus (A \cup N_x),$

 G_x be the induced graph $G^2[N_x]$, and $G_y=G^2[N_y]$. Finally, let $\epsilon>0$ be a constant such that

$$\beta + \epsilon < 1 \text{ and } (\beta - \epsilon)^{\binom{t}{2}} \ge \frac{3}{4} + \frac{1}{20}(1 + \log 20).$$
 (31)

Case 1. t = 3

We condition on the event that N_x and N_y are of nearly the expected size. Let \mathcal{R}_1 be the event that

$$(\beta - \epsilon)np \le |N_x|, |N_y| \le (\beta + \epsilon)np, \tag{32}$$

and \mathcal{R}_2 be the event that

$$|E(G_x)|, |E(G_y)| \le \frac{\log n}{20}.$$
 (33)

We have

$$\mathbf{Pr}(\mathcal{R}_H \wedge \mathcal{R}_x \wedge \mathcal{R}_y) \leq \mathbf{Pr}(\mathcal{R}_2 | \mathcal{R}_1 \wedge \mathcal{R}_H) \mathbf{Pr}(\mathcal{R}_H) + \mathbf{Pr}(\overline{\mathcal{R}_1}). \tag{34}$$

Now the Chernoff bounds show that in $G_{n,p_{m_1}}$ we have

$$\mathbf{Pr}(\bar{\mathcal{R}}_1) = O(\exp\{-n^{1-\frac{2}{t}+o(1)}\}),\tag{35}$$

and we can inflate this by O(n) to show the same for G_{m_1} .

Then, where $N = \binom{n}{2}$

$$\mathbf{Pr}(\mathcal{R}_{H}) \leq {\binom{\binom{a}{2}}{b}} {\binom{N-b}{m_{1}-b}} / {\binom{N}{m_{1}}}$$

$$= O(p_{m_{1}}^{b}). \tag{36}$$

To bound $\mathbf{Pr}(\mathcal{R}_2)$ we condition on $N_x = S, N_y = T$ satisfying (32), where S, T are fixed subsets of [n]. Now let $\hat{\mathcal{R}}_2$ denote the event

$$|E(S)|, |E(T)| \le \frac{\log n}{20}.$$

We show that for $\gamma \geq \beta - \epsilon$, in $G_{n,\gamma p}$ we have

$$\mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) = O(n^{-3/2}). \tag{37}$$

The monotonicity of $\hat{\mathcal{R}}_2$ plus the concentration of the number of edges of $G_{n,\gamma p}$ around γNp then allows us to assert (37) for G^2 . Indeed, then

$$O(n^{-3/2}) = \mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) = \sum_m inom{N}{m} (\gamma p)^m (1 - \gamma p)^{N-m} \mathbf{Pr}_m(\hat{\mathcal{R}}_2)$$

and so taking $\beta - \epsilon \leq \gamma$ we see that if $\mathbf{Pr}_{m_1}(\hat{\mathcal{R}}_2) \geq An^{-3/2}$ then $\mathbf{Pr}_{\gamma p}(\hat{\mathcal{R}}_2) \geq An^{-3/2}/2$.

The random variable $X = |E(G_x)|$ (in $G_{n,\gamma p}$) is a binomial random variable B(s,p) where $s = {|S| \choose 2}$, having mean μ where

$$(\beta - \epsilon)^3 \log n < \mu < (\beta + \epsilon)^3 \log n.$$

So,

$$\begin{aligned} \mathbf{Pr}_{\gamma p} \left(X \leq \frac{\log n}{20} \right) &\leq \sum_{l=0}^{\left\lfloor \frac{\log n}{20} \right\rfloor} \binom{s}{l} (\gamma p)^l (1 - \gamma p)^{s-l} \\ &\leq (1 + o(1)) \sum_{l=0}^{\left\lfloor \frac{\log n}{20} \right\rfloor} e^{-\mu} \frac{\mu^l}{l!} \\ &\leq 2e^{-\mu} \frac{\mu^{\left\lfloor \frac{\log n}{20} \right\rfloor}}{\left\lfloor \frac{\log n}{20} \right\rfloor!} \\ &\leq 3 \exp \left\{ -\log n \left((\beta - \epsilon)^3 - \frac{1}{20} (1 + \log 20) \right) \right\} \\ &\leq 3n^{-3/4} \end{aligned}$$

We apply the same argument to $|E(G_y)|$ (adding the appropriate conditioning on the number of edges within N_y). The proof now follows from (34) – (37).

