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1 Introduction

The Constraint Satisfaction Problem (CSP) is a fundamental problem in Artificial Intel-
ligence, with applications ranging from scene labeling to scheduling and knowledge repre-
sentation. See for example Dechter [3], Mackworth [7] and Waltz [10]. An instance of the
CSP comprises a set of n variables, each taking a value in some given domain, and a set of
constraint relations, each of which determines the permitted joint values of a given subset
of the variables. The problem is either to determine any set of values for the variables
which respects all the constraint relations, or prove that none exists.

In recent years, there has been a strong interest in studying the relationship between
the input parameters that define an instance of CSP (e.g. number of variables, domain
sizes, tightness of constraints) and certain solution characteristics, such as the likelihood
that the instance has a solution or the difficulty with which a solution may be discovered.
An extensive account of relevant results, both experimental and theoretical, can be found
in Hogg, Hubermann and Williams [5]. (More recently, see Smith [9] which contains some
experimental work and theoretical discussion related to the results presented here.)

One of the most commonly used practices for conducting experiments with CSP is to
generate a large set of random instances, all with the same defining parameters, and then
for each instance in the set to use heuristics for deciding if a solution exists. (Note that, in
the worst case, CSP is generally NP-complete). The proportion of random instances that
have a solution is used as an indication of the likelihood that an instance will be soluble,
and the average time taken per instance (by some standard algorithm) gives some measure
of the hardness of such instances. A characteristic of many of these experiments is that the
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fraction of assignments of values that are permissible for each constraint is kept constant
as the number of variables increases.

In this paper we consider only binary CSPs (BCSPs). These can be succinctly described
in the following way: A graph G = (V, E) is given, where V = {z1,z,,... ,z,} denotes
the set of variables of the problem, and F the set of binary relations of the instance.
We assume, without loss of generality, that each variable can take values in the same set
[m] ={1,2,... ,m}. For each edge e = {z;,z;} € E, the relation can then be represented
by an m x m 0-1 matrix M., where 0 indicates that the pair of values is forbidden and 1
that it is allowed. A solution to the associated BCSP is an assignment f : V' — [m] of
values to the variables, such that M,(f(z;), f(z;)) = 1 for all e = {z;,z;} € E. The aim
of this paper is to conduct a probabilistic analysis of some aspects of the following simple
random model of BCSP:

Model: The underlying graph G is G, j, for some 0 < p; = p1(n) < 1. (This means
that, with V' = {@1,22,... ,2,}, we let each of the (}) possible edges occur independently
in E with probability p;.) For each edge e of G there is a random m X m constraint matrix
M, where M,(i,7) = 0 or 1 independently with probability (1 — ps) or ps, repectively, for
some 0 < pa(n) < 1.

We will discuss the efficacy of various simple but standard approaches to solving BCSP’s.
We first consider the likely efficacy of backtrack free search. Suppose the vertices of G are
ordered vy, vy, ... ,v,. The width (Freuder [4]) w = w(vy,vs,...,v,) of this order is given
by

w = n’el?)](ﬂ{j : j <1 and v; is adjacent to v; }|}.

For any graph G there is a minimum width w*(G) which is obtained as follows: Let v} be
a vertex of minimum degree in G and in general let v} be a vertex of minimum degree in
the subgraph of G induced by V' \ {v} 4,... ,v;}.

For each integer k > 3 there is a constant ¢, such that if ¢, < ¢ < ¢x41 then w*(Gr,p,) =
k whp! (see Pittel, Spencer and Wormald [8]). In fact, ¢y = minysg A/Pr(Po()\) > k — 1),
where Po(\) denotes a Poisson random variable with mean A. Thus for example c3 ~ 3.35
and ¢y = k + v/klogk + O(logk) for large values of k, i.e. the optimal width becomes
asymptotic to the average degree. It is apparently believed that, in practice, ordering by
decreasing degree gives a reasonable approximation to the width ordering, but we observe
the following.

Remark 1 If one simply orders vertices in decreasing order of degree then whp one obtains
a width which asymptotically equal to Vb?fgogn’ assuming that np, is bounded as n — oo.

