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Abstract

In recent years there has been considerable progress on the analysis
of Markov chains for generating a random coloring of an input graph.
These improvements have come in conjunction with refinements of the
coupling technique, which is a classical tool in probability theory. We
survey results on generating random colorings, and related technical
improvements.

1 Introduction

Our focus is on Markov Chain Monte Carlo (MCMC) algorithms for ap-
proximately counting the number of k-colorings of a graph. For a graph
G = (V,E), a (proper) k-coloring is an assignment o : V' — [k] such that
adjacent vertices receive different colors.

It is well known that it is NP-hard to compute the minimum number
of colors in a proper k-coloring. On the other hand there are many known
conditions that imply that G is k-colorable. For example, unless G is an
odd cyle or a complete graph, then Brook’s theorem states that G' can be
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A-colored, where A = A(G) is the maximum degree of G. In the two special
cases we need A + 1 colors. Thus if & > A + 1 then we can k-color G.
This raises the interesting computational challenge of finding the number of
proper k-colorings for k£ > A + 1.

Valiant [36] introduced the notion of #P-hardness, and proved that count-
ing colorings is #P-complete. Hence, our focus is on whether or not there
is an efficient approximation algorithm for counting proper colorings. An
important paper by Karp, Luby and Madras [29] introduced the notion of
a Fully Polynomial time Randomized Approximation Scheme (FPRAS). In
the case of colorings, an FPRAS is a randomised algorithm that, for all
1 > e > 0, can with high probability (i.e., probability at least 1 — 1/poly(n))
estimate the number of k-colorings within a multiplicative factor 1 + € in
time polynomial in n = |V] and 1/e.

Dominic Welsh has made major contributions to the computational the-
ory of counting and has written a beautiful monograph on the subject [38].
The paper [25] by Jerrum, Valiant and Vazirani relates the estimation of the
size of a finite set S to the uniform random choice of a member of S. In
particular, it shows how given a (near) uniform sampler, we can construct an
FPRAS for |S|. In this short survey, we discuss the success or otherwise in
the quest to find an algorithm that can generate a (near) uniform k-coloring
of a graph G.

Markov Chain Monte Carlo is an important tool in sampling from com-
plex distributions such as the uniform distribution on k-colorings. It has
been successfully applied in several areas of Computer Science, most notably
volume computation [11], [28], [30] and estimating the permanent of a non-
negative matrix [26].

The idea is to define an ergodic Markov chain whose state space is the
same as the set from which we wish to sample and whose steady state distri-
bution is the required distribution. We then run the chain until it is close to
its steady state and use the current state as a sample point. The main issue
in all of this is to determine how long it is required to run the chain before
it is close enough to the steady state. To make this precise, let 2 denote
the state space of the Markov chain Xy, Xi,...,X;, and let 7 denote the
steady state distribution. Let P® (o, 7) denote the probability that X; = 7,
given that the chain started with Xy = 0. Define the mixing time as the
time until is the chain is within variation distance < 1/4 from the stationary



distribution from the worst initial state, i.e., let

Tmix = rgleaé(min{t : ||P(t)(a, ) — 7THTV < 1/4}.

Recall the (total) variation distance for a pair of distributions p and v on a
finite space €2 is defined as

1= Vliey = 5 3 lia) — va)] = mas p(4) — v(4).

ACQ
e

The constant 1/4 in the definition of the mixing time is somewhat arbi-
trary and simply needs to be < 1/2. It then follows, for any § > 0, that after
< Tmix 10g(1/d) iterations, the chain is within variation distance < § of the
stationary distribution (see, for example, [24, 3]).

1.1 Glauber Dynamics and Survey of Results

There is one particular Markov chain that has been the subject of much
interest. For G = (V, E), the state space of the Markov chain is [k]" =
{1,...,k}V. Let N(v) denote the neighbors of vertex v. The following
Markov chain is known as the Glauber dynamics. From X; € [k]V,

1. Choose z uniformly at random from V', and ¢ uniformly at random

from {1,...,k}.
2. For all w # z, set Xyy1(2) = Xy(2).

3. If no neighbors of z have color ¢ (i.e., ¢ € X (N (2))), then set X;11(2) =
¢, otherwise set X;1(2) = Xi(2).

The version above is called Metropolis Dynamics.

While the coloring problem came to the fore in 1995 with the publication
of [23], already in 1983 Donnelly and Welsh [7] had considered a Markov
chain for 2-coloring graphs, viz. the antivoter problem.