Case 2. $t \geq 4$

We bound $\mathbf{Pr}(\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H)$ by conditioning on the event that the neighborhoods of x and y are of nearly the expected size and have nearly the expected number of edges. Let \mathcal{R}_3 is the event that

$$(eta-\epsilon)pn \leq |N_x|, |N_y| \leq (eta+\epsilon)pn,$$
 $(eta-\epsilon)pinom{|N_x|}{2} \leq |E(G_x)| \leq (eta+\epsilon)pinom{|N_x|}{2}, ext{ and }$
 $(eta-\epsilon)pinom{|N_y|}{2} \leq |E(G_y)| \leq (eta+\epsilon)pinom{|N_y|}{2}.$

Let \mathcal{R}_4 be the event that both G_x and G_y contain fewer than $\frac{\log n}{20}$ copies of K_t . We now bound the probability of $\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H$ as follows:

$$\mathbf{Pr}(\mathcal{R}_{x} \wedge \mathcal{R}_{y} \wedge \mathcal{R}_{H}) \leq \mathbf{Pr}(\mathcal{R}_{4}|\mathcal{R}_{H} \wedge \mathcal{R}_{3})\mathbf{Pr}(\mathcal{R}_{H}) + \mathbf{Pr}(\overline{\mathcal{R}_{3}})$$

$$\leq \mathbf{Pr}(\mathcal{R}_{4}|\mathcal{R}_{H} \wedge \mathcal{R}_{3})O(p_{m_{1}}^{b}) + O(\exp\{-n^{1-\frac{2}{t}+o(1)}\}).$$
(38)

We bound $\mathbf{Pr}(\mathcal{R}_4|\mathcal{R}_H \wedge \mathcal{R}_3)$ by an application of the Poisson approximation on the number of K_t 's in the random graph $G_{n,m}$ given by Theorem 6.1 of [8, page 68]. We let n' and m' be integers satisfying

$$(\beta - \epsilon)pn \le n' \le (\beta + \epsilon)pn$$
, and (39)

$$(\beta - \epsilon)p\binom{n'}{2} \le m' \le (\beta + \epsilon)p\binom{n'}{2},$$
 (40)

and condition on the event that $|N_x| = n'$ and $|E(G_x)| = m'$. Note that under this conditioning G_x can be viewed as the random graph $G_{n',m'}$. Following the notation of [8], we have

$$\frac{1}{2}(n')^{2-\frac{2}{t-2}}\omega_1 \le m' \le \frac{1}{2}(n')^{2-\frac{2}{t-2}}\omega_2$$

where

$$\omega_1 = (eta - \epsilon)^{rac{t}{t-2}} \left((t-1)! \log n
ight)^{1/{t-1 \choose 2}}$$

and

$$\omega_2 = (\beta + \epsilon)^{\frac{t}{t-2}} \left((t-1)! \log n \right)^{1/\binom{t-1}{2}}.$$

Let $X = X_{K_t}$ be the number of copies of K_t in $G_{n',m'}$. The expected number of such K_t 's, $\lambda := \mathbf{E}[X]$, is then bounded as follows:

$$(\beta - \epsilon)^{\binom{t}{2}} \log n \le \lambda \le (\beta + \epsilon)^{\binom{t}{2}} \log n.$$

It then follows from Theorem 6.1 of [8] that

$$\begin{aligned} \mathbf{Pr} \left(X \leq \frac{\log n}{20} \right) &\leq (1 + o(1)) \sum_{k=0}^{\left \lfloor \frac{\log n}{20} \right \rfloor} e^{-\lambda} \frac{\lambda^k}{k!} \\ &\leq 2e^{-\lambda} \frac{\lambda^{\left \lfloor \frac{\log n}{20} \right \rfloor}}{\left \lfloor \frac{\log n}{20} \right \rfloor!} \\ &\leq 2e^{-\lambda} \left(\frac{20e\lambda}{\log n} \right)^{\frac{\log n}{20}} \\ &\leq 2\exp \left\{ -(\beta - \epsilon)^{\binom{t}{2}} \log n \right\} (20e)^{\frac{\log n}{20}} \\ &= 2\exp \left\{ -\log n \left((\beta - \epsilon)^{\binom{t}{2}} - \frac{1}{20} (1 + \log 20) \right) \right\} \\ &\leq 2n^{-3/4} \end{aligned}$$

With (38) this completes the proof.