Thus, asymptotically, this ordering will be arbitrarily bad compared with the minimum
width ordering.

The following simple backtrack free algorithm has been discussed in the literature: Place
the vertices of G into an optimal order v{,v3,... ,v, giving a width w*. Starting with ¢ =1

lwith high probability i.e. with probability tending to 1 as n — oo



iteratively assign a value to vertex ¢ which is consistent with values already assigned to
V1, V9, ... ,V;_1. We establish a sharp threshold for the likely success of this algorithm.

Theorem 1 Suppose k > 3 is a constant integer and ¢y < ¢ < cpi1. Let n = (1 — pk)~1
and € > 0 be a positive constant. Then

e Ifm > (1+¢€)log,n then this algorithm succeeds whp.
e Ifm < (1—¢)log, n then this algorithm fails whp.

Now consider the associated notion of strong k-consistency. A constraint satisfaction prob-
lem is k-consistent if for all sets of vertices v, wy,ws, ... ,ws and all consistent assignments
ai, s, ... ,a; of values to wi,ws, ..., ws there is at least one assignment value z for v
which makes all the pairs v, w; have consistent assignments. The problem is strongly k-
consistent if it is i-consistent for 0 < ¢ < k. We establish the following sharp threshold for
k-consistency. It is identical to that of Theorem 1, except that the constraints on k,p; are
weaker and there is a constraint on p,.

Theorem 2 Let d = np; and let € > 0 be a positive constant. Suppose

1 < k=o(logn/loglogn) (1)
|klogd| = o(logn) (2)
) 3)

Letn = (1 —p%) 1. Then
e Ifm > (1+¢€)log,n then the problem is strongly k-consistent, whp.
e Ifm < (1—¢)log, n then the problem is not k-consistent, whp.

We now consider the likely efficacy of a tree search algorithm. By computing the
expected number of satisfying assignments we see that if

np1(1 —p2) > (2+€)logm (4)

then the problem is inconsistent whp.

One basic strategy for solving a CSP is a tree search algorithm in which one moves
forward down the tree by selecting a vertex and making an assignment and which backtracks
when it finds a set of vertices for which, given the current assignments, has no mutually
consistent assignments left. Because of time constraints one can only check small sets of
vertices for inconsistency, up to size K say. Our aim is to find values for the parameters
m, n, p1, P2, K such that any such algorithm is likely to take a long time to finish. In
Theorem 8 we give some rather complicated conditions. The following theorem gives some
simpler but weaker conditions.



Theorem 3 Assume (4) holds and that 1 < d = np;. Suppose that

logn

K < —
- max{3, 2 +logd

4
b o8 = 5, m/Gogn)* = 00, D = ofm/ log(m + )
Then whp any tree search algorithm of the type described above must explore at least mP
nodes.

For example, if

1
m=d = (logn)® and D = (logn)® and p, = 1 — =D

then the conditions of the theorem hold for any constant K and so whp any proof of
inconsistency by this method will take super-polynomial time.

If a problem is inconsistent then one hopes that one can prove this by looking at small
sets of vertices and showing that they themselves form an inconsistent subproblem. We
give sufficient conditions for which this fails to happen whp.

Theorem 4 Assume for convenience that ps is bounded below by a constant independent
of n and that a,b > 0 are constants. Let n = (1 — p&)~1 and suppose that

C1 k£ =bloglogn.

C2 a>2(1+¢€)(1—p2)~*(1+blogpy?).
C3 P = aloglogn.

Cam=(1+¢) log,, n.

Then whp the problem is inconsistent and every subproblem induced by a set of at most
yn, v = b/(3a) vertices is consistent.

2 Some probabilistic inequalities

In Theorems 5, 6 below we will have a random variable Z = Z(Y3,Y2,...,Yn) where
Y; € ; are independent so that Z is defined on 2 = Q; x --- Q.

Assumption 1
Suppose that Y,Y" € ) and there exists ¢ such that Y; = Y} for j # 4. Our assumption is
that in such a case we have |Z(Y) — Z(Y')| < a.