Note, while the chain is defined on all labelings of G, when k > A+ 2, for
any initial state Xy, we eventually reach a proper k-coloring, and then the
chain only walks on proper colorings. Moreover, it is straightforward to verify
that the Glauber dynamics is irreducible on the set €2 of proper k-colorings
of G when k > A+ 2. Thus, its stationary distribution 7 is uniform over the
proper k-colorings of G.



A natural conjecture is that the mixing time of the Glauber dynamics
is O(nlogn) whenever k& > A + 2. Note, O(nlogn) steps are needed so
that every vertex is recolored at least once. Recently Hayes and Sinclair
[18] proved the mixing time is in fact Q(nlogn), at least for constant degree
graphs.

There has been steady progress on the upper bound, and the following
result now appears within reach: O(nlogn) mixing time for £ > A + o(A).
The first significant result on this problem (at least in the theoretical com-
puter science community) was by Jerrum, who proved O(nlogn) mixing
time of the Glauber dynamics whenever k£ > 2A. His proof is closely re-
lated to work in the statistical physics community, e.g., Salas and Sokal [35],
on the Dobrushin uniqueness condition. In statistical physics terminology,
counting colorings corresponds to computing the partition function of the
zero-temperature anti-ferromagnetic Potts model.

Jerrum’s proof was simplified using the path coupling approach intro-
duced by Bubley and Dyer [5]. Vigoda then introduced an alternative Markov
chain and proved O(nlogn) mixing time of this new chain whenever £ >
11A/6. This implied O(n?) mixing time of the Glauber dynamics. Vigoda’s
11A/6 result is still the best upper bound for general graphs.

Dyer and Frieze considered graphs with large girth (¢ = (log A)) and
large degree (A = Q(logn)) in order to use properties of typical colorings.
They proved O(nlogn) mixing time of Glauber dynamics when k£ > aA
where o &~ 1.763... for this class of large girth/degree graphs. A series of
results reduced the bound on k/A (Molloy [33], and Hayes and Vigoda [19]),
lowered the girth requirement (Hayes [17], Hayes and Vigoda [20], Frieze
and Vera [14]), and lowered the degree requirement (Dyer, Frieze, Hayes and
Vigoda [10]). All of these results prove O(n log n) mixing time of the Glauber
dynamics with various improvements in the parameters.

The two most notable results in this framework are Hayes and Vigoda
[19] whose result holds for all € > 0, all £ > (1 4 ¢)A with girth g > 11 and
A = Q(logn); and Dyer et al [10] which holds for all € > 0, all £ > (1+¢€)8A
where § =~ 1.489... with girth ¢ > 6 and A a sufficiently large constant
(which grows with 1/€). When above the threshold k/A = o we have rapid
mixing for triangle free graphs [20] and more generally, graphs with sparse
vertex neighbourhoods, e.g. planar graphs [14]. In this survey we focus
on explaining the high-level ideas in this body of work. We introduce this
approach in a non-historical, but in what we hope is a more intuitive manner.



This is a good place to mention the experimental work of Petford and
Welsh [34] on the Anti-Voter Algorithm for 3-coloring a graph G. Their goal
was to use a Markov chain to find a single proper 3-coloring. Starting with
an arbitrary (non-proper) 3-coloring of G the algorithm chooses a vertex
v which has the same color as one of its neighbors and randomly re-colors
it according to a distribution proportional to e *¢ where ). is the current
number of neighbours of v with color ¢. The algorithm continues until G is
3-colored. They report good results up to average degree about 5.

1.2 Outline of Paper

In Section 2 we explain the coupling method, including the path coupling
approach. We give a detailed proof of Jerrum’s 2A result in Section 3. Then
in Section 4 we explain how we can use typical properties of random colorings
to improve upon the worst case coupling approach. These results require high
probability events, and thus require A = Q(logn). In Section 5 we explain
how the approach extends to constant degree graphs. The constant k/A is
further reduced in Section 6. In Section 7 we give a very rough idea of the
k > (1 + €)A result of Hayes and Vigoda.

In Section 8 we consider the alternative Markov chain used by Vigoda in
his £ > 11A/6 result. Finally in Section 9 we mention related results, and
present several interesting open problems in Section 10.

2 Coupling Method

The coupling method has been the primary tool for analyzing Markov chains
in the context of random colorings. It was first introduced for the analysis of
Markov chains by Doeblin [6]. For a pair of distributions p, v on a discrete
space €2, a coupling is any distribution w on € x  where:

Zw(m,y) = u(z), for all x € ),

yeQ

Zw(x,y) =v(y), for all y € Q.

€

Thus, if we simply observe the first coordinate, it is distributed as u, and sim-
ilarly for the second coordinate with respect to v. It is then straightforward



to show that
it = Vley < 1= D wiz,2). (1)
z€Q
Therefore we can upper bound the variation distance by defining a coupling
and bounding the probability that the coordinates differ. In fact, there always
exists a coupling which achieves equality in (1).