Proof of Lemma 5. Let S_1 be the event that there is a chain in G_{m_1} . For a fixed collection A of K_t 's in K_n and distinct $u, v \in [n]$ which define a possible chain, it follows from an argument along the line of the proof of Claim 7 that

$$|V(\mathcal{A})| \le 1 + \frac{2|E(\mathcal{A})|}{t}$$

and it follows from Claim 8 that

$$\mathbf{Pr}\left((u \text{ and } v \text{ are small }) \land E(\mathcal{A}) \subseteq E(G_{m_1})\right) \leq O(p_{m_1}^{|E(\mathcal{A})|} n^{-3/2}).$$

Applying the first moment method we have

$$\begin{aligned} \mathbf{Pr}(\mathcal{S}_{1}) &\leq \binom{n}{2} \sum_{i=t}^{4t-3} \binom{n-2}{i-2} 2^{\binom{i}{t}} O(p^{\frac{(i-1)t}{2}} n^{-3/2}) \\ &\leq \sum_{i=t}^{4t-3} O(n^{i-\frac{2}{t} \frac{(i-1)t}{2} - \frac{3}{2} + o(1)}) \\ &\leq \sum_{i=t}^{4t-3} O(n^{-\frac{1}{2} + o(1)}) \\ &= o(1) \end{aligned}$$

Proof of Lemma 6. Let S_2 be the event that there is a link in G_{m_1} . For fixed $S, T \in \binom{[n]}{t}$ such that $|S \cap T| \geq 2$ and $x \in S \cup T$ it follows from Claim 8 that

$$\mathbf{Pr}\left((x \text{ is small }) \land \binom{S}{2} \cup \binom{T}{2} \subseteq E(G_{m_1})\right) = O(p_{m_1}^{\binom{t}{2} - \binom{|S \cap T|}{2}} n^{-3/4}).$$

Applying the first moment method we have

$$\begin{aligned} \mathbf{Pr}(\mathcal{S}_{2}) &\leq n \binom{n-1}{t-1} \sum_{i=2}^{t-1} \binom{t}{i} \binom{n-t}{t-i} O(p_{m_{1}}^{2\binom{t}{2} - \binom{i}{2}} n^{-3/4}) \\ &\leq \sum_{i=2}^{t-1} O(n^{2t-i-2(t-1) + \frac{2}{t}\binom{i}{2} - \frac{3}{4} + o(1)}) \\ &\leq \sum_{i=2}^{t-1} O(n^{\frac{5}{4} - i + \frac{i(i-1)}{t} + o(1)}) \\ &= o(1) \end{aligned}$$

3 Proof of Theorem 1.

For a graph G and a vertex v, we defined prior to (21) $Z_v(G) = Z_v$ to be the number of K_t 's in G that contain v and Y(G) = Y to be the number of vertices u with $Z_u = 0$.

In view of Theorem 2 we need only prove that

$$\lim_{n \to \infty} \mathbf{Pr}(Y(G_{n,m}) = 0) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to \infty \end{cases}$$
(41)

Using Theorem 2 of Łuczak [14] we can derive (41) from the more easily obtained

$$\lim_{n \to \infty} \mathbf{Pr}(Y(G_{n,p}) = 0) = \begin{cases} 0 & c_n \to -\infty \\ e^{-e^{-c}} & c_n \to c \\ 1 & c_n \to \infty \end{cases}$$
(42)

where $p = m/\binom{n}{2}$. Furthermore we need only consider the case $c_n \to c$ as the others follow by monotonicity. Equation (42) can be proved by showing that $Y(G_{n,p})$ is asymptotically Poisson. In particular we need only show that for k = O(1),

$$\lim_{n \to \infty} n^k \mathbf{Pr}(Z_i(G_{n,p}) = 0, \ 1 \le i \le k) = e^{-ck}$$
(43)

and then apply e.g. Theorem 20 of Bollobás [5].

Equation (43) follows from

$$\mathbf{Pr}(Z_i(G_{n,p}) = 0 \mid Z_j(G_{n,p}) = 0, \ 1 \le j < i) \sim \frac{e^{-c}}{n}$$
(44)

for $1 \leq i \leq k$.