Theorem 5 (Azuma-Hoeffding Inequality )

Pr(|Z — E(Z)| > t) < 2¢ 20"/(Ne?), (5)



Note that this is trivially applicable if Z = Y; + --- 4+ Y, where the Y; are independent
and |Y;| <afor1<i< N.

Assumption 2
Suppose that in addition for any &, if Z(Y") > £ then there exist c(§) indices jq, jo,. .. , je(e)
such that if Y; =Y, fort =1,2,...,¢(§) then Z(Y") > ¢ also.

Let Med = Med(Z) denote a median of Z i.e. Pr(Z > Med) > 1, Pr(Z < Med) > 1.

Theorem 6 (Talagrand’s Inequality)
Pr(|Z — M| > te(Med)"/?) < 2¢ *'/14e%), (6)

The setting for the next inequality is different. Let 2 be a set and Ay, As,...,Ax be
subsets of (). Let X be a random subset of (2 where x € (2 is independently placed into
x with probability p. Let Z denote the (random) number of sets A; which X contains i.e.
Z =|{i € [N]: X D A;}. We give an upper bound for the probability that Z = 0. Let

A = Y Pr(4iu4; CX)

’L#] AiﬂAJ?f@

C Y EAcx) Y B4\ 4C0) @

i=1 j: ANA;#0
Theorem 7 (Janson’s Inequality)

Pr(Z=0)§exp{—%Z)2}. (8)

Proofs of these inequalities can be found for example in Janson, Luczak and Rucinski [6].

3 Proof of Theorem 1

Consider an ordering vy, v, ..., v, of the vertices which is formed by repeatedly choosing
a vertex of minimum degree in the subgraph induced by the vertices not yet listed, and
adding it to the end of the list. Let V; = {j : v, has ¢ neighbours among vy, vs,... ,vj_1}
for 1 <t < k. Since ¢ < ¢ < cgy1 then whp Vi, V,, ...V}, partitions V', by the definition
of ¢g.

Lemma 1 There ezists o, > 0 (independent of n) such that whp |Vi| > agn.

Proof Recall that we order the vertices by repeatedly choosing a vertex of minimum
degree in the subgraph induced by the vertices which are not yet listed, and we add that
vertex to the list. Since ¢ < ¢ < ¢g11, the graph a.s. has a k-core, H. Our procedure will
eventually reach H as the subgraph induced by the unlisted vertices, and then it will, for
the first time, choose a vertex of degree k. We denote this time step by ¢.



At any point during the ordering procedure, we denote by W; the set of vertices of
degree 7 in the subgraph induced by the unlisted vertices. Consider the parameter

k(k—1)[Wi|
Zi21i|Wi|

Define A be the largest solution to ¢ = A/Pr(Po()\) > k — 1) (note that A exists by the
definition of ¢). It is implicit from [8] that whp for each ¢ > k, the number of vertices
of degree i in H is y;n + o(n) where ; = Pr(Po(\) = i). (In particular, see (4.19) of [§]
and the preceding discussion to see that at any point during their stripping procedure, the
proportion of remaining vertices which have degree i > k is distributed as a Poisson with
mean equal z (a parameter of the stripping process) truncated at k; see (6.29) to see that
in the terminal stages of the procedure, z = \; and see the statement of their Theorem 2
to see that the total number of vertices in the k-core is nPr(Po(\) > k). These three facts
imply our claim.)

From this, we will show that since ¢ > ¢, then whp at time ¢t we have F' < —e for some
e =¢€(c) > 0:

It is obvious that Eg:iw = Z,.Z,t&(ik—;l/)(!i—l)! is strictly monotone decreasing as A increases.
Therefore, it will suffice to show that if ¢ were equal to ¢ then we would have
k(k — 1)v/ ZiZk iy =1

First recall that at ¢ = cg, A\ minimizes \/(1 —e ™"
this expression equal to 0 gives:

k=2 i =2 g !
- § : _ - 2 :
=0 i=0

F = 1.

k—2 i
i=0 3l

). Setting the derivative of

Multiplying both sides by e* yields

k—2

/\i /\z )\kfl
A _ A
¢ _Zﬁ_,z a4 T (k—2)
=0 i>k—1
Then multiplying both sides by A and shifting indices yields

I\ pL
27 = k(k_l)ﬁ’

as required.