2.1 Worst Case Coupling

We will consider couplings for Markov chains. Consider a pair of Markov
chains (X;) and (Y;) on Q with transition matrices Px and Py, respectively.
The Markov chain (X{,Y}) on © x Q is a (Markovian) coupling if

Pr(X;,, =c| X/ =a,Y/ =b) = Px(a,c), for all a,b,c € ; and
Pr(V,,=c| X, =a,Y/ =0) = Py(bc), forall a,b,c € Q.

In other words, if we simply observe the first coordinate, it behaves like
Px and similarly the second coordinate acts according to Py. This is a
more restrictive form of coupling then is necessary. In general, the joint
distribution of X;; 1, Xj,; can depend on the whole previous history and as
such is called a non-Markovian coupling. We will see an application of a
non-Markovian coupling in Section 7.

For a coupling (X7, Y/) of (X;) and (Y;), by (1), we have for all X, Yy,

1 Xe = Yillpy < Pr(X; # Y/ | Xj = Xo, Yy = Yo), (2)
where we are using the random variable X; to denote its probability distri-
bution, and similarly for Y;.

Let d denote an arbitrary integer-valued metric on €2, and let dy,., denote

the diameter of 2 under this metric. For ¢ > 0, we say a pair (z,y) € Q2 is
€ distance decreasing if there exists a coupling such that

E(d(X1,Y1) | Xo=2,Y =y) < (1 - €)d(z,y).

The Coupling Theorem says that if every pair (z,y) is € distance decreas-
ing, then the Markov chain mixes rapidly:

Theorem 1 (cf. Aldous [2]). Let € > 0 and suppose every (x,y) € Q2 is
€ distance decreasing. Then,

Toix < 2 log(dmax)e_l.



Proof. By induction we have

Pr (X, #Y; | Xo,Y) E (d(X:,Y;) | Xo, Y0)

(1= e)E (d(X¢-1,Y-1) | Xo, o)
(1-— e)td(Xo,Yb)

exp(—t€)dmax

1/4

VAN VAN VAN VAN VAN

for t > 2log(dmax)/€. The theorem now follows from (2). O

2.2 Path Coupling

The path coupling lemma says it suffices to define and analyze a coupling for
pairs in a subset of 2 x ) assuming the subset “connects” the state space.
Let S C © x € be such that (2, 5) is connected. For (X,Y) € Q x Q, define
d(X,Y) as the shortest path length between X and Y in the graph (€2, .5).
Thus, if (X,Y) € 9, then d(X,Y) = 1.

Lemma 2 (Bubley and Dyer [5]). Let € > 0. Suppose (Q2,S) is connected
and every (x,y) € S is € distance decreasing. Then,

Tmix (0) < 210g(dmax) /€.

Proof. We construct a coupling for all (X, Y;) € Q x  which is distance
decreasing, and then we apply Theorem 1. We construct the coupling for an
arbitrary pair Xy, Y; by simply “composing” couplings along a shortest path
between X; and Y;. Let Z? = X, Z}, ... . Z] = Y,,j = d(X},Y;) denote an
arbitrary such shortest path.

From the hypothesis of the lemma we know

B (d(Zin, Zi31) | 20, 207) < (1= (7, Z7),
We then have
B(d(Xis Vi) | X0¥) < 3 B(Z0 Z1) 1 20.247)

1<i<j

< (-9 Y Az z

1<i<y

= (1-¢d(X, Y1)

The lemma now follows from Theorem 1. O



3 Worst Case Coupling for Glauber

We will prove fast convergence via path coupling. We begin with the following
theorem to get started.

Theorem 3. Let A denote the mazimum degree of G. If k > 3A, then
Tmix < 2nklog(n).

Proof. Let Q = [k]V denote the state space of the Glauber dynamics. For
simplicity we will refer to the states of {2 as colorings. In this set up, the

distance
dX,)Y)=H{veV: X(v)#Y(v)}

corresponds to the Hamming distance between colorings X and Y. We apply
the path coupling lemma with the subset S defined as pairs of colorings that
differ at a single vertex, i.e.,

S={X,Y €QxQ:dX,Y) =1}

Note, since Q is [k]V" (not just proper colorings), for all X, Y €  the length of
the shortest path between X and Y in the graph (€2, 5) is of length d(X,Y).
Thus we can apply the path coupling lemma with S and distance d defined
in this manner.