Using N_j to denote the neighbourhood of j in $G_{n,p}$ we let

- ν_1 denote the number of K_{t-1} in $N_i \setminus \bigcup_{j=1}^{i-1} N_j$.
- ν_2 denote the number of K_{t-1} in N_i which use a vertex of $\bigcup_{j=1}^{i-1} N_j$.

We then let $C_i = \{Z_j(G_{n,p}) = 0, 1 \leq j < i\}$ and write

$$\mathbf{Pr}(Z_i(G_{n,p}) = 0 \mid C_i) = \mathbf{Pr}(\nu_1 = 0 \mid C_i)(1 - \mathbf{Pr}(\nu_2 \neq 0 \mid \nu_1 = 0, C_i)). \tag{45}$$

Then $\mathbf{Pr}(\nu_1 = 0 \mid \mathcal{C}_i) \sim e^{-c}/n$ follows from Janson's inequality and $\mathbf{Pr}(\nu_2 \neq 0 \mid \nu_1 = 0, \mathcal{C}_i) \leq \mathbf{Pr}(\nu_2 \neq 0) = o(1/n)$ follows from the FKG inequality and a first moment calculation.

4 Proofs of Theorems 4-6

We prove Theorem 4 via an application of the following theorem of Hajnal and Szemerédi. For $k \leq n$ the Turán graph $T_k(n)$ is the complete k-partite graph on n vertices where the parts in the vertex partition have cardinalities

$$\left\lfloor \frac{n}{k} \right\rfloor, \left\lfloor \frac{n+1}{k} \right\rfloor, \ldots, \left\lfloor \frac{n+k-1}{k} \right\rfloor.$$

In other words, the parts in the partition are as near as possible to being equal (i.e. the partition is a so-called *equipartition*). Below we use the following theorem proved by Hajnal and Szemerédi (cf. Theorem 3).

Theorem 7 (Hajnal, Szemerédi). If G is a graph on n vertices having maximum degree $\Delta(G) = \Delta$ then

$$G \subseteq T_{\Delta+1}(n)$$
.

For a graph G, let \overline{G} be the complement of G. It is easy to see that Theorem 7 is equivalent to

Theorem 8. If G is a graph on n vertices having minimum degree $\delta(G) = \delta$ then

$$\overline{T_{n-\delta}(n)}\subseteq G.$$

Let a (K_t, l) -vertex-cover be a K_t -vertex-cover in which each vertex appears in at most l copies of K_t .

Proof of Theorem 4. We establish the lower bound by example. Consider the complete t-partite graph on n vertices having parts V_1, \ldots, V_t such that $|V_1| = q$ and

$$|V_2|,\ldots,|V_t| \in \left\{lq + \left\lceil rac{r}{t-1}
ight
ceil, lq + \left\lfloor rac{r}{t-1}
ight
floor
ight\}.$$

If q = 0 then G contains no t-clique and therefore has no (K_t, l) -vertex-cover. If q > 0 then, by the definition of r, there exists V_i such that $|V_i| > ql$, and G has no (K_t, l) -vertex-cover.

Suppose G is a graph on n vertices having

$$\delta(G) \geq n - ql - \left\lceil \frac{r}{t-1} \right\rceil + 2.$$

Let

$$s=ql+\left\lceil rac{r}{t-1}
ight
ceil -2.$$

It follows from Theorem 8 that $\overline{T_s(n)} \subseteq G$. In words, there exists an equipartition $V(G) = V_1 \cup \cdots \cup V_s$ such that the induced graph $G[V_i]$ is complete for $i = 1, \ldots s$. We will show that the collection of cliques $G[V_1], \ldots, G[V_s]$ can be transformed into a (K_t, l) -vertex-cover.

Claim 9.

$$t-1 \leq |V_i| \leq t \text{ for } i=1,\ldots,s.$$

Proof. We merely observe that s(t-1) < n while $st \ge n$.

$$\left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2 \right] (t-1) \le ql(t-1) + \left(\frac{r}{t-1} + 1 \right) (t-1) - 2(t-1)$$

$$\le ql(t-1) + r - (t-1)$$

$$< n.$$

On the other hand,

$$\left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2\right]t \ge \left[ql + \frac{r}{t-1} - 2\right]t
= n + q(l-1) + \frac{r}{t-1} - 2t.$$
(46)

Now, since $n \ge 6t^2 - 4t$, at least one of the following holds:

- $r \ge 2t(t-1)$
- $q \geq 2t$
- $\bullet \ q(t-1)l \ge 4t(t-1).$

In any of these situations, the expression in (46) is greater than or equal to n. \square

If follows from Claim 9 that we may assume that for some m we have $|V_1| = \cdots = |V_m| = t-1$ and $|V_{m+1}| = \cdots = |V_s| = t$.