Furthermore, at each step of our procedure at most k + 1 vertices are either put in the
list or have their degrees reduced. Therefore, it is straightforward to verify that there is
some 0 = d(€) > 0 such that for the first n steps of our procedure we will have F' < —£.

Expose the degree sequence of H. H is uniformly random with respect to its degree
sequence, see for example [8]. Thus, we can generate H according to the configuration model
(Bollobés [1], Bender and Canfield [2]). We will expose the pairs of the configuration, i.e.
the edges of H, as they are exposed by our procedure. Therefore, when removing a vertex
of degree ¢, its ¢ neighbours are chosen at random from amongst all unlisted vertices, where
the probability that a vertex u is chosen is proportional to its degree.

For each j > 0 define X; to be the value of the sum |W;| + ... + |Wy_4| after the jth
vertex has been removed, i.e. the number of remaining vertices of degree less than k. If
X; > 0 then upon adding the (j+1)st vertex to our list, we select at most k£ — 1 neighbours,
reducing each of their degrees by one. The expected proportion of neighbours from W is
EIWk|/ > 1 8Wil. If X; = 0 then X4 < k. Therefore, it is straightforward to verify that
for j < én, X; is statistically dominated by Y; defined as:

e Yy =0;

o ifY; >0thenY; ; =Y;—1+4+ BIN(k—1,q), where (k —1)g— 1= —%;

29
o if Y; =0 then Y; ;1 = k.

(In the second point, we use the fact that ' < —£.) The sequence Yj, Y1, ... is a random walk
with negative drift and a reflective barrier at 0, and it is easy to confirm that a.s. the number
of return-to-zeroes in this sequence before step én is at least {(n where ¢ = ((¢,) > 0.
Therefore, a.s. the number of return-to-zeroes of X; is at least {(n. Each return-to-zero of
X; corresponds to another vertex being added to V. This proves the lemma with a; = (.
O
Now consider vertex v. Let us say that v is “bad” if when the algorithm looks for
an assignment for v it cannot find anything consistent with assignments made previously.
Instead of stopping at this point, let the algorithm make an arbitrary assignment. Hence
if BAD = {bad vertices} the algorithm fails iff BAD # (. If v € V; then

Pr(v € BAD) = (1 —py)™

since we can generate the constraint matrix for v = v,, vy, b < a when we first consider v.
This matrix is not examined in any previous decisions. Now

k
E(|BAD||G) = ) |ViI(1-p)"
t=0

IN

n(l —p§)™
nnp~ "

—€

n

IN



if m > (1+ ¢)log, n.
This verifies the first part of the theorem. Now assume that m < (1 — €)log, n. Then

E(|BAD| | |[Vk| > agn) > agnp™ ™
>

agnt.

Since, given G we can write |BAD| = §; + d2 + - - - + J,, where the §; are independent 0-1
variables, we can use (5) to show concentration round the mean. In particular [BAD| > 0
whp. O

4 Proof of Theorem 2

Let Z; count the number of choices of vertices v, neighbours wy,ws, ... ,w; of v for which
there exist consistent assignments ai,as, ... ,a; for wy,ws,... ,w; such that there is no
consistent choice of a value for v. The problem is strongly k-consistent iff Z = Z, + Z; +
coo+ Zr = 0. Now

-1
E(Z) n<n . )pthr(Elchoices ai,ag,-.. ,az)

n—1 m
( )pimtu _p)

t

I

IN
S

nY (md)'(1—ph)™
))en~™.

IN

IN
i
S

2
W
+
—

If m > (1+ ¢)log, n then
E(Z) <kn™*((d+1)(1 +¢)log,n)* < kn~/%((d 4+ 1)(1 + €) logn)* = o(1)

after using (1), (2) and (3). So in this case Z = 0 whp proving the first part of the theorem.