Now we need to define a coupling for pairs of colorings in S. Consider
a pair of such colorings (X, Y;) € S where Xy (v) # Yi(v), say Xi(v) = cx
and Y;(v) = ¢y. The coupling is simply the identity coupling. Both chains
attempt to update the same vertex z to the same color c. Observe that only
updates with z € N(v) and ¢ € {cx, ¢y } might succeed or fail in exactly one
chain. All other updates succeed or fail in both chains. Thus, these are the
only updates which might increase the distance. In summary, there are at
most 2A updates which might increase the distance, and each occurs with
probability 1/kn.

The only updates which might decrease the distance are successful recol-
orings of v. Since there are at most A colors in the neighborhood of v, there
are at least k — A available colors for v.

Combining these contributions, we have

1
E (d(Xs1, Yirt) — d(Xe, Y)) | X0 Yi) < — (28— (k= A)) € —,

1
~ kn kn



for k > 3A + 1.
Plugging this bound into the path coupling lemma proves the theorem.
O

Modifying the above coupling we can achieve the following improvement.

Theorem 4 (Jerrum [23]). If k > 2A, then
Tmix < 2nklog(n).

Proof. The set S remains the same, we simply modify the coupling slightly.
If X; attempts to recolor a neighbor w of v to color cy, then Y; attempts to
recolor w to cy. Similarly, if X; attempts to recolor w € N(v) to ¢y, then Y;
attempts to recolor w to cx. In all other cases, X; and Y; attempt to modify
the same vertex to the same color.

Observe that w € N(v) can not receive color cx in X; (since this is v’s
color), and w can not receive ¢y in Y;. Thus, such a coupled update has
no effect on the pair of colorings. Therefore, there are at most A coupled
recolorings which might increase the distance — attempting to recolor w €
N(v) to ¢y in X; and to cx in Y,.

We now have

1 1
E(d(Xer1, Yerr) —d(Xe, Vi) [ Xo, Vi) < (A= (K = A)) < =,

kn
for kK > 2A + 1. O

Further Improvements

Notice that in the above proof for £ > 2A, we needed that the number of valid
recolorings of v is greater than A. While in the worst case v has A distinct
colors in its neighborhood, this might be unlikely in a typical coloring. In
the next section we look at properties of random colorings, and how these
properties can be used to improve upon the k£ > 2A result.

In Section 8 we look at a different Markov chain, and show how that
improves upon the 2A result.

4 Using Properties of Typical Colorings

In an arbitrarily chosen coloring, a vertex v only has > k— A valid recolorings,
which was used in the £ > 2A bound. However, if G has few edges among

9



neighbors of v, then in a random coloring one expects that many neighbors of
v have the same color, and thus v has more valid recolorings. In particular,
we want to lower bound the number of available colors for v. Let

A(X, v) == [F]\ X(N(v)),

denote the set of available colors for a vertex v under a k-coloring X.

It is in fact easy to lower bound the expected number of available colors
for any vertex in a triangle-free graph, as we show in the next lemma. By
setting A = Q(logn) we get the lower bound on the number of available
colors with high probability for every vertex. It is then straightforward to
combine this high probability event with the coupling framework to conclude
rapid mixing of the Glauber dynamics for an improved range of k/A.

Note, if the neighbors of a vertex v were each receiving an independent
random color, then the expected number of colors which do not appear in
this neighborhood (i.e., the number of available colors) is k(1 — 1/k)? if v
had degree A. For large k this is roughly k exp(—A/k), which is exactly the
bound that we obtain in the following lemma.

Lemma 5 (Hayes and Vigoda [20]). Let G = (V, E) be a triangle-free graph
with mazimum degree A. For every 1 > > 0, there exists C' > 0 such that,
whenever k > max{A +2/§,Clogn}, then for a random k-coloring X,

Pr(Jv eV : |AX,v)] < kexp(=A/k)(1 —6)) < 1/n'°.

The above lemma is interesting in the case A > C'logn, and then we
only need k£ = A+Q(1) for the above property to hold with high probability.
Notice the theorem is a statement about a random coloring. Thus, it is
property of the stationary distribution of the Glauber dynamics, but has no
connection to the transitions of the Markov chain.

Before proving the lemma let us explain how this improves upon Jerrum’s
2A result. Recall the proof of Theorem 1 (Coupling Theorem). The proof
couples an arbitrary pair of states. Our goal is to get to the stationary
distribution, thus we could instead couple a chain starting at an arbitrary
initial state Xy with a chain starting in the stationary distribution Yy ~ 7.
By the definition of the stationary distribution, since Yy ~ 7, then for all
t > 0, we have Y; ~ m. Hence, once the chains have coupled, i.e., X; =Y},
then the chain X; has reached the stationary distribution.