Claim 10.

$$m < (l-1)(q+1).$$

Proof. Since V_1, \ldots, V_s is a partition, we must have (t-1)m + t(s-m) = n. However,

$$\begin{split} (t-1)(l-1)(q+1) + t \left[ql + \left\lceil \frac{r}{t-1} \right\rceil - 2 - (l-1)(q+1) \right] \\ &= q[(t-1)l+1] + t \left\lceil \frac{r}{t-1} \right\rceil + 1 - l - 2t \\ &\leq q[(t-1)l+1] + t \left(\frac{r}{t-1} + \frac{t-2}{t-1} \right) + 1 - l - 2t \\ &\leq n + \frac{1}{t-1} + t \frac{t-2}{t-1} + 1 - 2t \\ &= n - t \\ &< n \end{split}$$

We transform $G[V_1], \ldots, G[V_s]$ into a (K_t, l) -vertex-cover by expanding the clique V_i by one vertex for $i = 1, \ldots, m$. To be precise, we will show that there exist $x_1, \ldots, x_m \in V(G)$ such that

- 1. $x_i \sim v \quad \forall v \in V_i$,
- 2. $|\{x_i : x_i = v\}| \le l 1 \quad \forall v \in V(G),$
- $3. \ x_i \in V_j \Rightarrow x_j \not\in V_i,$
- 4. $x_i \notin V_i$.

Note that the third condition must be included to prevent two of the expanded cliques from containing a common edge. For i = 1, ..., m let

$$A_i = \{ v \in V(G) \setminus V_i : v \sim u \ \forall u \in V_i \}$$

Claim 11. $|A_i| \ge q + t \text{ for } i = 1, ... m.$

Proof. Since, for $v \in V_i$,

$$\begin{split} |\{x \in V(G) \backslash V_i : x \not\sim v\}| &\leq n - 1 - \delta(G) \\ &\leq ql + \left\lceil \frac{r}{t-1} \right\rceil - 3, \end{split}$$

we have

$$egin{aligned} |\{x\in V(G)\backslash V_i:\exists v\in V_i ext{ such that } x
eq v\}| \ &\leq (t-1)\left[ql+\left\lceil rac{r}{t-1}
ight
ceil -3
ight] \ &\leq ql(t-1)+(t-1)\left(rac{r}{t-1}+rac{t-2}{t-1}
ight)-3(t-1) \ &= ql(t-1)+r-2t+1. \end{aligned}$$

Therefore

$$|A_i| = |V(G) \setminus V_i| - |\{x \in V(G) \setminus V_i : \exists v \in V_i \text{ such that } x \not\sim v\}|$$

 $\geq n - (t-1) - [ql(t-1) + r - 2t + 1]$
 $= q + t$

Now, we choose the x_i 's one at a time in an order $x_1 = x_{i_1}, x_{i_2}, \dots x_{i_m}$ as follows. Suppose x_{i_1}, \dots, x_{i_k} have been chosen.

If
$$x_{i_k} \in V_j$$
 and $j \notin \{i_1, \dots, i_k\}$ then $j = i_{k+1}$. (47)

Otherwise i_{k+1} is chosen arbitrarily from $\{j: 1 \leq j \leq m\} \setminus \{i_1, \ldots, i_k\}$. In other words, we chose the x_i 's in an order such that at most one x_i falls in V_j before x_j is chosen. For $k = 1, \ldots, m$ let

$$U_k = \{v \in V(G) : |\{1 \le j < k : x_{i_j} = v\}| = l - 1\}.$$

In words, U_k is the set of vertices that satisfy 2. with equality after $x_{i_1}, \ldots, x_{i_{k-1}}$ have been determined. Thus, we must have $x_{i_k} \notin U_k$. By Claim 10

$$|U_k| \le \left| \frac{m-1}{l-1} \right| < q+1. \tag{48}$$

For $k = 1, \ldots, m$ let

$$R_k = \bigcup_{1 \leq j < k: x_{i_j} \in V_k} V_{i_j}.$$

(Note that the union here is over zero or one set only). By condition 3. we must have $x_{i_k} \notin R_k$. By the construction of the ordering given in (47),

$$|R_k| \le t - 1. \tag{49}$$

An arbitrary $x_{i_k} \in (A_{i_k} \setminus U_k) \setminus R_k$ satisfies 1, 2, and 3. By (48), (49) and Claim 11 such an element exists.