Suppose next that m < (1 — ¢) log, n. Let Zj denote the number of choices of vertices
v, neighbours wy, ws, ... ,wg of v such that wy,ws,... ,wy form an independent set and
assigments a1, as, ... ,a; for wy,w,, ... ,w; such that there is no consistent choice of a value
for v. Then )

~ n — —m
Bz (", ) - 00p)n

where the (1 — O(k?p;)) term is the probability that the chosen vertices wy,ws,... ,wy
form an independent set and we only consider one assignment to wq, ws, ... ,wg. So, after



using Stirling’s inequality,

E(Z) > ﬁ(%d)kn"”

)
VRN
> ,ne—o(l).

We will apply Talagrand’s inequality to a slight modification of this variable. Thus let 7, be
Zy, where in the count for each v we only include w;, ws, - .. , wy, from the A = (d+1)(logn)?
lowest indexed neighbours of v. Now, with A(G) denoting the maximum degree of G, we
have

n

Pr(A(G) > \) < n()\

)P? < n(nepi/A)* < (logn) CoWEM" = o (+41)),

Thus X 3

Furthermore, 7, < n*™ and so we see that

~ A

E(Z,) = E(Z;) + o(1) > neoW.

Now consider the probability space for our problem to be OV, N = (’2’) where (2 is the set
of m x m 0-1 matrices i.e. one matrix M, for each edge e of K,,. Then if v = v(M) denotes

the number of 1’s in matrix M we let

2
pips (1 —po)™ " M #0
Pr(M,=M) =
r( ) {(1—p1)+P1(1—p2)m2 M=0

Now changing one matrix M, can change Zj by at most 2\ = n°®). Furthermore if Z;, > &
then we can find at most (k+1)¢ indices (edges) which force Z;, > £. Applying Talagrand’s
inequality we get

Pr(|Z, — Med(Zy)| > t((k + 1)Med(Zy))'/?) < exp{—t?/(4X*%)}.
Putting t = n/® we see that E(Z;) = Med(Z;) + O(n*/**°")(Med(Zy))"/?). So we see that
Med(Z;,) > n°0) and then that Z;, = Z; # 0 whp. O

5 Proof of Theorem 3

We prove the following theorem which has a more complex set of conditions on the various
parameters. It is simple to verify that the conditions of Theorem 3 imply these.



Theorem 8 Assume (4) holds and that 1 < d = np;. Suppose that

logn
K< — 5.
—max{3’2+logd} (©)
UK (de?2™)X ex —ﬂ —0asn— o (10)
P1 P U KK 1) '
pr 12" (dm)P (1 —p3)™? — 0. (11)

Then whp any tree search algorithm of the type described above must explore at least m®”
nodes.

First of all we verify (4). Let A denote the number of consistent assignments.

n—1

BA) = (1= (1 = ) < exp {0 ("5 1~ o) ~ o) |

and this tends to zero if (4) holds.
Consider the following conditions:

C, There exists a set of vertices S = {vy,vs,...,v}, K < K which induce a connected
subset of G and sets By, By, ... , By C [m], each of size mq = [m/2] such that there
are no feasible assignments a;,7 = 1,2,... ,k for vy, vs,... ,v; for which a; € B;,i =
1,2,... k.

C2 There exists a vertex v, neighbours uy,... ,uy, € V of v where £ < D, and assignments to
Ui, .- . ,up such that v has fewer than mg choices of assignment which are consistent
with those of uy ... ,u,.

If neither C; nor Cy occur and the problem is inconsistent then the algorithm must explore
at least m” nodes. At depth < D every vertex which has not been assigned a value will still
have at least mg choices of assignment which are consistent with any given to its neighbours
(C3). Then each set of K vertices will have a mutually consistent set of choices (Cy).

We observe first that (9) implies that whp every set of k¥ < K vertices of G contains
at most k4 1 edges. Then (9) implies d < n'/Xe~6. The probability that there exists a set
of k£ < K vertices of G containing at least k + 2 edges is at most

S0 (D50 (5)7 ()= (3 >§;<7d>
S (5) <

()

k

10



when K >4 (for K < 4 the sum is empty).
Now, for some constant ¢ > 0 we have

K
Pr(C,) < CZ (Z) EFriphlokme, + o(1)
k=2

where for any fixed variables vy, ..., v, and sets By, ..., By each of size at least my, 7 is
an upper bound on the probability that there are no feasible assignments a; € B; for
vi,t=1,2,... k.