The above Lemma 5 implies that Y; locally looks random with high prop-
erty. We call this a local uniformity property. For T' = O(nlogn), we will

10



prove that if Y;, for all 0 < ¢t < T', has the local uniformity property, then
we can couple X7 = Y with probability > 1 —1/10n. Using Lemma 5, with
a union bound, we have that for all 0 <t < T, Y, has the local uniformity
property, except with probability at most T/n'® < n=8. In the case that
some Y; does not satisfy the local uniformity property we can bound the
Hamming distance of Xt and Y7 as d(X7, Yr) < n. Hence, for Yy ~ m,

E (d(X7,Yr) | Xo) < n(1/10n +1/n%) < 1/4.

One complication in the above approach is that it requires defining and
analyzing a coupling for an arbitrary pair of states. In other words, we can no
longer use the path coupling lemma. Jerrum’s original proof of the k£ > 2A
result did not use path coupling. Moreover, in his proof it turns out that it
suffices for one of the coupled pairs to have the local uniformity property, in
our case only Y; has the property.

To get intuition for the effect of the local uniformity property on the
coupling, recall the discussion after the proof of Theorem 4. Note, the proof
required that the number of valid recolorings of the disagree vertex v was
greater than A. The number of valid recolorings for v is the number of
colors not appearing in its neighborhood, which is lower bounded in Lemma
5. Therefore, we need

kexp(—A/k) > A

Let o = 1.763... denote the solution to x = exp(1/z). It then follows that
for all € > 0, there exists C' > 0 such that the Glauber dynamics has mixing
time O(nlogn) for any triangle-free graph with maximum degree A when
k > max{(1+ €)aA,Clogn}.

We refer the reader to Hayes and Vigoda [20] for details, and to Frieze
and Vera [14] for an improvement to locally-sparse graphs.

We now show how to prove Lemma 5. The main idea is to consider a
random coloring X and any vertex v. Then we simply recolor the neigh-
borhood of v, with all other vertices fixed to X. Since v is triangle-free we
can simultaneously recolor all neighbors of v, i.e., their colors do not interact
since X is fixed on V' '\ N(v). Moreover, after this process we will still have
a random coloring. Note, every w € N(v) will be rechoosing its new color
from a reasonably large set of possible colors. Hence, many neighbors will
choose the same color, and we will get the expected behaviour. Here is the
formal proof.

11



Proof of Lemma 5. Let v € V. By definition,

Axol=y J[ @

jEk] weN (v)

where X ,, is the indicator variable for vertex w having color j, i.e., the event
{X(w) = j}. Since 6 < 1, we always have |A(X,v)| > 2.

We will fix the coloring X on V'\ N(v), and consider the distribution of
colors on N(v). Let F denote the fixed coloring X on V' \ N(v).

Since G is triangle-free, given F, each X (w) is independent and uniformly
distributed over its set |A(X,v)|. Note, for a color j,

— 1 if j € A(X,w)
B (X | F) = { T | ®
otherwise
Hence,
E(AX0)||F) = Y ][] 0 -EXul|F)
jE€[k] weN (v)

> k][ I Q-EXw|F)Y"

JE[k] weN (v)
1 [A(X,w)|/k

= k
11 ( \AX’w)\)
weN (v

2 k(exp(—A/k) —0/2),

where the first inequality holds by the arithmetic-geometric means inequality,
the subsequent identity follows from (3), and the final inequality uses k >
A+2/6.

Since the colors X (w),w € N(v) are independent, and |A(X,v)| is a
Lipschitz function of these colors, with constant 1, it follows by Hoeffding’s
theorem [22] that

Pr (JA(X,v)| < k(e ®"—6) | F) < e h2,
Since this holds for every outcome of F,
Pr (JA(X,v)| <k (e7/F —§)) < e F2 < 1/n!,

for sufficiently large C'. Note C' depends on d. Also, by choosing C' sufficiently
large we get an arbitrarily small polynomial for the tail probability. Taking
a union bound over v € V' completes the proof. O
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5 Constant Degree

The lower bound on the number of available colors holds with high probability
because A = Q(logn). In this section we describe how these results extend to
constant degree graphs. The first observation is that in the proof of Lemma
5 for general A, the tail probability is roughly exp(—A). Thus, in constant
degree graphs, there will be a constant fraction of the vertices which do
not achieve the desired lower bound as in Lemma 5. We will need a new
approach.