Proof of Theorem 6. Let $\epsilon > 0$ and let G be a graph on n vertices with $\delta(G) = \delta \geq (1 - \frac{1}{\chi(H)-1} + \epsilon)n$. We show that any collection of edge disjoint copies of H that does not cover V(G) can be extended to cover at least one new vertex. To be precise, we show that if a family $\mathcal{F} = \{\Gamma_1, \ldots, \Gamma_m\}$ of copies of H in G and a vertex $v \in V(G)$ satisfy

$$m < n,$$

$$\Gamma_i = (V(\Gamma_i), E(\Gamma_i)) \text{ are copies of } H \text{ in } G \text{ for all } i,$$

$$E(\Gamma_i) \cap E(\Gamma_i) = \emptyset \text{ for all } i \neq j,$$

$$(50)$$

and

$$v \not\in \bigcup_{i=1}^m V(\Gamma_i)$$
,

then there exists a family $\mathcal{F}' = \{\Upsilon_1, \dots, \Upsilon_l\}$ such that for all $i \Upsilon_i = (V(\Upsilon_i), E(\Upsilon_i))$ are copies of H in G

$$E(\Upsilon_i) \cap E(\Upsilon_i) = \emptyset \text{ for all } i \neq j$$
 (51)

and

$$\bigcup_{i=1}^{l} V(\Upsilon_i) \supseteq \left(\bigcup_{i=1}^{m} V(\Gamma_i)\right) \cup \{v\}$$
.

Note that we include the possibility of m=0. Clearly, an inductive argument based on (50) and (51) above implies the theorem. Further, we may assume m < n in (50). Suppose, on the contrary, that we have a family $\mathcal{F}^* = \{\Gamma_1, \ldots, \Gamma_m\}, m \geq n$, constructed inductively by (50) and (51) such that it does not cover all vertices. However, by the inductive construction of \mathcal{F}^* every vertex is already in some copy of H included in the family \mathcal{F}^* . A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u be the vertex of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1$. Set $H' = H \setminus \{u\}, h = |V(H)|$, and $e_H = |E(H)|$. For \mathcal{F} and a vertex v as in (50), let N_v be the set of neighbors of v, $d_v = |N_v|$ and $F = \bigcup_{i=1}^m E(\Gamma_i)$. Our analysis will focus on the consideration of the subgraphs $L = G[N_v]$ and $L' = (N_v, E(L) \setminus F)$. We extend \mathcal{F} to \mathcal{F}' by simply finding a copy of H which contains v but no edges in F. Clearly, if there exists a copy of H' in L', then this H' together with v gives a copy of H that extends \mathcal{F} . (Note H' is a subgraph of $L = G[N_v]$).

We have for $|E(L)| \geq \frac{d_v}{2} \left(\delta - (n - d_v)\right)$. Since $\delta \geq \left(\frac{\chi - 2}{\chi - 1} + \epsilon\right) n$ is equivalent to $\delta - n \geq -\frac{1}{\chi - 2}\delta + \epsilon n\frac{\chi - 1}{\chi - 2}$, we get

$$|E(L)| \geq \frac{d_v}{2} \left(\delta - (n - d_v) \right)$$

$$\geq \frac{d_v}{2} \left(d_v - \frac{1}{\chi - 2} \delta + \epsilon n \frac{\chi - 1}{\chi - 2} \right)$$

$$\geq \frac{d_v^2}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon n \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2}.$$

Since we are assuming that $|\mathcal{F}| < n$, we have

$$|F \cap E(L)| \leq |F| \leq e_H n$$
,

and it follows

$$\begin{split} |E(L')| &= |E(L)| - |F \cap E(L)| \\ &\geq \frac{d_v^2}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon n \cdot \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n \\ &\geq \binom{d_v}{2} \cdot \frac{\chi - 3}{\chi - 2} + \frac{1}{2} \epsilon \binom{d_v}{2} \frac{\chi - 1}{\chi - 2} \\ &+ \left(\frac{1}{2} \epsilon \binom{d_v}{2} \frac{\chi - 1}{\chi - 2} + \frac{d_v}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n\right). \end{split}$$