Explanation: () counts the choices for vy, vs, ... ,vk. The o(1) term is the probability
that there is some such subset with at least k + 2 edges. It is well known that there are
at most k*=2 choices for a tree on the variables, at most O(k*~%5) choices for a connected
subgraph with k edges, and at most O(k*!) choices for a connected subgraph with k& + 1
edges. Thus, the probability of such a component being present in the graph is kk_zp’f_l +
O(kF=5p%) + O(kF+1pt) < ck*1pt~t. Then we choose By, B,,..., By C [m] in (2™)*
ways and multiply by the probability, at most 7y, that there is no possible assignment.

We need to bound 7. For this we will use Janson’s Inequality. We will use the notation
of Section 2. Let H be the connected subgraph induced by vy, ...,vx with at most k + 1
edges. To apply Janson’s inequality we define 2 to be the set of triples (v;v;, a;, a;) where
v;v; is an edge of H, a; € B;,a; € B;. The sets Ay, As,... , An are those subsets of 2
which satisfy (a) there is exactly one triple for each edge of H and (b) for each v; the
triples corresponding to edges with endpoint v; have the same values a;. Thus, each A;
represents an assignment to vy, ..., vk, and so there are exactly N = mk sets A;.

For each edge e € H, we choose the random matrix M, which gives the permissible
assignments to the endpoints of e. X is the random subset of {2 which contains the triples
for which v; = a;,v; = a; is a permissible assignment. Z counts the number of A; which
X contains, i.e. the number of permissable assignments to H. Each element of {) appears
independently with probability ps and so

E(Z) = mép§t

where § = —1 if H is a tree, 6 = 0 if H has one cycle, and § = 1 otherwise. Next we see
that
k+6
k 6 —max: —
A < mipsty ( K )m'é 2} phta—t (12)
t=1 t

S k(k + 1)2m(2]k72pgk+2572.

Explanation: We use expression (7). mipit® is E(Z) = Y., Pr(4;) and then the sum
in (12) bounds > 4 4,29 Pr(4; \ 4; € X) for every 7. In the sum ¢ = [4; N A;] and ¢ =2
gives the largest contribution, by far, since (10) implies mop,/k — c0.

Applying (8) we get

2,2
mMoPs
o =Pr(Z=0) < exp{—k(k+1)2},

11



and so

= —1 k mgp3
fﬁi(ﬁ)jﬁ Cgé;pl k(d€2 ) eXF){__EZEi;ijg}._a.o

which follows directly from (10).
Now consider C,.

D
n m —m
Pr(C;) < n)| (g)pfm"’ (m e+ 1)(1 —pg)" ot
=1

D
=

IN

n Y (dm)2™(1 - py)ym?
1
— 0.

6 Proof of Theorem 4

First note that m < (1 + €)p, *logn and so
np1(1—p2) > 2(1+€)(1+blogp, ') loglogn = 2(1+¢€)(loglogn+ klogp, ') > (2 +¢€) logm

and so by (4) the problem is inconsistent whp.

We deduce from C1 and C4 and Theorem 2 that whp the problem is strongly k-
consistent. We prove next that whp every set S of s < yn vertices induces a subgraph
with fewer than ks/2 edges. Thus if |S| < yn and H = G[S] is the subgraph of G induced
by S then H has no k-core and so the algorithm of Theorem 1 will find an assignment
which is consistent for the sub-problem induced by H.

Now

m s
Pr(35,|S| < yn containing > 5 edges) < Z <n) < (3) ) pher?

S \s ks/2
m s
ne /sea\k/2
< ==
- Z (s (bn) )
s=k+1

O

Remark 2 We see from the proof that if a < %b then whp there is no k-core and the
problem 1itself is k-consistent. So presumably there is a transition from being solvable by
a simple backtrack free algorithm to infeasible as a increases. Whether this transition is
sharp is unclear.
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