The lower bound on the number of available colors held for a random
coloring. In fact, it also holds for an arbitrary coloring after a sufficient
number of steps (roughly O(nlog A)) of the Glauber dynamics. This is much
more difficult to prove, but crucial for the constant degree results in this
section. Roughly speaking, we can mimic the recoloring of the neighborhood
of a vertex v,

Recall, in the proof of Lemma 5, the key step was recoloring the neigh-
borhood of a vertex v. For an arbitrary coloring, after O(nlog A) steps of the
Glauber dynamics, most of the neighborhood of v will be recolored at least
once. Thus, we might expect after this many steps, the coloring has similar
behavior as in the proof of Lemma 5. This is the case, but the neighbors
of v are not being recolored simultaneously. Thus, their new colors are not
independently chosen. This independence was key to the simplicity of the
proof of Lemma 5. Overcoming these dependencies is much more difficult.

Dyer and Frieze first assumed girth (loglog A), and used a disagree-
ment percolation argument to argue the neighbors are being recolored nearly
independently. Hayes reduced the girth to 5, by coupling with the Glauber
dynamics on a modified graph where the local neighborhood of v is discon-
nected from the rest of the graph. Here is the formal statement of Hayes’
result.

Lemma 6 (Hayes [17]). For every € > 0 there exists Cp > 0 such that for
every graph G = (V, E) with mazimum degree A > Cyipy and girth at least 5,
for k> aA, all Xy € Q, for every t > Cinnlog A, for allv eV,

Pr (A(Xy,v) < (1 — e)kexp(=A/k)) < exp(—e2A/100).

Using this lemma, Dyer, Frieze, Hayes and Vigoda [10] were able to re-
duce the lower bound on maximum degree to sufficiently large as opposed to
Q(logn) in previous papers.
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Their approach uses path coupling for an arbitrary pair of initial colorings.
Thus, consider an arbitrary pair of colorings X, Yy which differ at a single
vertex v. They then couple this pair using the same coupling as used by
Jerrum in his k£ > 2A result. However, they analyze the coupling over
T = O(nlog A) steps (whereas Jerrum simply used T' = 1).

They begin by running the pair for O(nlog A) steps. During this initial
period the Hamming distance will increase in expectation at each step. This
is a “burn-in” period. Looking at a constant radius ball of vertices around v,
during the burn-in period, we expect most vertices in the ball will achieve the
lower bound on the number of available colors. Moreover, even though the
disagreement will likely spread away from v, with a large constant probability
it is unlikely to spread outside of the local ball around v.

There are then two cases after the initial burn-in period. In the good
case, all of the disagreements are contained in the local ball around v, and
most vertices in the ball have the uniformity properties of Lemma 6. In
this case the Hamming distance will then decrease in expectation. Also,
the chains are coupled for a sufficient number of further steps so that the
expected Hamming distance is small at the conclusion of the coupling. In
the bad case, they simply obtain a reasonable upper bound on the Hamming
distance, and prove this is offset by the small probability of actually reaching
this bad case.

6 Further Properties of Typical Colorings

The above improvements to & > 1.763A used a lower bound on the number of
available colors. If the neighbors of a vertex v were really receiving indepen-
dent random colors, then in expectation the number of available colors for v
would be k(1 — /k)%9") ~ kexp(—k/deg(v)). Thus, we have not yet proven
that neighbors of v are getting random color choices. Improving beyond
1.763 requires further “local uniformity properties” which require that in a
random coloring (or after a sufficient number of steps of Glauber dynamics)
vertices are receiving (close to) uniform random color choices.

To get the matching upper bound on the number of available colors (or
prove stronger local uniformity properties) requires a recursive argument. In
particular, we need to successively improve the upper bound on available
colors. The details of this recursion is complicated, and we refer the inter-
ested reader to Molloy [33]. Molloy first proved the desired upper bound on

14



available colors in the context of graphs with girth Q(loglog A), and used it
to improve the 1.763... threshold to 1.489....

A simpler set of recurrences were later used by Hayes (with only constant
girth requirements). The recurrences used by Hayes are very similar to those
used earlier by Jonasson to study uniqueness of Gibbs measures for colorings
of the infinite tree [27]. The expanded girth requirement is a result of having
to recolor a larger neighborhood in the proof of the local uniformity property.

6.1 1.489... Threshold

In Jerrum’s 2A proof, we had a pair of colorings X,Y which differed only
at v, say v had cx =Red in X and ¢y =Blue in Y. Then, the (Hamming)
distance decreased if we successfully recolored v in both chains. In the worst
case there are only k— A valid recolorings of v. The improvements to 1.763A
replaced this worst case bound with > kexp(—A/k) valid recolorings.