Letting $\epsilon' = \frac{1}{2} \cdot \frac{\chi - 1}{\chi - 2} \cdot \epsilon$ and d_v be large enough (i.e. n large enough), we conclude that

$$\frac{1}{2}\epsilon \binom{d_v}{2}\frac{\chi-1}{\chi-2} + \frac{d_v}{2}\cdot\frac{\chi-3}{\chi-2} + \epsilon\frac{d_v}{2}\cdot\frac{\chi-1}{\chi-2} - e_H n \geq 0$$

and thus, $|E(L')| \geq \left(\frac{\chi-3}{\chi-2} + \epsilon'\right) \binom{d_v}{2}$. By the Erdős - Stone theorem there exists a copy of H' in L'. Taking this copy of H' together with v and edges needed gives us a new copy of H by which we extend \mathcal{F} to \mathcal{F}' .

Proof of Theorem 5. We are going to determine the exact value of $f(n,3,k), k \ge \frac{n-1}{2}$ and $n \ge 6$. First, note that in any (K_3, ∞) -vertex-cover of a graph G on n vertices no vertex lies in more than $\frac{n-1}{2}$ copies of K_3 . In order to get a tight result we assume G is a graph on n vertices with $\delta(G) \ge \lceil n/2 \rceil + 1$. Let $\mathcal{F} = \{\Gamma_1, \ldots, \Gamma_m\}$ and v be as in (50) with $H = K_3$. We use the notation introduced in the proof of Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does not suffice to simply add a new K_3 to \mathcal{F} . Our argument includes consideration of several different kinds of modifications of \mathcal{F} .

It follows from our minimal degree condition that

$$d_L(x) \ge 2$$
, for all $x \in N_v$. (52)

If there is an edge in L not contained in $F = \bigcup_{i=1}^m E(\Gamma_i)$ then this edge together with v gives an extension of \mathcal{F} that contains v, and therefore we can assume

$$E(L) \subset F.$$
 (53)

It follows from (52) and (53) that $|F \cap E(L)| \geq d_v = |N_v|$, and therefore

$$3|\mathcal{F}_3| + |\mathcal{F}_2| \ge d_v \ge \frac{n}{2} + 1$$
, (54)

where $\mathcal{F}_j = \{\Gamma \in \mathcal{F} : |V(\Gamma) \cap V(L)| = j\}, j = 2, 3$. Since $H = K_3$, to simplify the description we identify $\Gamma \in \mathcal{F}$ with its vertex set, i.e. $\Gamma = \{x_1, x_2, x_3\}$. Consider

 $\Gamma_A = \{x_1, x_2, y\} \in \mathcal{F}_2 \text{ with } x_1, x_2 \in N_v \text{ and } y \in V(G) \setminus (N_v \cup \{v\}). \text{ If there exists } \Gamma_B \in \mathcal{F}, \Gamma_B \neq \Gamma_A, \text{ such that } y \in \Gamma_B \text{ then } (\mathcal{F} \setminus \{\Gamma_A\}) \cup \{\{x_1, x_2, v\}\} \text{ is an extension of } \mathcal{F} \text{ containing } v. \text{ Therefore, we can assume}$

$$|\mathcal{F}_2| \le |V(G) \setminus (N_v \cup \{v\})| \le \frac{n}{2} - 2 , \qquad (55)$$

because otherwise there exists a pair $\Gamma_A, \Gamma_B \in \mathcal{F}, \Gamma_A = \{x_1, x_2, y\}, \Gamma_B = \{z_1, z_2, y\}$ as above. It follows from (54) and (55) that $|\mathcal{F}_3| \geq 1$. Now, consider $\Gamma_A \in \mathcal{F}_3$. If there exists $\Gamma_B \in \mathcal{F}$ such that $\Gamma_A \cap \Gamma_B = \{x\}$ then $(\mathcal{F} \cup \{\Gamma_A \setminus \{x\} \cup \{v\}\}) \setminus \{\Gamma_A\}$ is an extension of \mathcal{F} containing v. So, we can henceforth assume

$$\Gamma_A \in \mathcal{F}_3, \Gamma_B \in \mathcal{F} \implies \Gamma_A \cap \Gamma_B = \emptyset.$$
 (56)