On the other side, there are at most A recolorings which increase the
distance. In particular, for every w € N(v), if w can be recolored to Red in
Y and/or to Blue in X, then there’s a coupled recoloring of w that increases
the distance. If neighbors of w were colored independently at random then
(assuming w is degree A) with probability

(1—(1=1/k)271)% ~ (1 - exp(=A/K))%,

at least one neighbor of w (ignoring v) is colored Blue and at least one
neighbor is Red. Hence, the attempted coupled update of w to Red in Y and
Blue in X fails in both chains. Thus, in expectation (if neighbors of w are
colored randomly) we only have A(1 — (1 — exp(—A/k))?) recolorings that
increase the distance. We might expect that the proof approach works when:

kexp(=A/k) > A(1 — (1 — exp(—A/k))?)
In other words, for x = k/A, we want
zexp(—1/z) + (1 —exp(—1/x))* > 1.

This holds when x > 1.489....

Using the above approach, Molloy [33] proved O(nlogn) mixing time of
the Glauber dynamics when k/A > 1.489..A for A = Q(logn) and girth
g = Q(loglogn). Hayes [17] improved the girth requirement to g > 6. Dyer,
Frieze, Hayes and Vigoda [10] reduced the degree requirement to A suffi-
ciently large constant.
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7 Getting close to the Maximum Degree

Hayes and Vigoda [19] improved the threshold on k/A to 1. In particular,
they proved O(nlogn) mixing time of the Glauber dynamics for k > (1+¢)A
for all € > 0 assuming A = Q(logn) and the girth g > 11.

Their result differs from all of the previously mentioned results in the use
of a much more sophisticated coupling. The earlier results used the coupling
studied by Jerrum in his k£ > 2A result with increasingly sophisticated analy-
ses. Whereas Jerrum’s coupling was a one-step coupling, Hayes and Vigoda’s
coupling pairs T' = O(n) steps of one chain with T steps of the other chain.

Notice that in Molloy’s improvement to 1.489, he is accounting for w €
N(v) where some x € N(w) \ {v} is colored Red and some y € N(w) \ {v}
is colored Blue. In this case, the attempted update of w to Blue in X and
to Red in Y, fails in both chains, and the distance stays the same. Hence,
w is called a “doubly-blocked” neighbor. A “singly blocked” neighbor has
Blue in its neighborhood or Red, but not both. In this case, the attempted
update succeeds in one of the chains, and fails in the other, but the distance
still increases by one.

Hayes and Vigoda construct a coupling so that attempted updates always
succeed in both chains, or in neither chain. In particular, they couple singly
blocked scenarios, so that if X is singly blocked for Blue (or Red respectively),
then they couple the evolution of Y so that Y is singly blocked for Red (Blue).
The improvement comes from the case when X is singly blocked for Blue, and
now Y is singly blocked for Red, and then the attempted update for w fails
in both chains, keeping the distance the same. In the earlier coupling, such
an update in a singly blocked scenario would have increased the distance.

Coupling a Red singly blocked scenario for X with a Blue singly blocked
scenario for Y implies that the neighborhood of w (specifically N*(w) =
N(w) \ {v}) differs between the two chains. Coloring X has Red, but not
Blue in N*(w), whereas Y has Blue, but not Red in N*(w). Thus, they need
to introduce disagreements on N*(w) to achieve this.

By running X for ' = O(n) steps before defining the coupled evolution
for Y, they can introduce temporary disagreements on N*(w) so that these
disagreements are guaranteed to disappear before they propagate. Suppose
there is an attempted update in X of w to Blue, and w is singly blocked for
Blue (thus, Blue appears in N*(w), but Red does not). Say z € N*(w) is
the only Red “blocker” of w in chain X.

Roughly speaking, we then find a y € N*(w) whose current color can be
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replaced by Red, without any effect on the rest of the coloring. In particular,
suppose y is currently Yellow. When y was recolored to Yellow, if we instead
colored it to Red, and this change would have "no effect” on the rest of the
coloring, then y is a suitable “blocker” for Red in chain Y. More specifically,
if chain X had recolored y to Red instead of Yellow, and kept all other
attempted updates of the dynamics the same, then this change had no effect
if the coloring at every other vertex did not change. Hence, at the last
recoloring of y, whereas chain X will still use color Yellow, we will couple
this with color Red in chain Y. Meanwhile, for the last recoloring of x, while
X will still use color Blue, Y will now choose a suitable other color that will
not effect the rest of the coloring. In this way, we have caused Y to be singly
blocked for Red, while X is still singly blocked for Blue.

The difficulty is doing the above process in such a way that the coupling is
still valid. This involves an inductive argument which relies on the above pro-
cess, for creating temporary disagreements to handle another singly blocked
scenario, is reversible (or invertible) in an appropriate sense.

8 Improved Markov Chain

In this section we present the Markov chain used by Vigoda [37] to prove his
11A/6 result. The chain ‘flips’ 2-colored clusters. The probability of flipping
a cluster is a function of the size of the cluster, and only clusters with at
most 6 vertices are flipped. The choice of probabilities for flipping clusters
is essential in the details of the coupling analysis.

We need some notation before specifying the transitions of the chain.
For a coloring o, we will refer to a path v = x¢,21,...,2; = w as an
alternating path between vertices v and w using colors ¢ and o (v) if, for all 4,
(i, xi41) € E, o(z;) € {c,0(v)}, and o(x;) # o(xi41). We let S, (v, ¢) denote
the following cluster of vertices.

S, (v,¢) = {w

Let S,(v,0(v)) = (. For every vertex x in the cluster S,(v,c), notice that
Se(,¢) = Sy(v,¢) if o(x) = o(v) and otherwise S, (z,0(v)) = S, (v, ).
For a coloring o € €2, the transitions o +— ¢’ are defined as:

there exists an alternating path between
v and w using colors ¢ and o(v)

e Choose a vertex v and color ¢ uniformly at random from the sets V', C'
respectively.
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o Let s =S, (v,0)l.
With probability 2=, ‘flip” cluster S, (v, c) by interchanging colors ¢ and
o(v) on the cluster.

The reason for dividing the flip probability by s is that, as observed above,
there are exactly s ways to pick the cluster (one for each of its elements).
Thus, a cluster is actually flipped with weight p,.

To complete the description of the chain, we specify the parameters p;.
They are p; = 1,py = % and for s > 2,

13 1 1 1
ps=max 0, ——- |1+ -+ +—F%
2 5—2

Specifically, ps = %,p4 = %,ps) = %;pg = 8L4,and ps =0 for s > 7.
With this choice of parameters, the chain can then be analyzed using a
path coupling analysis for a one step coupling.

9 Other results

Here we briefly a few related results which we did not have space to discuss
in detail.

Random Graphs: A random graph with n vertices and dn random
edges, d > 0 constant has maximum degree ~ log’i gn with high probability
(whp), but there are only very few vertices of such large degree. It would
therefore seem unnecessary to have k of order A in order to generate a ran-
dom k-coloring. Dyer, Flaxman, Frieze and Vigoda [8] proved that one can
construct a Markov chain algorithm that whp (over the space of graphs)
mixes in O(nlogn) time with & as small as o(loglogn). It is also shown that
whp the Glauber dynamics mixes in polynomial time for £ = (logn)®, a < 1.

Coupling with Stopping Times: There are several papers that have
extended the path coupling approach so that the length of the coupling is
a random stopping time. Various techniques and applications are presented
in Dyer, Goldber, Greenhill, Jerrum and Mitzenmacher [12], Dyer, Greenhill
and Molloy [13], Hayes and Vigoda [21], and Bordewich, Dyer and Karpinski
[4].

Lattice graphs: For the 2-dimensional integer lattice (and the torus)
there are improved results for & = 3 colors, Goldberg, Martin and Paterson
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[15], and k > 6 using computer-assisted proofs, Achlioptas, Molloy, Moore
and Van Bussell [1].

Strong Spatial Mixing: For amenable graphs, such as lattice graphs,
the notion of strong spatial mixing from Statistical Physics is closely related
to O(nlogn) mixing time of the Glauber dynamics. At a high-level, strong
spatial mixing says that for uniform random colorings, correlations decay
exponentially fast with distance. Goldberg Martin and Paterson [16] ob-
tained interesting results for strong spatial mixing when k£ > aA and G is
triangle-free (without restriction on A).

Trees: Martinelli, Sinclair and Weitz [32] studied the mixing rate of the
Glauber dynamics on trees. They show O(nlogn) mixing time on complete
trees when £ > A + 2 and A is constant.

10 Open Problems

We point out several interesting open questions:

e Combining the proofs of Dyer et al [10] and Hayes and Vigoda [19], can
one prove O(nlogn) mixing time of the Glauber dynamics for girth
g > 11 graphs when k > (14+0(1))A or even k > (14+¢)A for alle > 0
with A > Ay where Ay is a constant (that grows with 1/¢)?

e Can one remove the girth restrictions at least for k > 1.763A?
e Can the approach of Vigoda [37] be pushed below 11A/67

e For bipartite graphs can we get below A? See [31] for a Markov chain
that is ergodic on bipartite graphs for all £ > 2 and related negative
results on its mixing time.

e Is k£ = O(1) colors enough for planar graphs?
e Can the results outlined in this survey be extended to list colorings?

e Does k = O(d) colors suffice in the case of a random graph of density
d/n?

Acknowledgement: We thank Nayantara Bhatnagar for her helpful com-
ments.
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