Once again, we consider $\Gamma_A = \{x_1, x_2, x_3\} \in \mathcal{F}_3$. Since $d_G(x_i) \geq n/2 + 1 > 3$ (here we use our assumption on n) there exists $u \in V \setminus \{v, x_1, x_2, x_3\}$ and $a \neq b \in \{1, 2, 3\}$ such that u is adjacent to both x_a and x_b . Let $c = \{1, 2, 3\} \setminus \{a, b\}$ and set

$$\mathcal{F}' = \mathcal{F} \setminus \{\Gamma_A\} \cup \{\{x_a, x_b, u\}, \{x_a, x_c, v\}\}.$$

By (56) the family \mathcal{F}' is edge-disjoint and covers v.

In order to prove the lower bound on f(n,3,k) we consider the following two graphs. If n=2m, H_n^e is the complete bipartite graph on the vertex set $Z_1 \cup Z_2, |Z_1| = |Z_2| = m$. In the case n=2m+1, H_n^o consists of the edges of the complete bipartite graph on the vertex set $Z_1 \cup Z_2, |Z_1| = m+1, |Z_2| = m$. Moreover, if $|Z_1|$ is even, H_n^o contains edges of a perfect matching of Z_1 and in the case $|Z_1|$ is odd, H_n^o contains edges of a maximal matching, say M, of Z_1 together with a single edge $\{x,y\}$ where x is the vertex of Z_1 which does not belong to M and y is any vertex of $Z_1 \setminus \{x\}$. Clearly, $\delta(H_n^e) = \lceil n/2 \rceil$ and $\delta(H_n^o) = \lceil n/2 \rceil$. Further, neither of H_n^e and H_n^o contains a (K_3, ∞) -vertex-cover because H_n^e does not contain any copy of K_3 and H_n^o contains only at most $\lceil (n+1)/4 \rceil$ copies of K_3 .

References

- [1] N. Alon, J. H. Spencer, The Probabilistic Method, John Wiley and Sons, 1991.
- [2] N. Alon, R. Yuster, Almost H-factors in dense graphs, Graphs & Comb. 8 (1992), 95-102.
- [3] N. Alon, R. Yuster, Threshold functions for H-factors, Combinatorics, Probability, & Computing 2 (1993), 137-144.
- [4] N. Alon, R. Yuster, H-factors in dense graphs, J. Comb. Theory B, to appear.
- [5] B. Bollobás, Random graphs, Academic press, 1985.

- [6] F. Chung, R. Graham, Erdős on graphs his legacy of unsolved problems, A.K. Peters, 1998.
- [7] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta. Math. Acad. Sci. Hungar. 17 (1966) 359-368.
- [8] A.M. Frieze, On small subgraphs of random graphs, Proceedings of Random Graphs '89, (A.M.Frieze and T.Łuczak Eds.) John Wiley and Sons, 1992, 67-90.
- [9] A. Hajnal, E. Szemerédi, *Proof of a conjecture of Erdős*, Comb. Theory and Appl. II, Colloq. Math. Soc. J. Bolyai 4, North-Holland, 1970, 601-623.
- [10] S. Janson, *Poisson approximation for large deviations*, Random Structures and Algorithms 1 (1990), 221-229.
- [11] M. Krivelevich, *Triangle factors in random graphs*, Combinatorics, Probability, and Computing 6 (1997), 337-347.
- [12] D.E. Knuth, R. Motwani and B.G. Pittel, *Stable husbands*, Random Structures and Algorithms 1 (1990), 1-14.
- [13] J. Komlós, G. N. Sárközy, E. Szemerédi, *Proof of the Alon Yuster conjecture*, in preparation.
- [14] T. Luczak, On the equivalence of two basic models of random graphs, Proceedings of Random Graphs '87 (M.Karoński, J.Jaworski and A.Ruciński, Eds.) John Wiley and Sons, 1990, 151-157.
- [15] A. Ruciński, Matching and covering the vertices of a random graph by copies of a given graph, Discrete Math. 105 (1992), 185-197.
- [16] N. C. Wormald, The perturbation method and triangle-free random graphs, Random Structures and Algorithms 9 (1996), 253-270.